Figure 13.1 Repeated Measures Null Model

Load Children’s Vocabulary Data

(cf. (McArdle & Epstein (1987)))

<a https://docs.google.com/document/d/1IA6_7hM-3pb3-m46wFaMEXO9YQpm8K1q0n050QxwtAg/edit?usp=sharing

Path Diagram via Common Manifest Intercepts

Repeated Measures Null Model via Common Intercepts
Repeated Measures Null Model via Common Intercepts

R Program

mcardle <- read.table("C:/Users/woodph/OneDrive - University of Missouri/Documents/SembookCRCPress/Data/Mcardle/mcardle.txt", header=TRUE)

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(ggplot2)


require(lavaan)
## Loading required package: lavaan
## This is lavaan 0.6-19
## lavaan is FREE software! Please report any bugs.
Fig13.1AModel<-"
! regressions 
   RI=~1.0*wisc_1
   RI=~1.0*wisc_2
   RI=~1.0*wisc_3
   RI=~1.0*wisc_4
! residuals, variances and covariances
   wisc_1 ~~ V_e1*wisc_1
   wisc_2 ~~ V_e1*wisc_2
   wisc_3 ~~ V_e1*wisc_3
   wisc_4 ~~ V_e1*wisc_4
   RI ~~ V_RI*RI
! means
   wisc_1~t1*1
   wisc_2~t1*1
   wisc_3~t1*1
   wisc_4~t1*1
   RI~0*1;
"

 model<-"
! regressions 
   RI=~1.0*wisc_1
   RI=~1.0*wisc_2
   RI=~1.0*wisc_3
   RI=~1.0*wisc_4
! residuals, variances and covariances
   wisc_1 ~~ V_e1*wisc_1
   wisc_2 ~~ V_e1*wisc_2
   wisc_3 ~~ V_e1*wisc_3
   wisc_4 ~~ V_e1*wisc_4
   RI ~~ V_RI*RI
! means
   wisc_1~t1*1
   wisc_2~t1*1
   wisc_3~t1*1
   wisc_4~t1*1
   RI~0*1;
"


Fig13.1AResult<-lavaan(Fig13.1AModel, data=mcardle, fixed.x=FALSE, missing="FIML")
summary(Fig13.1AResult, fit.measures=TRUE,standardized=TRUE);
## lavaan 0.6-19 ended normally after 20 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         9
##   Number of equality constraints                     6
## 
##   Number of observations                           204
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                                       
##   Test statistic                              1705.425
##   Degrees of freedom                                11
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               830.699
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.000
##   Tucker-Lewis Index (TLI)                      -0.121
##                                                       
##   Robust Comparative Fit Index (CFI)             0.000
##   Robust Tucker-Lewis Index (TLI)               -0.121
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -3271.092
##   Loglikelihood unrestricted model (H1)      -2418.379
##                                                       
##   Akaike (AIC)                                6548.183
##   Bayesian (BIC)                              6558.138
##   Sample-size adjusted Bayesian (SABIC)       6548.633
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.869
##   90 Percent confidence interval - lower         0.834
##   90 Percent confidence interval - upper         0.904
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    1.000
##                                                       
##   Robust RMSEA                                   0.869
##   90 Percent confidence interval - lower         0.834
##   90 Percent confidence interval - upper         0.904
##   P-value H_0: Robust RMSEA <= 0.050             0.000
##   P-value H_0: Robust RMSEA >= 0.080             1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           1.501
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   RI =~                                                                 
##     wisc_1            1.000                               3.648    0.273
##     wisc_2            1.000                               3.648    0.273
##     wisc_3            1.000                               3.648    0.273
##     wisc_4            1.000                               3.648    0.273
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .wisc_1    (t1)   32.164    0.518   62.105    0.000   32.164    2.404
##    .wisc_2    (t1)   32.164    0.518   62.105    0.000   32.164    2.404
##    .wisc_3    (t1)   32.164    0.518   62.105    0.000   32.164    2.404
##    .wisc_4    (t1)   32.164    0.518   62.105    0.000   32.164    2.404
##     RI                0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .wisc_1  (V_e1)  165.645    9.469   17.493    0.000  165.645    0.926
##    .wisc_2  (V_e1)  165.645    9.469   17.493    0.000  165.645    0.926
##    .wisc_3  (V_e1)  165.645    9.469   17.493    0.000  165.645    0.926
##    .wisc_4  (V_e1)  165.645    9.469   17.493    0.000  165.645    0.926
##     RI      (V_RI)   13.307    5.913    2.251    0.024    1.000    1.000
require(lavaangui)
## Loading required package: lavaangui
## Warning: package 'lavaangui' was built under R version 4.5.1
## This is lavaangui 0.2.5
## lavaangui is BETA software! Please report any bugs at https://github.com/karchjd/lavaangui/issues
#plot_lavaan(Fig13.1AResult)

Repeated Measures Null Model

Path Diagram via Random Intercept Mean

Repeated Measures Null Model via Random Intercept Mean
Repeated Measures Null Model via Random Intercept Mean

R Program

require(lavaan)
Fig13.1BModel<-"
! regressions 
   RI=~1.0*wisc_1
   RI=~1.0*wisc_2
   RI=~1.0*wisc_3
   RI=~1.0*wisc_4
! residuals, variances and covariances
   wisc_1 ~~ V_e1*wisc_1
   wisc_2 ~~ V_e1*wisc_2
   wisc_3 ~~ V_e1*wisc_3
   wisc_4 ~~ V_e1*wisc_4
   RI ~~ V_RI*RI
! means
   RI~a1*1
   wisc_1~0*1;
   wisc_2~0*1;
   wisc_3~0*1;
   wisc_4~0*1;
"


