Loading data.

setwd('~')
setwd('rfolder/MFGK2')

mfgkdata <- read.csv(file="data/mfgkdata.csv")
niq <- read.csv(file="data/niq.csv")

engnats <- mfgkdata

e_test = engnats %>% dplyr::select(contains("Q"))
e_test = e_test %>% dplyr::select(contains("E"))

Giving columns names and converting the dataset’s answer format to one that can be used.

########flag under 1000 ms
for(i in 1:32) {
  e_test[, i][e_test[, i] < 1000 & e_test[, i] > -1] <- NA
}

#############create graph
e2 <- engnats

for(i in 1:32) {
  e2[, i*4-1] <- e_test[, i]
}

#########calculating sumscores
e2 <- engnats

for(i in 1:32) {
  e2[, i*4-1] <- e_test[, i]
}


for(i in 1:352) {
  e2[, 137 + i] <- NA
}

e2 <- e2 %>% 
  rename("Q1: Emily Dickinson" = "V138",
         "Q1: Robert Frost" = "V139",
         "Q1: Sylvia Path" = "V140",
         "Q1: Maya Angelou" = "V141",
         "Q1: Langston Hughes" = "V142",
         "Q2: Cats" = "V143",
         "Q2: The Lion King" = "V144",
         "Q2: Hamilton" = "V145",
         "Q2: Wicked" = "V146",
         "Q2: Kinky Boots" = "V147",
         "Q3: Kwanzaa" = "V148",
         "Q3: Christmas" = "V149",
         "Q3: Ramadan" = "V150",
         "Q3: Yom Kippur" = "V151",
         "Q3: Hanukkah" = "V152",
         "Q4: CoverGirl" = "V153",
         "Q4: Sephora" = "V154",
         "Q4: Maybelline" = "V155",
         "Q4: Dior" = "V156",
         "Q4: Shiseido" = "V157",
         "Q5: Oxycodone" = "V158",
         "Q5: Ibuprofen" = "V159",
         "Q5: Codeine" = "V160",
         "Q5: Morphine" = "V161",
         "Q5: Asprin" = "V162",
         "Q6: AIDS" = "V163",
         "Q6: Herpes" = "V164",
         "Q6: Chlamydia" = "V165",
         "Q6: Human Papillomavirus" = "V166",
         "Q6: Trichomoniasis" = "V167",
         "Q7: Camel" = "V168",
         "Q7: Marlboro" = "V169",
         "Q7: Newport" = "V170",
         "Q7: Pall Max Box" = "V171",
         "Q7: Pyramid" = "V172",
         "Q8: weed" = "V173",
         "Q8: 420" = "V174",
         "Q8: ganja" = "V175",
         "Q8: chronic" = "V176",
         "Q8: reefer" = "V177",
         "Q9: Senegal" = "V178",
         "Q9: Ivory Coast" = "V179",
         "Q9: Quebec" = "V180",
         "Q9: Morocco" = "V181",
         "Q9: Vietnam" = "V182",
         "Q10: United Kingdom" = "V183",
         "Q10: Japan3" = "V184",
         "Q10: Sweden" = "V185",
         "Q10: Thailand" = "V186",
         "Q10: Saudi Arabia" = "V187",
         "Q11: Saudi Arabia2" = "V188",
         "Q11: Venezuela" = "V189",
         "Q11: Nigeria" = "V190",
         "Q11: Norway" = "V191",
         "Q11: Qatar" = "V192",
         "Q12: Russia" = "V193",
         "Q12: France" = "V194",
         "Q12: Israel" = "V195",
         "Q12: China" = "V196",
         "Q12: Pakistan" = "V197",
         "Q13: mp4" = "V198",
         "Q13: mkv" = "V199",
         "Q13: avi" = "V200",
         "Q13: wmv" = "V201",
         "Q13: mov" = "V202",
         "Q14: Internet Explorer" = "V203",
         "Q14: Firefox" = "V204",
         "Q14: Safari" = "V205",
         "Q14: Opera" = "V206",
         "Q14: Chrome" = "V207",
         "Q15: Ubuntu" = "V208",
         "Q15: Debian" = "V209",
         "Q15: Fedora" = "V210",
         "Q15: RHEL" = "V211",
         "Q15: Slackware" = "V212",
         "Q16: 100 Continue" = "V213",
         "Q16: 500 Internal Server Error" = "V214",
         "Q16: 301 Moved Permanently" = "V215",
         "Q16: 404 Not Found" = "V216",
         "Q16: 502 Bad Gateway" = "V217",
         "Q17: Shirt" = "V218",
         "Q17: Tunic" = "V219",
         "Q17: Sarong" = "V220",
         "Q17: Shawl" = "V221",
         "Q17: Camisole" = "V222",
         "Q18: Saw" = "V223",
         "Q18: Chisel" = "V224",
         "Q18: Bevel" = "V225",
         "Q18: Caliper" = "V226",
         "Q18: Awl" = "V227",
         "Q19: Merlot" = "V228",
         "Q19: Cabernet sauvignon" = "V229",
         "Q19: Malbec" = "V230",
         "Q19: Sangiovese" = "V231",
         "Q19: Pinot Noir" = "V232",
         "Q20: Rummy" = "V233",
         "Q20: Hearts" = "V234",
         "Q20: Poker" = "V235",
         "Q20: Bridge" = "V236",
         "Q20: Cribbidge" = "V237",
         "Q21: Resistor" = "V238",
         "Q21: Inductor" = "V239",
         "Q21: Capacitor" = "V240",
         "Q21: Transistor" = "V241",
         "Q21: Diode" = "V242",
         "Q22: Bitcoin" = "V243",
         "Q22: Litecoin" = "V244",
         "Q22: Etherium" = "V245",
         "Q22: Monero" = "V246",
         "Q22: Ripple" = "V247",
         "Q23: Mexico" = "V248",
         "Q23: Egypt" = "V249",
         "Q23: India" = "V250",
         "Q23: Sudan" = "V251",
         "Q23: Indonesia" = "V252",
         "Q24: Al Capone" = "V253",
         "Q24: Ted Kaczynski" = "V254",
         "Q24: Pablo Escobar" = "V255",
         "Q24: Timothy McVeigh" = "V256",
         "Q24: Jim Jones" = "V257",
         "Q25: Infinite Jest" = "V258",
         "Q25: Les Miserables" = "V259",
         "Q25: Atlas Shrugged" = "V260",
         "Q25: War and Peace" = "V261",
         "Q25: Cryptonomicon" = "V262",
         "Q26: Mile" = "V263",
         "Q26: Meter" = "V264",
         "Q26: Furlong" = "V265",
         "Q26: Parsec" = "V266",
         "Q26: Angstrom" = "V267",
         "Q27: CrossFit" = "V268",
         "Q27: Zumba" = "V269",
         "Q27: Barre" = "V270",
         "Q27: Pilates" = "V271",
         "Q27: Tabata" = "V272",
         "Q28: LOL" = "V273",
         "Q28: ROFL" = "V274",
         "Q28: BRB" = "V275",
         "Q28: GG" = "V276",
         "Q28: DM" = "V277",
         "Q29: ornate" = "V278",
         "Q29: adorned" = "V279",
         "Q29: cushy" = "V280",
         "Q29: resplendent" = "V281",
         "Q29: spiffy" = "V282",
         "Q30: HDMI" = "V283",
         "Q30: USB" = "V284",
         "Q30: Ethernet" = "V285",
         "Q30: SATA" = "V286",
         "Q30: FireWire" = "V287",
         "Q31: Leukemia" = "V288",
         "Q31: Lymphoma" = "V289",