Fig13.1BResult<-lavaan(Fig13.1BModel, data=mcardle, fixed.x=FALSE, missing="FIML")
summary(Fig13.1BResult, fit.measures=TRUE,standardized=TRUE);
## lavaan 0.6-19 ended normally after 34 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         6
##   Number of equality constraints                     3
## 
##   Number of observations                           204
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                                       
##   Test statistic                              1705.425
##   Degrees of freedom                                11
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               830.699
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.000
##   Tucker-Lewis Index (TLI)                      -0.121
##                                                       
##   Robust Comparative Fit Index (CFI)             0.000
##   Robust Tucker-Lewis Index (TLI)               -0.121
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -3271.092
##   Loglikelihood unrestricted model (H1)      -2418.379
##                                                       
##   Akaike (AIC)                                6548.183
##   Bayesian (BIC)                              6558.138
##   Sample-size adjusted Bayesian (SABIC)       6548.633
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.869
##   90 Percent confidence interval - lower         0.834
##   90 Percent confidence interval - upper         0.904
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    1.000
##                                                       
##   Robust RMSEA                                   0.869
##   90 Percent confidence interval - lower         0.834
##   90 Percent confidence interval - upper         0.904
##   P-value H_0: Robust RMSEA <= 0.050             0.000
##   P-value H_0: Robust RMSEA >= 0.080             1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           1.501
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   RI =~                                                                 
##     wisc_1            1.000                               3.648    0.273
##     wisc_2            1.000                               3.648    0.273
##     wisc_3            1.000                               3.648    0.273
##     wisc_4            1.000                               3.648    0.273
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     RI        (a1)   32.164    0.518   62.105    0.000    8.817    8.817
##    .wisc_1            0.000                               0.000    0.000
##    .wisc_2            0.000                               0.000    0.000
##    .wisc_3            0.000                               0.000    0.000
##    .wisc_4            0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .wisc_1  (V_e1)  165.645    9.469   17.493    0.000  165.645    0.926
##    .wisc_2  (V_e1)  165.645    9.469   17.493    0.000  165.645    0.926
##    .wisc_3  (V_e1)  165.645    9.469   17.493    0.000  165.645    0.926
##    .wisc_4  (V_e1)  165.645    9.469   17.493    0.000  165.645    0.926
##     RI      (V_RI)   13.307    5.912    2.251    0.024    1.000    1.000
require(lavaangui)
#plot_lavaan(Fig13.1BResult)

Repeated Measures Alternate Model

Path Diagram via Repeated Measures Alternate Model via Variant Intercepts

Repeated Measures Alternate Model via Variant Intercepts
Repeated Measures Alternate Model via Variant Intercepts

R Program Individual Means

require(lavaan)
Fig13.2AModel<-"
! regressions 
   RI=~1.0*wisc_1
   RI=~1.0*wisc_2
   RI=~1.0*wisc_3
   RI=~1.0*wisc_4
! residuals, variances and covariances
   wisc_1 ~~ V_e1*wisc_1
   wisc_2 ~~ V_e1*wisc_2
   wisc_3 ~~ V_e1*wisc_3
   wisc_4 ~~ V_e1*wisc_4
   RI ~~ V_RI*RI
! means
   wisc_1~t1*1
   wisc_2~t2*1
   wisc_3~t3*1
   wisc_4~t4*1
   RI~0*1;
"


Fig13.2AResult<-lavaan(Fig13.2AModel, data=mcardle, fixed.x=FALSE, missing="FIML")
summary(Fig13.2AResult, fit.measures=TRUE,standardized=TRUE);
## lavaan 0.6-19 ended normally after 27 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         9
##   Number of equality constraints                     3
## 
##   Number of observations                           204
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                                       
##   Test statistic                               184.942
##   Degrees of freedom                                 8
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               830.699
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.785
##   Tucker-Lewis Index (TLI)                       0.839
##                                                       
##   Robust Comparative Fit Index (CFI)             0.785
##   Robust Tucker-Lewis Index (TLI)                0.839
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2510.850
##   Loglikelihood unrestricted model (H1)      -2418.379
##                                                       
##   Akaike (AIC)                                5033.701
##   Bayesian (BIC)                              5053.609
##   Sample-size adjusted Bayesian (SABIC)       5034.599
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.329
##   90 Percent confidence interval - lower         0.289
##   90 Percent confidence interval - upper         0.371
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    1.000
##                                                       
##   Robust RMSEA                                   0.329
##   90 Percent confidence interval - lower         0.289
##   90 Percent confidence interval - upper         0.371
##   P-value H_0: Robust RMSEA <= 0.050             0.000
##   P-value H_0: Robust RMSEA >= 0.080             1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.241
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   RI =~                                                                 
##     wisc_1            1.000                               7.160    0.888
##     wisc_2            1.000                               7.160    0.888
##     wisc_3            1.000                               7.160    0.888
##     wisc_4            1.000                               7.160    0.888
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .wisc_1    (t1)   18.781    0.565   33.253    0.000   18.781    2.328
##    .wisc_2    (t2)   26.553    0.565   47.013    0.000   26.553    3.292
##    .wisc_3    (t3)   35.982    0.565   63.708    0.000   35.982    4.460
##    .wisc_4    (t4)   47.341    0.565   83.819    0.000   47.341    5.869
##     RI                0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .wisc_1  (V_e1)   13.810    0.789   17.493    0.000   13.810    0.212
##    .wisc_2  (V_e1)   13.810    0.789   17.493    0.000   13.810    0.212
##    .wisc_3  (V_e1)   13.810    0.789   17.493    0.000   13.810    0.212
##    .wisc_4  (V_e1)   13.810    0.789   17.493    0.000   13.810    0.212
##     RI      (V_RI)   51.265    5.421    9.456    0.000    1.000    1.000
require(lavaangui)
#plot_lavaan(Fig13.2AResult)

Path Diagram Mean Differences Relative to Initial Time

Repeated Measures Alternate Model Mean Differences Relative to Time 1
Repeated Measures Alternate Model Mean Differences Relative to Time 1

R Program Mean Differences Relative to Time 1

require(lavaan)
Fig13.2BModel<-"
! regressions 
   RI=~1.0*wisc_1
   RI=~1.0*wisc_2
   RI=~1.0*wisc_3
   RI=~1.0*wisc_4
! residuals, variances and covariances
   wisc_1 ~~ V_e1*wisc_1
   wisc_2 ~~ V_e1*wisc_2
   wisc_3 ~~ V_e1*wisc_3
   wisc_4 ~~ V_e1*wisc_4
   RI ~~ V_RI*RI
! means
   wisc_1~t1*1
   wisc_2~t2*1
   wisc_3~t3*1
   wisc_4~t4*1
   RI~0*1;
"