         "Q31: Melanoma" = "V290",
         "Q31: Mesothelioma" = "V291",
         "Q31: Sarcoma" = "V292",
         "Q32: Calico" = "V293",
         "Q32: Paisley" = "V294",
         "Q32: Pinstripe" = "V295",
         "Q32: Plaid" = "V296",
         "Q32: Tartan" = "V297",
         "Q1: Elizabeth Cady Stanton" = "V298",
         "Q1: Abigail Adams" = "V299",
         "Q1: Marcel Cordoba" = "V300",
         "Q1: Sun Tzu" = "V301",
         "Q1: Trent Moseson" = "V302",
         "Q2: Casablanca" = "V303",
         "Q2: The Tin Man" = "V304",
         "Q2: Blue Swede Shoes" = "V305",
         "Q2: Common Projects" = "V306",
         "Q2: Amandine" = "V307",
         "Q3: Mirch Masala" = "V308",
         "Q3: Reconciliation" = "V309",
         "Q3: Amadar" = "V310",
         "Q3: Durest" = "V311",
         "Q3: Viveza" = "V312",
         "Q4: ThriftyGal" = "V313",
         "Q4: Allenda" = "V314",
         "Q4: Reis" = "V315",
         "Q4: NewBeautyTruth" = "V316",
         "Q4: Aejeong" = "V317",
         "Q5: Modafinil" = "V318",
         "Q5: Creatine" = "V319",
         "Q5: Alemtuzumab" = "V320",
         "Q5: Semtex" = "V321",
         "Q5: Carboplatin" = "V322",
         "Q6: Botulism" = "V323",
         "Q6: Shingles" = "V324",
         "Q6: Pneumonia" = "V325",
         "Q6: Tuberculosis" = "V326",
         "Q6: Pertusis" = "V327",
         "Q7: Seagrams" = "V328",
         "Q7: Black Velvet" = "V329",
         "Q7: Windsor" = "V330",
         "Q7: Black Turkey" = "V331",
         "Q7: Solo" = "V332",
         "Q8: smack" = "V333",
         "Q8: tilt" = "V334",
         "Q8: DnB" = "V335",
         "Q8: Jose Garcia" = "V336",
         "Q8: Heavenly Green" = "V337",
         "Q9: India 2" = "V338",
         "Q9: Florida" = "V339",
         "Q9: Brazil" = "V340",
         "Q9: South Africa" = "V341",
         "Q9: Egypt 2" = "V342",
         "Q10: France 2" = "V343",
         "Q10: Germany" = "V344",
         "Q10: Russia 2" = "V345",
         "Q10: China 2" = "V346",
         "Q10: Brazil 2" = "V347",
         "Q11: Zimbabwe" = "V348",
         "Q11: Sweden2" = "V349",
         "Q11: Singapore" = "V350",
         "Q11: Panama" = "V351",
         "Q11: Japan" = "V352",
         "Q12: Germany 2" = "V353",
         "Q12: Saudi Arabia 3" = "V354",
         "Q12: Nigeria2" = "V355",
         "Q12: Mexico 2" = "V356",
         "Q12: Spain" = "V357",
         "Q13: csv" = "V358",
         "Q13: xls" = "V359",
         "Q13: flac" = "V360",
         "Q13: msi" = "V361",
         "Q13: mp3" = "V362",
         "Q14: Slate" = "V363",
         "Q14: Expedition" = "V364",
         "Q14: Pipes" = "V365",
         "Q14: Adele" = "V366",
         "Q14: Telegram" = "V367",
         "Q15: IIS" = "V368",
         "Q15: Kodiak" = "V369",
         "Q15: Technitium" = "V370",
         "Q15: Oracle" = "V371",
         "Q15: Go" = "V372",
         "Q16: 500 Deleted" = "V373",
         "Q16: 600 Encrypted" = "V374",
         "Q16: 303 Payment Processing" = "V375",
         "Q16: 209 Download Complete" = "V376",
         "Q16: 101 Use Proxy" = "V377",
         "Q17: Jayanti" = "V378",
         "Q17: Wristlings" = "V379",
         "Q17: Cornik" = "V380",
         "Q17: Cheapnik" = "V381",
         "Q17: Frutiger" = "V382",
         "Q18: Skree" = "V383",
         "Q18: Wry" = "V384",
         "Q18: Whisket" = "V385",
         "Q18: Skane" = "V386",
         "Q18: Brutch" = "V387",
         "Q19: Chardonnay" = "V388",
         "Q19: Semillon" = "V389",
         "Q19: Moscato" = "V390",
         "Q19: Gewuumlarztraminer" = "V391",
         "Q19: Riesling" = "V392",
         "Q20: Yatzhe" = "V393",
         "Q20: Croquet" = "V394",
         "Q20: Bocce" = "V395",
         "Q20: Black 2s" = "V396",
         "Q20: Manhattan" = "V397",
         "Q21: Signer" = "V398",
         "Q21: Subductor" = "V399",
         "Q21: Annulus" = "V400",
         "Q21: Boson" = "V401",
         "Q21: Zenoid" = "V402",
         "Q22: AlphaBay" = "V403",
         "Q22: DCA" = "V404",
         "Q22: PayPal" = "V405",
         "Q22: Liberty Ledger" = "V406",
         "Q22: Dwork" = "V407",
         "Q23: Greece" = "V408",
         "Q23: Turkey" = "V409",
         "Q23: Congo" = "V410",
         "Q23: Mongolia" = "V411",
         "Q23: Japan2" = "V412",
         "Q24: Harvey Parnell" = "V413",
         "Q24: Sid McMath" = "V414",
         "Q24: John Goodman" = "V415",
         "Q24: Buster Keaton" = "V416",
         "Q24: Pavel Tikhonov" = "V417",
         "Q25: Pride and Prejudice" = "V418",
         "Q25: Harry Potter and the Prisoner of Azkaban" = "V419",
         "Q25: Fahrenheit 451" = "V420",
         "Q25: To Kill a Mockingbird" = "V421",
         "Q25: Science, and its Antecedents" = "V422",
         "Q26: Newton" = "V423",
         "Q26: Pascal" = "V424",
         "Q26: Pitch" = "V425",
         "Q26: Hertz" = "V426",
         "Q26: Annum" = "V427",
         "Q27: Shiatsu" = "V428",
         "Q27: Reflexology" = "V429",
         "Q27: Gooba" = "V430",
         "Q27: UltraMaxFit" = "V431",
         "Q27: NTP" = "V432",
         "Q28: QTY" = "V433",
         "Q28: FUM" = "V434",
         "Q28: AET" = "V435",
         "Q28: TT" = "V436",
         "Q28: MRLO" = "V437",
         "Q29: effective" = "V438",
         "Q29: virile" = "V439",
         "Q29: esulent" = "V440",
         "Q29: adscititious" = "V441",
         "Q29: thalassic" = "V442",
         "Q30: WiFi" = "V443",
         "Q30: D-High" = "V444",
         "Q30: 2Interlink" = "V445",
         "Q30: RTC" = "V446",
         "Q30: HDD" = "V447",
         "Q31: Lymnoma" = "V448",
         "Q31: Colerectia" = "V449",
         "Q31: Vitisus" = "V450",
         "Q31: Tradoma" = "V451",
         "Q31: Cellenia" = "V452",
         "Q32: Periwinkle" = "V453",
         "Q32: Snapdragon" = "V454",
         "Q32: Stilted" = "V455",
         "Q32: Arvo" = "V456",
         "Q32: Tahoma" = "V457"
  )