Fig13.2BResult<-lavaan(Fig13.2BModel, data=mcardle, fixed.x=FALSE, missing="FIML")
summary(Fig13.2BResult, fit.measures=TRUE,standardized=TRUE);
## lavaan 0.6-19 ended normally after 27 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         9
##   Number of equality constraints                     3
## 
##   Number of observations                           204
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                                       
##   Test statistic                               184.942
##   Degrees of freedom                                 8
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               830.699
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.785
##   Tucker-Lewis Index (TLI)                       0.839
##                                                       
##   Robust Comparative Fit Index (CFI)             0.785
##   Robust Tucker-Lewis Index (TLI)                0.839
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2510.850
##   Loglikelihood unrestricted model (H1)      -2418.379
##                                                       
##   Akaike (AIC)                                5033.701
##   Bayesian (BIC)                              5053.609
##   Sample-size adjusted Bayesian (SABIC)       5034.599
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.329
##   90 Percent confidence interval - lower         0.289
##   90 Percent confidence interval - upper         0.371
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    1.000
##                                                       
##   Robust RMSEA                                   0.329
##   90 Percent confidence interval - lower         0.289
##   90 Percent confidence interval - upper         0.371
##   P-value H_0: Robust RMSEA <= 0.050             0.000
##   P-value H_0: Robust RMSEA >= 0.080             1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.241
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   RI =~                                                                 
##     wisc_1            1.000                               7.160    0.888
##     wisc_2            1.000                               7.160    0.888
##     wisc_3            1.000                               7.160    0.888
##     wisc_4            1.000                               7.160    0.888
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .wisc_1    (t1)   18.781    0.565   33.253    0.000   18.781    2.328
##    .wisc_2    (t2)   26.553    0.565   47.013    0.000   26.553    3.292
##    .wisc_3    (t3)   35.982    0.565   63.708    0.000   35.982    4.460
##    .wisc_4    (t4)   47.341    0.565   83.819    0.000   47.341    5.869
##     RI                0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .wisc_1  (V_e1)   13.810    0.789   17.493    0.000   13.810    0.212
##    .wisc_2  (V_e1)   13.810    0.789   17.493    0.000   13.810    0.212
##    .wisc_3  (V_e1)   13.810    0.789   17.493    0.000   13.810    0.212
##    .wisc_4  (V_e1)   13.810    0.789   17.493    0.000   13.810    0.212
##     RI      (V_RI)   51.265    5.421    9.456    0.000    1.000    1.000
require(lavaangui)
#plot_lavaan(Fig13.2BResult)

Factor Mean (FM) Growth Model

McArdle and Epstein (1987) called this the CURVE model (p. 118) (McArdle & Epstein (1987)).

https://pubmed.ncbi.nlm.nih.gov/3816341/

https://www.jstor.org/stable/1130295?seq=9

Path Diagram

Factor Mean (FM) Growth Model
Factor Mean (FM) Growth Model

R Program

require(lavaan)
Fig13.4Model<-"
! regressions 
   RI=~L1*wisc_1
   RI=~L2*wisc_2
   RI=~L3*wisc_3
   RI=~L4*wisc_4
! residuals, variances and covariances
   wisc_1 ~~ V_e1*wisc_1
   wisc_2 ~~ V_e1*wisc_2
   wisc_3 ~~ V_e3*wisc_3
   wisc_4 ~~ V_e4*wisc_4
   RI ~~ 1.0*RI
! means
   RI~a1*1
   wisc_1~0*1;
   wisc_2~0*1;
   wisc_3~0*1;
   wisc_4~0*1;
"


Fig13.4Result<-lavaan(Fig13.4Model, data=mcardle, fixed.x=FALSE, missing="FIML")
summary(Fig13.4Result, fit.measures=TRUE,standardized=TRUE);
## lavaan 0.6-19 ended normally after 29 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         9
##   Number of equality constraints                     1
## 
##   Number of observations                           204
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                                       
##   Test statistic                                64.823
##   Degrees of freedom                                 6
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               830.699
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.929
##   Tucker-Lewis Index (TLI)                       0.929
##                                                       
##   Robust Comparative Fit Index (CFI)             0.929
##   Robust Tucker-Lewis Index (TLI)                0.929
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2450.791
##   Loglikelihood unrestricted model (H1)      -2418.379
##                                                       
##   Akaike (AIC)                                4917.581
##   Bayesian (BIC)                              4944.126
##   Sample-size adjusted Bayesian (SABIC)       4918.780
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.219
##   90 Percent confidence interval - lower         0.173
##   90 Percent confidence interval - upper         0.269
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    1.000
##                                                       
##   Robust RMSEA                                   0.219
##   90 Percent confidence interval - lower         0.173
##   90 Percent confidence interval - upper         0.269
##   P-value H_0: Robust RMSEA <= 0.050             0.000
##   P-value H_0: Robust RMSEA >= 0.080             1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.142
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   RI =~                                                                 
##     wisc_1    (L1)    4.079    0.219   18.636    0.000    4.079    0.758
##     wisc_2    (L2)    5.719    0.302   18.911    0.000    5.719    0.852
##     wisc_3    (L3)    7.689    0.402   19.142    0.000    7.689    0.954
##     wisc_4    (L4)   10.108    0.530   19.085    0.000   10.108    0.925
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     RI        (a1)    4.671    0.254   18.384    0.000    4.671    4.671
##    .wisc_1            0.000                               0.000    0.000
##    .wisc_2            0.000                               0.000    0.000
##    .wisc_3            0.000                               0.000    0.000
##    .wisc_4            0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .wisc_1  (V_e1)   12.302    0.994   12.380    0.000   12.302    0.425
##    .wisc_2  (V_e1)   12.302    0.994   12.380    0.000   12.302    0.273
##    .wisc_3  (V_e3)    5.808    1.247    4.656    0.000    5.808    0.089
##    .wisc_4  (V_e4)   17.233    2.629    6.554    0.000   17.233    0.144
##     RI                1.000                               1.000    1.000
require(lavaangui)
#plot_lavaan(Fig13.4Result)

Factor Mean Shift (FM-Shift) Growth Model

Path Diagram

Factor Mean Shift (FM-Shift) Growth Model
Factor Mean Shift (FM-Shift) Growth Model

R Program

require(lavaan)
Fig13.6Model<-"
! regressions 
   RI=~L1*wisc_1
   RI=~L2*wisc_2
   RI=~L3*wisc_3
   RI=~L4*wisc_4
! residuals, variances and covariances
   wisc_1 ~~ V_e1*wisc_1
   wisc_2 ~~ V_e1*wisc_2
   wisc_3 ~~ V_e3*wisc_3
   wisc_4 ~~ V_e4*wisc_4
   RI ~~ 1.0*RI
! means
   RI~a1*1
   wisc_1~t1*1
   wisc_2~t1*1
   wisc_3~t1*1
   wisc_4~t1*1
"