for(i in 1:32) {
  e2[, 132+1+i*5][grepl("A0", e2[, i*4-2], fixed=TRUE)] <- 1
  e2[, 132+1+i*5][!grepl("A0", e2[, i*4-2], fixed=TRUE)] <- 0
  e2[, 132+2+i*5][grepl("A1", e2[, i*4-2], fixed=TRUE)] <- 1
  e2[, 132+2+i*5][!grepl("A1", e2[, i*4-2], fixed=TRUE)] <- 0
  e2[, 132+3+i*5][grepl("A2", e2[, i*4-2], fixed=TRUE)] <- 1
  e2[, 132+3+i*5][!grepl("A2", e2[, i*4-2], fixed=TRUE)] <- 0
  e2[, 132+4+i*5][grepl("A3", e2[, i*4-2], fixed=TRUE)] <- 1
  e2[, 132+4+i*5][!grepl("A3", e2[, i*4-2], fixed=TRUE)] <- 0
  e2[, 132+5+i*5][grepl("A4", e2[, i*4-2], fixed=TRUE)] <- 1
  e2[, 132+5+i*5][!grepl("A4", e2[, i*4-2], fixed=TRUE)] <- 0
  e2[, 292+1+i*5][grepl("A5", e2[, i*4-2], fixed=TRUE)] <- 0
  e2[, 292+1+i*5][!grepl("A5", e2[, i*4-2], fixed=TRUE)] <- 1
  e2[, 292+2+i*5][grepl("A6", e2[, i*4-2], fixed=TRUE)] <- 0
  e2[, 292+2+i*5][!grepl("A6", e2[, i*4-2], fixed=TRUE)] <- 1
  e2[, 292+3+i*5][grepl("A7", e2[, i*4-2], fixed=TRUE)] <- 0
  e2[, 292+3+i*5][!grepl("A7", e2[, i*4-2], fixed=TRUE)] <- 1
  e2[, 292+4+i*5][grepl("A8", e2[, i*4-2], fixed=TRUE)] <- 0
  e2[, 292+4+i*5][!grepl("A8", e2[, i*4-2], fixed=TRUE)] <- 1
  e2[, 292+5+i*5][grepl("A9", e2[, i*4-2], fixed=TRUE)] <- 0
  e2[, 292+5+i*5][!grepl("A9", e2[, i*4-2], fixed=TRUE)] <- 1
  e2[, 457+i] <- e2[, 132+1+i*5] + e2[, 132+2+i*5] + e2[, 132+3+i*5] + e2[, 132+4+i*5] + e2[, 132+5+i*5] + e2[, 292+1+i*5] + e2[, 292+2+i*5] + e2[, 292+3+i*5] + e2[, 292+4+i*5] + e2[, 292+5+i*5] 
}

Calculating scores on the general knowledge test.

#########calculating types of scores
e2$gksum = rowSums(e2[, 138:457])
e2$gksumstand <- normalise(e2$gksum)
e2o <- na.omit(e2)
GG_denhist(e2o, "gksum", bins=50) 
e2test3 <- e2o[, 458:489]

mean(e2o$testelapse)
median(e2o$testelapse)

e2oceil <- subset(e2o, e2o$gksum==320)
mirtanswers <- mirt(e2o[, 138:297], model=1, itemtype='4PL')
mirtdistractors <- mirt(e2o[, 298:457], model=1, itemtype='4PL')
mirtanswers2 <- mirt(e2o[, 138:297], model=1, itemtype='2PL')
mirtdistractors2 <- mirt(e2o[, 298:457], model=1, itemtype='2PL')
mirtdistractorss <- mirt(e2o[, 298:457], model=1, itemtype='spline')
actualmirt <- mirt(e2test3, model=1, itemtype='graded')
summary(mirtanswers)
summary(mirtdistractors)
summary(actualmirt)
mirtanswersf <- fscores(mirtanswers, full.scores = TRUE)
mirtdistractorsf <- fscores(mirtdistractors, full.scores = TRUE)
mirtanswers2f <- fscores(mirtanswers2, full.scores = TRUE)
mirtdistractors2f <- fscores(mirtdistractors2, full.scores = TRUE)
mirts3f <- fscores(actualmirt, full.scores = TRUE)
mirtdistractorssf <- fscores(actualmirt, full.scores = TRUE)
e2o$gkdsum = mirtanswersf + mirtdistractorsf
e2o$mirtdist = mirtdistractors2f
e2o$mirtans = mirtanswers2f
e2o$gkdsum2 = mirtanswers2f + mirtdistractors2f
e2o$gkdsums = mirtanswersf + mirtdistractorssf

Pre-code for calculating differences in specific ability by country. Names were changed midway through study, so the values don’t correspond to the ones in the paper.

######################raw difference vs scientific/tech difference

techvec <- c(470, 471, 472, 473, 479, 487, 478, 483)
ivec <- c(466, 467, 468, 469, 480)
biovec <- c(460, 462, 463, 464, 465, 481, 488)
aevec <- c(461, 474, 476, 484, 489)
cvec <- c(458, 459, 482)
pvec <- c(475, 478, 483, 486)
e2o$tk = 0
e2o$ik = 0
e2o$bk = 0
e2o$ak = 0
e2o$ck = 0
e2o$pk = 0

for(i in techvec) {
  e2o$tk = e2o[, i] + e2o$tk
}

for(i in ivec) {
  e2o$ik = e2o[, i] + e2o$ik
}

for(i in biovec) {
  e2o$bk = e2o[, i] + e2o$bk
}

for(i in aevec) {
  e2o$ak = e2o[, i] + e2o$ak
}

for(i in cvec) {
  e2o$ck = e2o[, i] + e2o$ck
}

for(i in pvec) {
  e2o$pk = e2o[, i] + e2o$pk
}

getdiffs <- function(refs, biasg, scol) {
  fullcunt <-c(refs, biasg)
  e2og <- e2o %>% 
    filter(country %in% fullcunt) %>%
    select(scol)
  e2og$biasc = 0
  e2og$biasc[e2og$country %in% biasg] <- 1  
  print(mean(e2og$biasc)*nrow(e2og))
  print("Computational difference:")
  print(cohen.d(data=e2og, tk ~ biasc))
  print(cohen.d(data=e2og, tk ~ biasc)$p)
  print("Technical difference:")
  print(cohen.d(data=e2og, pk ~ biasc))
  print(cohen.d(data=e2og, pk ~ biasc)$p)
  print("International difference:")
  print(cohen.d(data=e2og, ik ~ biasc))
  print(cohen.d(data=e2og, ik ~ biasc)$p)
  print("Aesthetic difference:")
  print(cohen.d(data=e2og, ak ~ biasc))
  print(cohen.d(data=e2og, ak ~ biasc)$p)
  print("Literary difference:")
  print(cohen.d(data=e2og, ck ~ biasc))
  print(cohen.d(data=e2og, ck ~ biasc)$p)
  print("Cultural difference:")
  print(cohen.d(data=e2og, bk ~ biasc))
  print(cohen.d(data=e2og, bk ~ biasc)$p)
  print("Total difference:")
  print(cohen.d(data=e2og, gksum ~ biasc))
  print(cohen.d(data=e2og, gksum ~ biasc)$p)
}