Fig13.6Result<-lavaan(Fig13.6Model, data=mcardle, fixed.x=FALSE, missing="FIML")
summary(Fig13.6Result, fit.measures=TRUE,standardized=TRUE);
## lavaan 0.6-19 ended normally after 98 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        13
##   Number of equality constraints                     4
## 
##   Number of observations                           204
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                                       
##   Test statistic                                13.744
##   Degrees of freedom                                 5
##   P-value (Chi-square)                           0.017
## 
## Model Test Baseline Model:
## 
##   Test statistic                               830.699
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.989
##   Tucker-Lewis Index (TLI)                       0.987
##                                                       
##   Robust Comparative Fit Index (CFI)             0.989
##   Robust Tucker-Lewis Index (TLI)                0.987
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2425.251
##   Loglikelihood unrestricted model (H1)      -2418.379
##                                                       
##   Akaike (AIC)                                4868.503
##   Bayesian (BIC)                              4898.366
##   Sample-size adjusted Bayesian (SABIC)       4869.851
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.093
##   90 Percent confidence interval - lower         0.036
##   90 Percent confidence interval - upper         0.153
##   P-value H_0: RMSEA <= 0.050                    0.096
##   P-value H_0: RMSEA >= 0.080                    0.691
##                                                       
##   Robust RMSEA                                   0.093
##   90 Percent confidence interval - lower         0.036
##   90 Percent confidence interval - upper         0.153
##   P-value H_0: Robust RMSEA <= 0.050             0.096
##   P-value H_0: Robust RMSEA >= 0.080             0.691
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.038
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   RI =~                                                                 
##     wisc_1    (L1)    5.444    0.330   16.496    0.000    5.444    0.868
##     wisc_2    (L2)    6.419    0.342   18.761    0.000    6.419    0.900
##     wisc_3    (L3)    7.593    0.398   19.092    0.000    7.593    0.948
##     wisc_4    (L4)    9.026    0.507   17.811    0.000    9.026    0.901
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     RI        (a1)    7.986    0.907    8.807    0.000    7.986    7.986
##    .wisc_1    (t1)  -24.692    5.730   -4.309    0.000  -24.692   -3.936
##    .wisc_2    (t1)  -24.692    5.730   -4.309    0.000  -24.692   -3.461
##    .wisc_3    (t1)  -24.692    5.730   -4.309    0.000  -24.692   -3.082
##    .wisc_4    (t1)  -24.692    5.730   -4.309    0.000  -24.692   -2.465
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .wisc_1  (V_e1)    9.704    0.885   10.962    0.000    9.704    0.247
##    .wisc_2  (V_e1)    9.704    0.885   10.962    0.000    9.704    0.191
##    .wisc_3  (V_e3)    6.544    1.161    5.639    0.000    6.544    0.102
##    .wisc_4  (V_e4)   18.857    2.419    7.795    0.000   18.857    0.188
##     RI                1.000                               1.000    1.000
require(lavaangui)
#plot_lavaan(Fig13.6Result)

Orthogonal Free Curve Slope Intercept (FCSI) Model (a.k.a. “Latent Basis”)

Path Diagram

Orthogonal Free Curve Slope Intercept (FCSI) Growth Model
Orthogonal Free Curve Slope Intercept (FCSI) Growth Model

R Program

require(lavaan)
Fig13.8Model<-"
! regressions 
   S=~L1*wisc_1
   S=~L2*wisc_2
   S=~L3*wisc_3
   S=~L4*wisc_4
   RI=~1.0*wisc_1
   RI=~1.0*wisc_2
   RI=~1.0*wisc_3
   RI=~1.0*wisc_4
! residuals, variances and covariances
   wisc_1 ~~ V_e1*wisc_1
   wisc_2 ~~ V_e1*wisc_2
   wisc_3 ~~ V_e3*wisc_3
   wisc_4 ~~ V_e4*wisc_4
   S ~~ 1.0*S
   RI ~~ V_RI*RI
   S ~~ 0.0*RI
! means
   S~aS*1
   RI~aI*1
   wisc_1~0*1;
   wisc_2~0*1;
   wisc_3~0*1;
   wisc_4~0*1;
"

Fig13.8Result<-lavaan(Fig13.8Model, data=mcardle, fixed.x=FALSE, missing="FIML")
summary(Fig13.8Result, fit.measures=TRUE,standardized=TRUE);
## lavaan 0.6-19 ended normally after 64 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        11
##   Number of equality constraints                     1
## 
##   Number of observations                           204
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 7.718
##   Degrees of freedom                                 4
##   P-value (Chi-square)                           0.102
## 
## Model Test Baseline Model:
## 
##   Test statistic                               830.699
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.995
##   Tucker-Lewis Index (TLI)                       0.993
##                                                       
##   Robust Comparative Fit Index (CFI)             0.995
##   Robust Tucker-Lewis Index (TLI)                0.993
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2422.238
##   Loglikelihood unrestricted model (H1)      -2418.379
##                                                       
##   Akaike (AIC)                                4864.477
##   Bayesian (BIC)                              4897.658
##   Sample-size adjusted Bayesian (SABIC)       4865.975
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.068
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.139
##   P-value H_0: RMSEA <= 0.050                    0.278
##   P-value H_0: RMSEA >= 0.080                    0.454
##                                                       
##   Robust RMSEA                                   0.068
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.139
##   P-value H_0: Robust RMSEA <= 0.050             0.278
##   P-value H_0: Robust RMSEA >= 0.080             0.454
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.040
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   S =~                                                                  
##     wisc_1    (L1)    3.612    0.689    5.246    0.000    3.612    0.572
##     wisc_2    (L2)    4.839    0.644    7.518    0.000    4.839    0.683
##     wisc_3    (L3)    6.315    0.626   10.093    0.000    6.315    0.781
##     wisc_4    (L4)    8.118    0.662   12.262    0.000    8.118    0.810
##   RI =~                                                                 
##     wisc_1            1.000                               4.306    0.682
##     wisc_2            1.000                               4.306    0.607
##     wisc_3            1.000                               4.306    0.533
##     wisc_4            1.000                               4.306    0.430
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   S ~~                                                                  
##     RI                0.000                               0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     S         (aS)    6.348    0.715    8.884    0.000    6.348    6.348
##     RI        (aI)   -4.147    5.934   -0.699    0.485   -0.963   -0.963
##    .wisc_1            0.000                               0.000    0.000
##    .wisc_2            0.000                               0.000    0.000
##    .wisc_3            0.000                               0.000    0.000
##    .wisc_4            0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .wisc_1  (V_e1)    8.297    0.872    9.517    0.000    8.297    0.208
##    .wisc_2  (V_e1)    8.297    0.872    9.517    0.000    8.297    0.165
##    .wisc_3  (V_e3)    6.898    1.171    5.891    0.000    6.898    0.106
##    .wisc_4  (V_e4)   15.894    2.673    5.946    0.000   15.894    0.158
##     S                 1.000                               1.000    1.000
##     RI      (V_RI)   18.545    5.694    3.257    0.001    1.000    1.000
require(lavaangui)
#plot_lavaan(Fig13.8Result)