Differences between Germans and Anglos:

ref = c("US", "GB", "AU", "NZ", "ZA", "CA", "IE")
b = c("DE", "CH", "AT")
getdiffs(ref, b, colnames(e2o))

Differences between Latin Americans and Anglos:

b = c("MX", "NI", "PA", "PE", 'PH', 'PR', 'PY', 'SV', 'UY', 'AR', 'BO', 'BR', 'BZ', 'CL', 'CO', 'CR', 'CU', 'EC', 'GT', 'HN', 'GY')
getdiffs(ref, b, colnames(e2o))

Differences between Northern Europeans and Anglos:

b = c('NO', 'SE', 'FI', 'DK', 'IS', 'LU', 'NL', 'BE')
getdiffs(ref, b, colnames(e2o))

Differences between Southern Europeans and Anglos:

b = c('PT', 'ES', 'FR', 'IT', 'GR', 'AD', 'MT')
getdiffs(ref, b, colnames(e2o))

Differences between Eastern Europeans and Anglos:

b = c('EE', 'LT', 'LV', 'BY', 'UA', 'RO', 'BG', 'PL', 'CZ', 'HU', 'MD', 'RU', 'SI', 'SK')
getdiffs(ref, b, colnames(e2o))

Difference between Balkans and Anglos

b = c('HR', 'BA', 'FM', 'RS', 'HR', 'AL', 'MK')
getdiffs(ref, b, colnames(e2o))

Difference between Caucasians/Turkics and Anglos

b = c('TR', 'AM', 'GE', 'AZ', 'CY')
getdiffs(ref, b, colnames(e2o))

Difference between Middle Easterners and Anglos

b = c('MA', 'DZ', 'LY', 'EG', 'IL', 'AF', 'IR', 'IQ', 'JO', 'KW', 'LB', 'OM', 'PK', 'QA', 'SA', 'TN')
getdiffs(ref, b, colnames(e2o))

Difference between Sub-Saharan Africans and Anglos

b = c('NA', 'BW', 'ZW', 'MZ', 'MG', 'ZM', 'AO', 'CD', 'TZ', 'UG', 'KE', 'CG', 'GA', 'SO', 'ET', 'SS', 'CF', 'CM', 'NG', 'GH', 'CI', 'GN', 'SN', 'SD', 'TD', 'NE', 'ML', 'MR', 'EH', 'LK', 'RW', 'TZ', 'SC', 'MV', 'MU', 'MW')
getdiffs(ref, b, colnames(e2o))

Difference between Eastern Asians and Anglos

b = c('HK', 'SG', 'CH', 'KR', 'JP', 'KP', 'TW', 'MN')
getdiffs(ref, b, colnames(e2o))

Difference between Southern Asians and Anglos

b = c('IN', 'MV', 'BD', 'NP', 'BH')
getdiffs(ref, b, colnames(e2o))

Difference between South East Asians and Anglos

b = c('TH', 'KH', 'LA', 'VN', 'MY', 'PH')
getdiffs(ref, b, colnames(e2o))

Pre-code for correlations between facets of knowledge and IQ by country.

##########before adjustment
e2o$tkn <- (e2o$tk - mean(e2o$tk))/sd(e2o$tk)
e2o$bkn <- (e2o$bk - mean(e2o$bk))/sd(e2o$bk)
e2o$ckn <- (e2o$ck - mean(e2o$ck))/sd(e2o$ck)
e2o$akn <- (e2o$ak - mean(e2o$ak))/sd(e2o$ak)
e2o$ikn <- (e2o$ik - mean(e2o$ik))/sd(e2o$ik)
e2o$pkn <- (e2o$pk - mean(e2o$pk))/sd(e2o$pk)


e2o$gknormed = (e2o$gksumstand - mean(murica$gksumstand))/sd(e2o$gksumstand)
gks <- aggregate(e2o$gknormed*15+100, list(e2o$country), mean)
tks <- aggregate(e2o$tkn*15+100, list(e2o$country), mean)
bks <- aggregate(e2o$bkn*15+100, list(e2o$country), mean)
cks <- aggregate(e2o$ckn*15+100, list(e2o$country), mean)
aks <- aggregate(e2o$akn*15+100, list(e2o$country), mean)
iks <- aggregate(e2o$ikn*15+100, list(e2o$country), mean)
pks <- aggregate(e2o$pkn*15+100, list(e2o$country), mean)
ct <- e2o %>% count(country)
nats <- data.frame(gks, ct)
nats$gks <- gks
nats$tks <- tks
nats$bks <- bks
nats$cks <- cks
nats$aks <- aks
nats$iks <- iks
nats$pks <- pks
nats$io3 <- countrycode(nats$country, origin = "iso2c", destination = "iso3c")
niq$Identification <- niq$alpha3
ita0 <- full_join(nats, niq, by = join_by(io3 == Identification))
ita0 <- ita0[!duplicated(ita0$country), ]
ita0 <- subset(ita0, ita0$n>49)

Correlations between abilities and national IQs

#Technical
cor.test(ita0$tks$x, ita0$R)
#Cultural
cor.test(ita0$bks$x, ita0$R)
#Literary
cor.test(ita0$cks$x, ita0$R)
#Aesthetic
cor.test(ita0$aks$x, ita0$R)
#International
cor.test(ita0$iks$x, ita0$R)
#Technical
cor.test(ita0$pks$x, ita0$R)
#General
cor.test(ita0$gks$x, ita0$R)

write_csv(data.frame(ita0 %>% unlist()), "data/hello.csv")

Bias testing in distractors for German-speaking countries vs Angloshere.

##################BIAS TESTING GERMANS
refs = c("US", "GB", "AU", "NZ", "ZA", "CA", "IE")
b = c("DE", "CH", "AT")

reference = c("US", "GB", "AU", "NZ", "ZA", "CA", "IE")
biasg = c("DE", "CH", "AT")
scol = colnames(e2o)
fullcunt <-c(refs, biasg)
e2og <- e2o %>% 
  filter(country %in% fullcunt) %>%
  select(scol)
e2og$biasc = 0
e2og$biasc[e2og$country %in% biasg] <- 1 

germanbias = DIF_test(
  items = e2og[, 298:457],
  model = 1,
  group = e2og$biasc,
  itemtype = '2PL'
)
There are 8 steps
Step 1: Initial joint fit

Iteration: 1, Log-Lik: -590090.294, Max-Change: 3.28165
Iteration: 2, Log-Lik: -585525.210, Max-Change: 0.81900
Iteration: 3, Log-Lik: -584211.377, Max-Change: 0.32059
Iteration: 4, Log-Lik: -583776.633, Max-Change: 0.19418
Iteration: 5, Log-Lik: -583661.378, Max-Change: 0.05525
Iteration: 6, Log-Lik: -583628.754, Max-Change: 0.05982
Iteration: 7, Log-Lik: -583609.785, Max-Change: 0.01893
Iteration: 8, Log-Lik: -583591.053, Max-Change: 0.02252
Iteration: 9, Log-Lik: -583577.099, Max-Change: 0.02789
Iteration: 10, Log-Lik: -583570.482, Max-Change: 0.01240
Iteration: 11, Log-Lik: -583562.310, Max-Change: 0.01350
Iteration: 12, Log-Lik: -583555.972, Max-Change: 0.01264
Iteration: 13, Log-Lik: -583550.681, Max-Change: 0.01016
Iteration: 14, Log-Lik: -583546.267, Max-Change: 0.00968
Iteration: 15, Log-Lik: -583542.429, Max-Change: 0.00893
Iteration: 16, Log-Lik: -583525.745, Max-Change: 0.00509
Iteration: 17, Log-Lik: -583524.375, Max-Change: 0.00495
Iteration: 18, Log-Lik: -583523.098, Max-Change: 0.00314
Iteration: 19, Log-Lik: -583519.002, Max-Change: 0.00985
Iteration: 20, Log-Lik: -583517.974, Max-Change: 0.00205
Iteration: 21, Log-Lik: -583517.296, Max-Change: 0.00502
Iteration: 22, Log-Lik: -583515.890, Max-Change: 0.00217
Iteration: 23, Log-Lik: -583515.368, Max-Change: 0.00178
Iteration: 24, Log-Lik: -583514.921, Max-Change: 0.00218
Iteration: 25, Log-Lik: -583512.764, Max-Change: 0.00490
Iteration: 26, Log-Lik: -583512.577, Max-Change: 0.00162
Iteration: 27, Log-Lik: -583512.340, Max-Change: 0.00256
Iteration: 28, Log-Lik: -583512.139, Max-Change: 0.00145
Iteration: 29, Log-Lik: -583511.960, Max-Change: 0.00227
Iteration: 30, Log-Lik: -583511.818, Max-Change: 0.00119
Iteration: 31, Log-Lik: -583511.690, Max-Change: 0.00086
Iteration: 32, Log-Lik: -583511.576, Max-Change: 0.00121
Iteration: 33, Log-Lik: -583511.468, Max-Change: 0.00089
Iteration: 34, Log-Lik: -583511.214, Max-Change: 0.00216
Iteration: 35, Log-Lik: -583511.100, Max-Change: 0.00085
Iteration: 36, Log-Lik: -583511.011, Max-Change: 0.00087
Iteration: 37, Log-Lik: -583510.873, Max-Change: 0.00185
Iteration: 38, Log-Lik: -583510.814, Max-Change: 0.00084
Iteration: 39, Log-Lik: -583510.745, Max-Change: 0.00069
Iteration: 40, Log-Lik: -583510.673, Max-Change: 0.00152
Iteration: 41, Log-Lik: -583510.630, Max-Change: 0.00073
Iteration: 42, Log-Lik: -583510.578, Max-Change: 0.00059
Iteration: 43, Log-Lik: -583510.525, Max-Change: 0.00131
Iteration: 44, Log-Lik: -583510.493, Max-Change: 0.00091
Iteration: 45, Log-Lik: -583510.446, Max-Change: 0.00092
Iteration: 46, Log-Lik: -583510.364, Max-Change: 0.00081
Iteration: 47, Log-Lik: -583510.332, Max-Change: 0.00078
Iteration: 48, Log-Lik: -583510.306, Max-Change: 0.00072
Iteration: 49, Log-Lik: -583510.264, Max-Change: 0.00042
Iteration: 50, Log-Lik: -583510.255, Max-Change: 0.00017
Iteration: 51, Log-Lik: -583510.248, Max-Change: 0.00016
Iteration: 52, Log-Lik: -583510.215, Max-Change: 0.00089
Iteration: 53, Log-Lik: -583510.194, Max-Change: 0.00016
Iteration: 54, Log-Lik: -583510.190, Max-Change: 0.00016
Iteration: 55, Log-Lik: -583510.173, Max-Change: 0.00076
Iteration: 56, Log-Lik: -583510.159, Max-Change: 0.00014
Iteration: 57, Log-Lik: -583510.157, Max-Change: 0.00068
Iteration: 58, Log-Lik: -583510.143, Max-Change: 0.00018
Iteration: 59, Log-Lik: -583510.141, Max-Change: 0.00059
Iteration: 60, Log-Lik: -583510.133, Max-Change: 0.00011
Iteration: 61, Log-Lik: -583510.132, Max-Change: 0.00011
Iteration: 62, Log-Lik: -583510.131, Max-Change: 0.00052
Iteration: 63, Log-Lik: -583510.124, Max-Change: 0.00058
Iteration: 64, Log-Lik: -583510.117, Max-Change: 0.00031
Iteration: 65, Log-Lik: -583510.113, Max-Change: 0.00009