Correlated Free Curve Slope Intercept (FCSI) Model (a.k.a. “Latent Basis”)

Path Diagram

Correlated Free Curve Slope Intercept (FCSI) Growth Model
Correlated Free Curve Slope Intercept (FCSI) Growth Model

R Program

require(lavaan)
Fig13.10Model<-"
! regressions 
   S=~L2*wisc_2
   S=~L3*wisc_3
   S=~L4*wisc_4
   RI=~1.0*wisc_1
   RI=~1.0*wisc_2
   RI=~1.0*wisc_3
   RI=~1.0*wisc_4
! residuals, variances and covariances
   wisc_1 ~~ V_e1*wisc_1
   wisc_2 ~~ V_e1*wisc_2
   wisc_3 ~~ V_e3*wisc_3
   wisc_4 ~~ V_e4*wisc_4
   S ~~ 1.0*S
   RI ~~ V_RI*RI
   RI ~~ CRIS*S
! means
   S~aS*1
   RI~aI*1
   wisc_1~0*1;
   wisc_2~0*1;
   wisc_3~0*1;
   wisc_4~0*1;
"

Fig13.10Result<-lavaan(Fig13.10Model, data=mcardle, fixed.x=FALSE, missing="FIML")
summary(Fig13.10Result, fit.measures=TRUE,standardized=TRUE);
## lavaan 0.6-19 ended normally after 120 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        11
##   Number of equality constraints                     1
## 
##   Number of observations                           204
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 7.718
##   Degrees of freedom                                 4
##   P-value (Chi-square)                           0.102
## 
## Model Test Baseline Model:
## 
##   Test statistic                               830.699
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.995
##   Tucker-Lewis Index (TLI)                       0.993
##                                                       
##   Robust Comparative Fit Index (CFI)             0.995
##   Robust Tucker-Lewis Index (TLI)                0.993
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2422.238
##   Loglikelihood unrestricted model (H1)      -2418.379
##                                                       
##   Akaike (AIC)                                4864.477
##   Bayesian (BIC)                              4897.658
##   Sample-size adjusted Bayesian (SABIC)       4865.975
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.068
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.139
##   P-value H_0: RMSEA <= 0.050                    0.278
##   P-value H_0: RMSEA >= 0.080                    0.454
##                                                       
##   Robust RMSEA                                   0.068
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.139
##   P-value H_0: Robust RMSEA <= 0.050             0.278
##   P-value H_0: Robust RMSEA >= 0.080             0.454
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.040
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   S =~                                                                  
##     wisc_2    (L2)    1.227    0.143    8.562    0.000    1.227    0.173
##     wisc_3    (L3)    2.702    0.302    8.961    0.000    2.702    0.334
##     wisc_4    (L4)    4.505    0.503    8.954    0.000    4.505    0.450
##   RI =~                                                                 
##     wisc_1            1.000                               5.621    0.890
##     wisc_2            1.000                               5.621    0.793
##     wisc_3            1.000                               5.621    0.695
##     wisc_4            1.000                               5.621    0.561
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   S ~~                                                                  
##     RI      (CRIS)    3.612    0.689    5.246    0.000    0.643    0.643
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     S         (aS)    6.348    0.715    8.884    0.000    6.348    6.348
##     RI        (aI)   18.786    0.442   42.503    0.000    3.342    3.342
##    .wisc_1            0.000                               0.000    0.000
##    .wisc_2            0.000                               0.000    0.000
##    .wisc_3            0.000                               0.000    0.000
##    .wisc_4            0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .wisc_1  (V_e1)    8.297    0.872    9.517    0.000    8.297    0.208
##    .wisc_2  (V_e1)    8.297    0.872    9.517    0.000    8.297    0.165
##    .wisc_3  (V_e3)    6.898    1.171    5.891    0.000    6.898    0.106
##    .wisc_4  (V_e4)   15.894    2.673    5.946    0.000   15.894    0.158
##     S                 1.000                               1.000    1.000
##     RI      (V_RI)   31.594    3.740    8.447    0.000    1.000    1.000
require(lavaangui)
#plot_lavaan(Fig13.10Result)

Linear Slope Intercept Model

Path Diagram

Linear Slope Intercept Growth Model
Linear Slope Intercept Growth Model

R Program

require(lavaan)
Fig13.11Model<-"
! regressions 
   S=~0.88*wisc_2
   S=~2.73*wisc_3
   S=~4.72*wisc_4
   RI=~1.0*wisc_1
   RI=~1.0*wisc_2
   RI=~1.0*wisc_3
   RI=~1.0*wisc_4
! residuals, variances and covariances
   wisc_1 ~~ V_e1*wisc_1
   wisc_2 ~~ V_e1*wisc_2
   wisc_3 ~~ V_e3*wisc_3
   wisc_4 ~~ V_e4*wisc_4
   S ~~ V_S*S
   RI ~~ V_RI*RI
   RI ~~ CRIS*S
! means
   S~aS*1
   RI~aI*1
   wisc_1~0*1;
   wisc_2~0*1;
   wisc_3~0*1;
   wisc_4~0*1;
"