Step 2: Initial MI fit

Iteration: 1, Log-Lik: -590087.404, Max-Change: 1.29132
Iteration: 2, Log-Lik: -584000.486, Max-Change: 0.31592
Iteration: 3, Log-Lik: -583765.840, Max-Change: 0.22821
Iteration: 4, Log-Lik: -583687.543, Max-Change: 0.19497
Iteration: 5, Log-Lik: -583639.770, Max-Change: 0.14476
Iteration: 6, Log-Lik: -583607.718, Max-Change: 0.13476
Iteration: 7, Log-Lik: -583584.777, Max-Change: 0.07252
Iteration: 8, Log-Lik: -583569.459, Max-Change: 0.07199
Iteration: 9, Log-Lik: -583558.070, Max-Change: 0.06453
Iteration: 10, Log-Lik: -583549.562, Max-Change: 0.05394
Iteration: 11, Log-Lik: -583543.137, Max-Change: 0.03846
Iteration: 12, Log-Lik: -583538.119, Max-Change: 0.03481
Iteration: 13, Log-Lik: -583534.151, Max-Change: 0.02731
Iteration: 14, Log-Lik: -583530.945, Max-Change: 0.02317
Iteration: 15, Log-Lik: -583528.299, Max-Change: 0.02457
Iteration: 16, Log-Lik: -583518.040, Max-Change: 0.02675
Iteration: 17, Log-Lik: -583517.057, Max-Change: 0.00901
Iteration: 18, Log-Lik: -583516.281, Max-Change: 0.00520
Iteration: 19, Log-Lik: -583513.786, Max-Change: 0.00576
Iteration: 20, Log-Lik: -583513.309, Max-Change: 0.00300
Iteration: 21, Log-Lik: -583512.881, Max-Change: 0.00307
Iteration: 22, Log-Lik: -583510.824, Max-Change: 0.00552
Iteration: 23, Log-Lik: -583510.608, Max-Change: 0.00211
Iteration: 24, Log-Lik: -583510.418, Max-Change: 0.00173
Iteration: 25, Log-Lik: -583509.506, Max-Change: 0.00372
Iteration: 26, Log-Lik: -583509.409, Max-Change: 0.00192
Iteration: 27, Log-Lik: -583509.324, Max-Change: 0.00099
Iteration: 28, Log-Lik: -583508.984, Max-Change: 0.00201
Iteration: 29, Log-Lik: -583508.935, Max-Change: 0.00080
Iteration: 30, Log-Lik: -583508.892, Max-Change: 0.00076
Iteration: 31, Log-Lik: -583508.683, Max-Change: 0.00175
Iteration: 32, Log-Lik: -583508.661, Max-Change: 0.00056
Iteration: 33, Log-Lik: -583508.641, Max-Change: 0.00046
Iteration: 34, Log-Lik: -583508.547, Max-Change: 0.00117
Iteration: 35, Log-Lik: -583508.537, Max-Change: 0.00050
Iteration: 36, Log-Lik: -583508.528, Max-Change: 0.00030
Iteration: 37, Log-Lik: -583508.496, Max-Change: 0.00058
Iteration: 38, Log-Lik: -583508.491, Max-Change: 0.00028
Iteration: 39, Log-Lik: -583508.486, Max-Change: 0.00027
Iteration: 40, Log-Lik: -583508.463, Max-Change: 0.00057
Iteration: 41, Log-Lik: -583508.460, Max-Change: 0.00023
Iteration: 42, Log-Lik: -583508.458, Max-Change: 0.00018
Iteration: 43, Log-Lik: -583508.448, Max-Change: 0.00038
Iteration: 44, Log-Lik: -583508.447, Max-Change: 0.00013
Iteration: 45, Log-Lik: -583508.446, Max-Change: 0.00011
Iteration: 46, Log-Lik: -583508.441, Max-Change: 0.00026
Iteration: 47, Log-Lik: -583508.440, Max-Change: 0.00009

Step 3: Leave one out MI testing

  |=                                                 | 1 % ~16m 04s      
  |==                                                | 2 % ~17m 24s      
  |==                                                | 4 % ~18m 06s      
  |===                                               | 5 % ~17m 46s      
  |====                                              | 6 % ~17m 46s      
  |====                                              | 8 % ~17m 38s      
  |=====                                             | 9 % ~19m 22s      
  |=====                                             | 10% ~19m 35s      
  |======                                            | 11% ~19m 04s      
  |=======                                           | 12% ~18m 59s      
  |=======                                           | 14% ~18m 44s      
  |========                                          | 15% ~20m 25s      
  |=========                                         | 16% ~20m 44s      
  |=========                                         | 18% ~20m 18s      
  |==========                                        | 19% ~19m 53s      
  |==========                                        | 20% ~19m 43s      
  |===========                                       | 21% ~19m 26s      
  |============                                      | 22% ~18m 41s      
  |============                                      | 24% ~18m 31s      
  |=============                                     | 25% ~17m 51s      
  |==============                                    | 26% ~17m 14s      
  |==============                                    | 28% ~16m 42s      
  |===============                                   | 29% ~16m 13s      
  |===============                                   | 30% ~16m 05s      
  |================                                  | 31% ~15m 43s      
  |=================                                 | 32% ~15m 21s      
  |=================                                 | 34% ~14m 59s      
  |==================                                | 35% ~14m 41s      
  |===================                               | 36% ~14m 37s      
  |===================                               | 38% ~14m 14s      
  |====================                              | 39% ~13m 48s      
  |====================                              | 40% ~13m 23s      
  |=====================                             | 41% ~13m 54s      
  |======================                            | 42% ~13m 47s      
  |======================                            | 44% ~17m 06s      
  |=======================                           | 45% ~16m 32s      
  |========================                          | 46% ~15m 58s      
  |========================                          | 48% ~15m 28s      
  |=========================                         | 49% ~14m 56s      
  |=========================                         | 50% ~14m 24s      
  |==========================                        | 51% ~13m 56s      
  |===========================                       | 52% ~13m 32s      
  |===========================                       | 54% ~13m 08s      
  |============================                      | 55% ~12m 41s      
  |=============================                     | 56% ~12m 14s      
  |=============================                     | 58% ~11m 46s      
  |==============================                    | 59% ~11m 19s      
  |==============================                    | 60% ~10m 53s      
  |===============================                   | 61% ~10m 32s      
  |================================                  | 62% ~10m 07s      
  |================================                  | 64% ~09m 46s      
  |=================================                 | 65% ~09m 25s      
  |==================================                | 66% ~09m 01s      
  |==================================                | 68% ~08m 37s      
  |===================================               | 69% ~08m 16s      
  |===================================               | 70% ~07m 55s      
  |====================================              | 71% ~07m 32s      
  |=====================================             | 72% ~07m 11s      
  |=====================================             | 74% ~06m 49s      
  |======================================            | 75% ~06m 27s      
  |=======================================           | 76% ~06m 04s      
  |=======================================           | 78% ~05m 42s      
  |========================================          | 79% ~05m 22s      
  |========================================          | 80% ~05m 03s      
  |=========================================         | 81% ~04m 43s      
  |==========================================        | 82% ~04m 23s      
  |==========================================        | 84% ~04m 04s      
  |===========================================       | 85% ~03m 44s      
  |============================================      | 86% ~03m 25s      
  |============================================      | 88% ~03m 06s      
  |=============================================     | 89% ~02m 47s      
  |=============================================     | 90% ~02m 28s      
  |==============================================    | 91% ~02m 09s      
  |===============================================   | 92% ~01m 50s      
  |===============================================   | 94% ~01m 31s      
  |================================================  | 95% ~01m 13s      
  |================================================= | 96% ~55s          
  |================================================= | 98% ~36s          
  |==================================================| 99% ~18s          
  |==================================================| 100% elapsed=24m 11s