Fig13.11Result<-lavaan(Fig13.11Model, data=mcardle, fixed.x=FALSE, missing="FIML")
summary(Fig13.11Result, fit.measures=TRUE,standardized=TRUE);
## lavaan 0.6-19 ended normally after 70 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         9
##   Number of equality constraints                     1
## 
##   Number of observations                           204
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                                       
##   Test statistic                                79.486
##   Degrees of freedom                                 6
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               830.699
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.911
##   Tucker-Lewis Index (TLI)                       0.911
##                                                       
##   Robust Comparative Fit Index (CFI)             0.911
##   Robust Tucker-Lewis Index (TLI)                0.911
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2458.122
##   Loglikelihood unrestricted model (H1)      -2418.379
##                                                       
##   Akaike (AIC)                                4932.244
##   Bayesian (BIC)                              4958.789
##   Sample-size adjusted Bayesian (SABIC)       4933.442
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.245
##   90 Percent confidence interval - lower         0.199
##   90 Percent confidence interval - upper         0.294
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    1.000
##                                                       
##   Robust RMSEA                                   0.245
##   90 Percent confidence interval - lower         0.199
##   90 Percent confidence interval - upper         0.294
##   P-value H_0: Robust RMSEA <= 0.050             0.000
##   P-value H_0: Robust RMSEA >= 0.080             1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.084
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   S =~                                                                  
##     wisc_2            0.880                               0.699    0.099
##     wisc_3            2.730                               2.169    0.273
##     wisc_4            4.720                               3.751    0.372
##   RI =~                                                                 
##     wisc_1            1.000                               5.511    0.845
##     wisc_2            1.000                               5.511    0.777
##     wisc_3            1.000                               5.511    0.692
##     wisc_4            1.000                               5.511    0.546
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   S ~~                                                                  
##     RI      (CRIS)    4.131    0.611    6.760    0.000    0.943    0.943
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     S         (aS)    5.885    0.092   63.917    0.000    7.405    7.405
##     RI        (aI)   19.936    0.429   46.506    0.000    3.617    3.617
##    .wisc_1            0.000                               0.000    0.000
##    .wisc_2            0.000                               0.000    0.000
##    .wisc_3            0.000                               0.000    0.000
##    .wisc_4            0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .wisc_1  (V_e1)   12.198    1.245    9.797    0.000   12.198    0.287
##    .wisc_2  (V_e1)   12.198    1.245    9.797    0.000   12.198    0.242
##    .wisc_3  (V_e3)    5.722    1.176    4.867    0.000    5.722    0.090
##    .wisc_4  (V_e4)   18.346    2.792    6.570    0.000   18.346    0.180
##     S        (V_S)    0.632    0.196    3.215    0.001    1.000    1.000
##     RI      (V_RI)   30.376    3.792    8.011    0.000    1.000    1.000
require(lavaangui)
#plot_lavaan(Fig13.11Result)

Age as Time Model

Path Diagram

Age as Time Growth Model
Age as Time Growth Model

R Program

require(lavaan)
Fig13.13Model<-"
! regressions 
   S=~6.95*wisc_2
   S=~8.8*wisc_3
   S=~10.79*wisc_4
   RI=~1.0*wisc_1
   RI=~1.0*wisc_2
   RI=~1.0*wisc_3
   RI=~1.0*wisc_4
   S=~6.07*wisc_1
! residuals, variances and covariances
   wisc_1 ~~ V_e1*wisc_1
   wisc_2 ~~ V_e1*wisc_2
   wisc_3 ~~ V_e3*wisc_3
   wisc_4 ~~ V_e4*wisc_4
   S ~~ V_S*S
   RI ~~ V_RI*RI
   RI ~~ CRIS*S
! means
   S~aS*1
   RI~aI*1
   wisc_1~0*1;
   wisc_2~0*1;
   wisc_3~0*1;
   wisc_4~0*1;
"


Fig13.13Result<-lavaan(Fig13.13Model, data=mcardle, fixed.x=FALSE, missing="FIML")
summary(Fig13.13Result, fit.measures=TRUE,standardized=TRUE);
## lavaan 0.6-19 ended normally after 57 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         9
##   Number of equality constraints                     1
## 
##   Number of observations                           204
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                                       
##   Test statistic                                79.486
##   Degrees of freedom                                 6
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               830.699
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.911
##   Tucker-Lewis Index (TLI)                       0.911
##                                                       
##   Robust Comparative Fit Index (CFI)             0.911
##   Robust Tucker-Lewis Index (TLI)                0.911
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2458.122
##   Loglikelihood unrestricted model (H1)      -2418.379
##                                                       
##   Akaike (AIC)                                4932.244
##   Bayesian (BIC)                              4958.789
##   Sample-size adjusted Bayesian (SABIC)       4933.442
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.245
##   90 Percent confidence interval - lower         0.199
##   90 Percent confidence interval - upper         0.294
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    1.000
##                                                       
##   Robust RMSEA                                   0.245
##   90 Percent confidence interval - lower         0.199
##   90 Percent confidence interval - upper         0.294
##   P-value H_0: Robust RMSEA <= 0.050             0.000
##   P-value H_0: Robust RMSEA >= 0.080             1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.084
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   S =~                                                                  
##     wisc_2            6.950                               5.523    0.778
##     wisc_3            8.800                               6.993    0.879
##     wisc_4           10.790                               8.575    0.850
##   RI =~                                                                 
##     wisc_1            1.000                               1.870    0.287
##     wisc_2            1.000                               1.870    0.264
##     wisc_3            1.000                               1.870    0.235
##     wisc_4            1.000                               1.870    0.185
##   S =~                                                                  
##     wisc_1            6.070                               4.824    0.739
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   S ~~                                                                  
##     RI      (CRIS)    0.297    1.265    0.235    0.814    0.200    0.200
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     S         (aS)    5.885    0.092   63.917    0.000    7.405    7.405
##     RI        (aI)  -15.784    0.619  -25.496    0.000   -8.441   -8.441
##    .wisc_1            0.000                               0.000    0.000
##    .wisc_2            0.000                               0.000    0.000
##    .wisc_3            0.000                               0.000    0.000
##    .wisc_4            0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .wisc_1  (V_e1)   12.198    1.245    9.797    0.000   12.198    0.287
##    .wisc_2  (V_e1)   12.198    1.245    9.797    0.000   12.198    0.242
##    .wisc_3  (V_e3)    5.722    1.176    4.867    0.000    5.722    0.090
##    .wisc_4  (V_e4)   18.346    2.792    6.570    0.000   18.346    0.180
##     S        (V_S)    0.632    0.196    3.215    0.001    1.000    1.000
##     RI      (V_RI)    3.497   10.031    0.349    0.727    1.000    1.000
require(lavaangui)
#plot_lavaan(Fig13.13Result)

Orthogonal Linear Growth Model

Path Diagram

Orthogonal Linear Growth Model
Orthogonal Linear Growth Model

R Program

require(lavaan)
Fig13.15Model<-"
  # Measurement model
  S =~ L1*wisc_1 + L2*wisc_2 + L3*wisc_3 + L4*wisc_4
  RI =~ 1*wisc_1 + 1*wisc_2 + 1*wisc_3 + 1*wisc_4

  # Residual variances
  wisc_1 ~~ V_e1*wisc_1
  wisc_2 ~~ V_e1*wisc_2
  wisc_3 ~~ V_e3*wisc_3
  wisc_4 ~~ V_e4*wisc_4

  # Latent variances and covariances
  S ~~ 1*S
  RI ~~ V_RI*RI
  S ~~ 0*RI

  # Latent means
  S ~ aS*1
  RI ~ aI*1
  wisc_1 ~ 0*1
  wisc_2 ~ 0*1
  wisc_3 ~ 0*1
  wisc_4 ~ 0*1

  # Nonlinear equality constraints
  # (Another Way to think about the loadings falling all on a line)
  L2==L1+0.186282811*(L4-L1)
  L3==L1+0.578746825*(L4-L1)
"

Fig13.15Result<-lavaan(Fig13.15Model, data=mcardle, fixed.x=FALSE, missing="FIML")


summary(Fig13.15Result, fit.measures=TRUE,standardized=TRUE);
## lavaan 0.6-19 ended normally after 65 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        11
##   Number of equality constraints                     3
## 
##   Number of observations                           204
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                                       
##   Test statistic                                79.738
##   Degrees of freedom                                 6
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               830.699
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.911
##   Tucker-Lewis Index (TLI)                       0.911
##                                                       
##   Robust Comparative Fit Index (CFI)             0.911
##   Robust Tucker-Lewis Index (TLI)                0.911
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2458.248
##   Loglikelihood unrestricted model (H1)      -2418.379
##                                                       
##   Akaike (AIC)                                4932.497
##   Bayesian (BIC)                              4959.041
##   Sample-size adjusted Bayesian (SABIC)       4933.695
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.245
##   90 Percent confidence interval - lower         0.199
##   90 Percent confidence interval - upper         0.295
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    1.000
##                                                       
##   Robust RMSEA                                   0.245
##   90 Percent confidence interval - lower         0.199
##   90 Percent confidence interval - upper         0.295
##   P-value H_0: Robust RMSEA <= 0.050             0.000
##   P-value H_0: Robust RMSEA >= 0.080             1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.084
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   S =~                                                                  
##     wisc_1    (L1)    5.205    1.040    5.003    0.000    5.205    0.798
##     wisc_2    (L2)    5.903    0.970    6.087    0.000    5.903    0.832
##     wisc_3    (L3)    7.373    0.848    8.699    0.000    7.373    0.926
##     wisc_4    (L4)    8.952    0.773   11.586    0.000    8.952    0.887
##   RI =~                                                                 
##     wisc_1            1.000                               1.811    0.278
##     wisc_2            1.000                               1.811    0.255
##     wisc_3            1.000                               1.811    0.228
##     wisc_4            1.000                               1.811    0.180
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   S ~~                                                                  
##     RI                0.000                               0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     S         (aS)    7.410    1.162    6.378    0.000    7.410    7.410
##     RI        (aI)  -18.628   12.615   -1.477    0.140  -10.285  -10.285
##    .wisc_1            0.000                               0.000    0.000
##    .wisc_2            0.000                               0.000    0.000
##    .wisc_3            0.000                               0.000    0.000
##    .wisc_4            0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .wisc_1  (V_e1)   12.216    1.247    9.797    0.000   12.216    0.287
##    .wisc_2  (V_e1)   12.216    1.247    9.797    0.000   12.216    0.243
##    .wisc_3  (V_e3)    5.718    1.176    4.863    0.000    5.718    0.090
##    .wisc_4  (V_e4)   18.347    2.791    6.574    0.000   18.347    0.180
##     S                 1.000                               1.000    1.000
##     RI      (V_RI)    3.281   11.178    0.293    0.769    1.000    1.000
## 
## Constraints:
##                                                |Slack|
##     L2 - (L1+0.186282811*(L4-L1))                0.000
##     L3 - (L1+0.578746825*(L4-L1))                0.000
require(lavaangui)
#plot_lavaan(Fig13.15Result)

Quadratic Growth Model

Path Diagram

Quadratic Linear Growth Model
Quadratic Linear Growth Model

R Program

require(lavaan)
Fig13.17Model<-"
! regressions 
   S=~0.88*wisc_2
   S=~2.73*wisc_3
   S=~4.72*wisc_4
   RI=~1.0*wisc_1
   RI=~1.0*wisc_2
   RI=~1.0*wisc_3
   RI=~1.0*wisc_4
   Q=~0.77*wisc_2
   Q=~7.45*wisc_3
   Q=~22.28*wisc_4
! residuals, variances and covariances
   wisc_1 ~~ V_e1*wisc_1
   wisc_2 ~~ V_e1*wisc_2
   wisc_3 ~~ V_e3*wisc_3
   wisc_4 ~~ V_e4*wisc_4
   S ~~ V_S*S
   RI ~~ V_RI*RI
   RI ~~ CRIS*S
   Q ~~ V_Q*Q
   S ~~ CSQ*Q
   RI ~~ CRIQ*Q
! means
   S~aS*1
   RI~aI*1
   Q~aQ*1
   wisc_1~0*1;
   wisc_2~0*1;
   wisc_3~0*1;
   wisc_4~0*1;
"


Fig13.17Result<-lavaan(Fig13.17Model, data=mcardle, fixed.x=FALSE, missing="FIML")
## Warning: lavaan->lav_object_post_check():  
##    some estimated lv variances are negative
summary(Fig13.17Result, fit.measures=TRUE,standardized=TRUE);
## lavaan 0.6-19 ended normally after 113 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        13
##   Number of equality constraints                     1
## 
##   Number of observations                           204
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                                       
##   Test statistic                                55.455
##   Degrees of freedom                                 2
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               830.699
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.935
##   Tucker-Lewis Index (TLI)                       0.806
##                                                       
##   Robust Comparative Fit Index (CFI)             0.935
##   Robust Tucker-Lewis Index (TLI)                0.806
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2446.106
##   Loglikelihood unrestricted model (H1)      -2418.379
##                                                       
##   Akaike (AIC)                                4916.213
##   Bayesian (BIC)                              4956.030
##   Sample-size adjusted Bayesian (SABIC)       4918.011
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.362
##   90 Percent confidence interval - lower         0.283
##   90 Percent confidence interval - upper         0.447
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    1.000
##                                                       
##   Robust RMSEA                                   0.362
##   90 Percent confidence interval - lower         0.283
##   90 Percent confidence interval - upper         0.447
##   P-value H_0: Robust RMSEA <= 0.050             0.000
##   P-value H_0: Robust RMSEA >= 0.080             1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.071
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   S =~                                                                  
##     wisc_2            0.880                                  NA       NA
##     wisc_3            2.730                                  NA       NA
##     wisc_4            4.720                                  NA       NA
##   RI =~                                                                 
##     wisc_1            1.000                               5.679    0.860
##     wisc_2            1.000                               5.679    0.811
##     wisc_3            1.000                               5.679    0.719
##     wisc_4            1.000                               5.679    0.556
##   Q =~                                                                  
##     wisc_2            0.770                                  NA       NA
##     wisc_3            7.450                                  NA       NA
##     wisc_4           22.280                                  NA       NA
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   S ~~                                                                  
##     RI      (CRIS)    3.684    1.609    2.290    0.022    0.383    0.383
##     Q        (CSQ)    0.934    0.394    2.369    0.018    1.068    1.068
##   RI ~~                                                                 
##     Q       (CRIQ)    0.036    0.334    0.107    0.915    0.012    0.012
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     S         (aS)    6.897    0.244   28.262    0.000       NA       NA
##     RI        (aI)   19.451    0.452   43.016    0.000    3.425    3.425
##     Q         (aQ)   -0.239    0.050   -4.742    0.000       NA       NA
##    .wisc_1            0.000                               0.000    0.000
##    .wisc_2            0.000                               0.000    0.000
##    .wisc_3            0.000                               0.000    0.000
##    .wisc_4            0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .wisc_1  (V_e1)   11.353    1.235    9.196    0.000   11.353    0.260
##    .wisc_2  (V_e1)   11.353    1.235    9.196    0.000   11.353    0.232
##    .wisc_3  (V_e3)    7.756    2.256    3.437    0.001    7.756    0.124
##    .wisc_4  (V_e4)   35.548   11.895    2.988    0.003   35.548    0.340
##     S        (V_S)   -2.871    1.753   -1.638    0.101       NA       NA
##     RI      (V_RI)   32.249    4.218    7.645    0.000    1.000    1.000
##     Q        (V_Q)   -0.266    0.115   -2.307    0.021       NA       NA
require(lavaangui)
#plot_lavaan(Fig13.17Result)