Step 4: Fit without DIF items, liberal threshold

Iteration: 1, Log-Lik: -625221.755, Max-Change: 2.84975
Iteration: 2, Log-Lik: -622964.905, Max-Change: 0.47271
Iteration: 3, Log-Lik: -622228.265, Max-Change: 0.16179
Iteration: 4, Log-Lik: -622143.641, Max-Change: 0.11615
Iteration: 5, Log-Lik: -622114.467, Max-Change: 0.09876
Iteration: 6, Log-Lik: -622092.484, Max-Change: 0.04235
Iteration: 7, Log-Lik: -622069.839, Max-Change: 0.03838
Iteration: 8, Log-Lik: -622061.800, Max-Change: 0.02031
Iteration: 9, Log-Lik: -622052.208, Max-Change: 0.03287
Iteration: 10, Log-Lik: -622047.657, Max-Change: 0.01609
Iteration: 11, Log-Lik: -622042.089, Max-Change: 0.01391
Iteration: 12, Log-Lik: -622037.913, Max-Change: 0.01343
Iteration: 13, Log-Lik: -622025.321, Max-Change: 0.00956
Iteration: 14, Log-Lik: -622024.239, Max-Change: 0.00545
Iteration: 15, Log-Lik: -622023.531, Max-Change: 0.00449
Iteration: 16, Log-Lik: -622022.039, Max-Change: 0.00224
Iteration: 17, Log-Lik: -622021.758, Max-Change: 0.00238
Iteration: 18, Log-Lik: -622021.541, Max-Change: 0.00249
Iteration: 19, Log-Lik: -622020.661, Max-Change: 0.00271
Iteration: 20, Log-Lik: -622020.587, Max-Change: 0.00199
Iteration: 21, Log-Lik: -622020.540, Max-Change: 0.00164
Iteration: 22, Log-Lik: -622020.394, Max-Change: 0.00058
Iteration: 23, Log-Lik: -622020.389, Max-Change: 0.00018
Iteration: 24, Log-Lik: -622020.385, Max-Change: 0.00092
Iteration: 25, Log-Lik: -622020.369, Max-Change: 0.00100
Iteration: 26, Log-Lik: -622020.360, Max-Change: 0.00025
Iteration: 27, Log-Lik: -622020.358, Max-Change: 0.00088
Iteration: 28, Log-Lik: -622020.351, Max-Change: 0.00025
Iteration: 29, Log-Lik: -622020.350, Max-Change: 0.00075
Iteration: 30, Log-Lik: -622020.346, Max-Change: 0.00022
Iteration: 31, Log-Lik: -622020.346, Max-Change: 0.00019
Iteration: 32, Log-Lik: -622020.345, Max-Change: 0.00068
Iteration: 33, Log-Lik: -622020.343, Max-Change: 0.00066
Iteration: 34, Log-Lik: -622020.341, Max-Change: 0.00031
Iteration: 35, Log-Lik: -622020.340, Max-Change: 0.00012
Iteration: 36, Log-Lik: -622020.340, Max-Change: 0.00059
Iteration: 37, Log-Lik: -622020.338, Max-Change: 0.00064
Iteration: 38, Log-Lik: -622020.338, Max-Change: 0.00028
Iteration: 39, Log-Lik: -622020.337, Max-Change: 0.00011
Iteration: 40, Log-Lik: -622020.336, Max-Change: 0.00051
Iteration: 41, Log-Lik: -622020.336, Max-Change: 0.00049
Iteration: 42, Log-Lik: -622020.335, Max-Change: 0.00019
Iteration: 43, Log-Lik: -622020.335, Max-Change: 0.00016
Iteration: 44, Log-Lik: -622020.335, Max-Change: 0.00045
Iteration: 45, Log-Lik: -622020.334, Max-Change: 0.00012
Iteration: 46, Log-Lik: -622020.334, Max-Change: 0.00051
Iteration: 47, Log-Lik: -622020.334, Max-Change: 0.00022
Iteration: 48, Log-Lik: -622020.334, Max-Change: 0.00042
Iteration: 49, Log-Lik: -622020.334, Max-Change: 0.00030
Iteration: 50, Log-Lik: -622020.333, Max-Change: 0.00011
Iteration: 51, Log-Lik: -622020.333, Max-Change: 0.00037
Iteration: 52, Log-Lik: -622020.332, Max-Change: 0.00014
Iteration: 53, Log-Lik: -622020.332, Max-Change: 0.00034
Iteration: 54, Log-Lik: -622020.332, Max-Change: 0.00011
Iteration: 55, Log-Lik: -622020.332, Max-Change: 0.00009

Step 5: Fit without DIF items, conservative threshold

Iteration: 1, Log-Lik: -610007.321, Max-Change: 3.49094
Iteration: 2, Log-Lik: -606461.627, Max-Change: 1.05183
Iteration: 3, Log-Lik: -605649.203, Max-Change: 0.64664
Iteration: 4, Log-Lik: -605507.601, Max-Change: 0.30647
Iteration: 5, Log-Lik: -605459.637, Max-Change: 0.07478
Iteration: 6, Log-Lik: -605442.977, Max-Change: 0.02270
Iteration: 7, Log-Lik: -605424.860, Max-Change: 0.01855
Iteration: 8, Log-Lik: -605411.450, Max-Change: 0.02923
Iteration: 9, Log-Lik: -605401.783, Max-Change: 0.01852
Iteration: 10, Log-Lik: -605393.037, Max-Change: 0.01258
Iteration: 11, Log-Lik: -605385.950, Max-Change: 0.01253
Iteration: 12, Log-Lik: -605380.136, Max-Change: 0.01030
Iteration: 13, Log-Lik: -605375.119, Max-Change: 0.00971
Iteration: 14, Log-Lik: -605370.837, Max-Change: 0.00904
Iteration: 15, Log-Lik: -605367.162, Max-Change: 0.00839
Iteration: 16, Log-Lik: -605351.629, Max-Change: 0.00373
Iteration: 17, Log-Lik: -605350.550, Max-Change: 0.00391
Iteration: 18, Log-Lik: -605349.602, Max-Change: 0.00592
Iteration: 19, Log-Lik: -605346.189, Max-Change: 0.00253
Iteration: 20, Log-Lik: -605345.641, Max-Change: 0.00173
Iteration: 21, Log-Lik: -605345.253, Max-Change: 0.00198
Iteration: 22, Log-Lik: -605343.701, Max-Change: 0.00606
Iteration: 23, Log-Lik: -605343.571, Max-Change: 0.00157
Iteration: 24, Log-Lik: -605343.399, Max-Change: 0.00092
Iteration: 25, Log-Lik: -605343.182, Max-Change: 0.00144
Iteration: 26, Log-Lik: -605343.083, Max-Change: 0.00209
Iteration: 27, Log-Lik: -605343.009, Max-Change: 0.00138
Iteration: 28, Log-Lik: -605342.932, Max-Change: 0.00083
Iteration: 29, Log-Lik: -605342.853, Max-Change: 0.00086
Iteration: 30, Log-Lik: -605342.788, Max-Change: 0.00088
Iteration: 31, Log-Lik: -605342.478, Max-Change: 0.00189
Iteration: 32, Log-Lik: -605342.444, Max-Change: 0.00110
Iteration: 33, Log-Lik: -605342.395, Max-Change: 0.00112
Iteration: 34, Log-Lik: -605342.324, Max-Change: 0.00094
Iteration: 35, Log-Lik: -605342.295, Max-Change: 0.00078
Iteration: 36, Log-Lik: -605342.284, Max-Change: 0.00017
Iteration: 37, Log-Lik: -605342.276, Max-Change: 0.00016
Iteration: 38, Log-Lik: -605342.270, Max-Change: 0.00015
Iteration: 39, Log-Lik: -605342.264, Max-Change: 0.00016
Iteration: 40, Log-Lik: -605342.232, Max-Change: 0.00091
Iteration: 41, Log-Lik: -605342.212, Max-Change: 0.00081
Iteration: 42, Log-Lik: -605342.197, Max-Change: 0.00074
Iteration: 43, Log-Lik: -605342.155, Max-Change: 0.00029
Iteration: 44, Log-Lik: -605342.152, Max-Change: 0.00012
Iteration: 45, Log-Lik: -605342.151, Max-Change: 0.00011
Iteration: 46, Log-Lik: -605342.150, Max-Change: 0.00056
Iteration: 47, Log-Lik: -605342.147, Max-Change: 0.00053
Iteration: 48, Log-Lik: -605342.145, Max-Change: 0.00050
Iteration: 49, Log-Lik: -605342.144, Max-Change: 0.00034
Iteration: 50, Log-Lik: -605342.143, Max-Change: 0.00011
Iteration: 51, Log-Lik: -605342.142, Max-Change: 0.00045
Iteration: 52, Log-Lik: -605342.141, Max-Change: 0.00058
Iteration: 53, Log-Lik: -605342.140, Max-Change: 0.00028
Iteration: 54, Log-Lik: -605342.140, Max-Change: 0.00009