Quadratic Growth Model Scaled as Proportion of Time Elapsed (Not in Book)

Path Diagram

Quadratic Linear Growth Model Scaled as Proportion of Time
Quadratic Linear Growth Model Scaled as Proportion of Time

This is the default behavior of programs like Amos in which the last measurement occasion is fixed at 1 and the intermediary loadings are fixed as proportions of time elapsed form the first measurement occasion. The resulting solution has positive values due to the reduced collinearity of the linear and quadratic latent variables.

R Program

require(lavaan)
Fig13.17BModel<-"
! regressions 
   S=~0.1864*wisc_2
   S=~0.5783*wisc_3
   S=~1.0*wisc_4
   RI=~1.0*wisc_1
   RI=~1.0*wisc_2
   RI=~1.0*wisc_3
   RI=~1.0*wisc_4
   Q=~0.77*wisc_2
   Q=~7.45*wisc_3
   Q=~0.3345*wisc_4
! residuals, variances and covariances
   wisc_1 ~~ V_e1*wisc_1
   wisc_2 ~~ V_e1*wisc_2
   wisc_3 ~~ V_e3*wisc_3
   wisc_4 ~~ V_e4*wisc_4
   S ~~ V_S*S
   RI ~~ V_RI*RI
   RI ~~ CRIS*S
   Q ~~ V_Q*Q
   S ~~ CSQ*Q
   RI ~~ CRIQ*Q
! means
   S~aS*1
   RI~aI*1
   Q~aQ*1
   wisc_1~0*1;
   wisc_2~0*1;
   wisc_3~0*1;
   wisc_4~0*1;
"


Fig13.17BResult<-lavaan(Fig13.17BModel, data=mcardle, fixed.x=FALSE, missing="FIML")


summary(Fig13.17BResult, fit.measures=TRUE,standardized=TRUE);
## lavaan 0.6-19 ended normally after 135 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        13
##   Number of equality constraints                     1
## 
##   Number of observations                           204
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                                       
##   Test statistic                                74.087
##   Degrees of freedom                                 2
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               830.699
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.913
##   Tucker-Lewis Index (TLI)                       0.738
##                                                       
##   Robust Comparative Fit Index (CFI)             0.913
##   Robust Tucker-Lewis Index (TLI)                0.738
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2455.423
##   Loglikelihood unrestricted model (H1)      -2418.379
##                                                       
##   Akaike (AIC)                                4934.845
##   Bayesian (BIC)                              4974.663
##   Sample-size adjusted Bayesian (SABIC)       4936.643
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.420
##   90 Percent confidence interval - lower         0.341
##   90 Percent confidence interval - upper         0.505
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    1.000
##                                                       
##   Robust RMSEA                                   0.420
##   90 Percent confidence interval - lower         0.341
##   90 Percent confidence interval - upper         0.505
##   P-value H_0: Robust RMSEA <= 0.050             0.000
##   P-value H_0: Robust RMSEA >= 0.080             1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.079
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   S =~                                                                  
##     wisc_2            0.186                               1.106    0.154
##     wisc_3            0.578                               3.430    0.443
##     wisc_4            1.000                               5.931    0.572
##   RI =~                                                                 
##     wisc_1            1.000                               5.659    0.854
##     wisc_2            1.000                               5.659    0.787
##     wisc_3            1.000                               5.659    0.730
##     wisc_4            1.000                               5.659    0.546
##   Q =~                                                                  
##     wisc_2            0.770                               0.297    0.041
##     wisc_3            7.450                               2.877    0.371
##     wisc_4            0.335                               0.129    0.012
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   S ~~                                                                  
##     RI      (CRIS)   20.057    3.365    5.960    0.000    0.598    0.598
##     Q        (CSQ)   -1.562    1.348   -1.159    0.246   -0.682   -0.682
##   RI ~~                                                                 
##     Q       (CRIQ)   -0.355    0.256   -1.387    0.165   -0.162   -0.162
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     S         (aS)   27.425    0.544   50.398    0.000    4.624    4.624
##     RI        (aI)   19.930    0.440   45.251    0.000    3.522    3.522
##     Q         (aQ)    0.032    0.042    0.761    0.447    0.082    0.082
##    .wisc_1            0.000                               0.000    0.000
##    .wisc_2            0.000                               0.000    0.000
##    .wisc_3            0.000                               0.000    0.000
##    .wisc_4            0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .wisc_1  (V_e1)   11.879    1.198    9.919    0.000   11.879    0.271
##    .wisc_2  (V_e1)   11.879    1.198    9.919    0.000   11.879    0.230
##    .wisc_3  (V_e3)    3.550   14.389    0.247    0.805    3.550    0.059
##    .wisc_4  (V_e4)    1.500   15.963    0.094    0.925    1.500    0.014
##     S        (V_S)   35.179   19.051    1.847    0.065    1.000    1.000
##     RI      (V_RI)   32.020    3.978    8.050    0.000    1.000    1.000
##     Q        (V_Q)    0.149    0.342    0.436    0.663    1.000    1.000
require(lavaangui)
#plot_lavaan(Fig13.17BResult)

References

McArdle, J. J., & Epstein, D. (1987). Latent growth curves within developmental structural equation models. Child Development, 58(1), 110–133. https://doi.org/10.2307/1130295