Step 6: Fit with anchor items, liberal threshold

Iteration: 1, Log-Lik: -590087.404, Max-Change: 1.53343
Iteration: 2, Log-Lik: -582985.541, Max-Change: 0.37884
Iteration: 3, Log-Lik: -582694.974, Max-Change: 0.27926
Iteration: 4, Log-Lik: -582601.839, Max-Change: 0.18480
Iteration: 5, Log-Lik: -582548.874, Max-Change: 0.14461
Iteration: 6, Log-Lik: -582514.685, Max-Change: 0.09523
Iteration: 7, Log-Lik: -582492.460, Max-Change: 0.09017
Iteration: 8, Log-Lik: -582475.673, Max-Change: 0.07682
Iteration: 9, Log-Lik: -582463.431, Max-Change: 0.06656
Iteration: 10, Log-Lik: -582454.208, Max-Change: 0.09085
Iteration: 11, Log-Lik: -582446.259, Max-Change: 0.07658
Iteration: 12, Log-Lik: -582439.995, Max-Change: 0.07310
Iteration: 13, Log-Lik: -582434.902, Max-Change: 0.06832
Iteration: 14, Log-Lik: -582430.725, Max-Change: 0.06421
Iteration: 15, Log-Lik: -582427.252, Max-Change: 0.05950
Iteration: 16, Log-Lik: -582414.140, Max-Change: 0.05350
Iteration: 17, Log-Lik: -582412.286, Max-Change: 0.04000
Iteration: 18, Log-Lik: -582411.286, Max-Change: 0.06000
Iteration: 19, Log-Lik: -582408.531, Max-Change: 0.02656
Iteration: 20, Log-Lik: -582407.796, Max-Change: 0.06664
Iteration: 21, Log-Lik: -582407.114, Max-Change: 0.04541
Iteration: 22, Log-Lik: -582405.996, Max-Change: 0.03884
Iteration: 23, Log-Lik: -582405.549, Max-Change: 0.05174
Iteration: 24, Log-Lik: -582405.110, Max-Change: 0.04991
Iteration: 25, Log-Lik: -582403.107, Max-Change: 0.01572
Iteration: 26, Log-Lik: -582402.893, Max-Change: 0.05231
Iteration: 27, Log-Lik: -582402.686, Max-Change: 0.04654
Iteration: 28, Log-Lik: -582401.769, Max-Change: 0.02072
Iteration: 29, Log-Lik: -582401.657, Max-Change: 0.03974
Iteration: 30, Log-Lik: -582401.563, Max-Change: 0.03871
Iteration: 31, Log-Lik: -582401.112, Max-Change: 0.01134
Iteration: 32, Log-Lik: -582401.075, Max-Change: 0.03102
Iteration: 33, Log-Lik: -582401.032, Max-Change: 0.02905
Iteration: 34, Log-Lik: -582400.823, Max-Change: 0.03178
Iteration: 35, Log-Lik: -582400.795, Max-Change: 0.02319
Iteration: 36, Log-Lik: -582400.774, Max-Change: 0.03490
Iteration: 37, Log-Lik: -582400.708, Max-Change: 0.36240
Iteration: 38, Log-Lik: -582400.621, Max-Change: 0.01986
Iteration: 39, Log-Lik: -582400.604, Max-Change: 0.01614
Iteration: 40, Log-Lik: -582400.575, Max-Change: 0.01487
Iteration: 41, Log-Lik: -582400.568, Max-Change: 0.01469
Iteration: 42, Log-Lik: -582400.562, Max-Change: 0.01422
Iteration: 43, Log-Lik: -582400.531, Max-Change: 0.60048
Iteration: 44, Log-Lik: -582400.487, Max-Change: 0.00479
Iteration: 45, Log-Lik: -582400.484, Max-Change: 0.01048
Iteration: 46, Log-Lik: -582400.480, Max-Change: 0.04287
Iteration: 47, Log-Lik: -582400.476, Max-Change: 0.00642
Iteration: 48, Log-Lik: -582400.474, Max-Change: 0.00890
Iteration: 49, Log-Lik: -582400.469, Max-Change: 0.00873
Iteration: 50, Log-Lik: -582400.468, Max-Change: 0.00839
Iteration: 51, Log-Lik: -582400.466, Max-Change: 0.00840
Iteration: 52, Log-Lik: -582400.460, Max-Change: 0.00629
Iteration: 53, Log-Lik: -582400.460, Max-Change: 0.08100
Iteration: 54, Log-Lik: -582400.456, Max-Change: 0.00528
Iteration: 55, Log-Lik: -582400.456, Max-Change: 0.00527
Iteration: 56, Log-Lik: -582400.455, Max-Change: 0.00511
Iteration: 57, Log-Lik: -582400.455, Max-Change: 0.22011
Iteration: 58, Log-Lik: -582400.453, Max-Change: 0.00503
Iteration: 59, Log-Lik: -582400.447, Max-Change: 0.00424
Iteration: 60, Log-Lik: -582400.446, Max-Change: 0.00406
Iteration: 61, Log-Lik: -582400.445, Max-Change: 0.00581
Iteration: 62, Log-Lik: -582400.444, Max-Change: 0.00560
Iteration: 63, Log-Lik: -582400.444, Max-Change: 0.00552
Iteration: 64, Log-Lik: -582400.443, Max-Change: 0.00561
Iteration: 65, Log-Lik: -582400.443, Max-Change: 0.00451
Iteration: 66, Log-Lik: -582400.442, Max-Change: 0.00403
Iteration: 67, Log-Lik: -582400.442, Max-Change: 0.00308
Iteration: 68, Log-Lik: -582400.441, Max-Change: 0.00345
Iteration: 69, Log-Lik: -582400.441, Max-Change: 0.00337
Iteration: 70, Log-Lik: -582400.441, Max-Change: 0.00594
Iteration: 71, Log-Lik: -582400.441, Max-Change: 0.00346
Iteration: 72, Log-Lik: -582400.440, Max-Change: 0.07263
Iteration: 73, Log-Lik: -582400.439, Max-Change: 0.00342
Iteration: 74, Log-Lik: -582400.439, Max-Change: 0.00425
Iteration: 75, Log-Lik: -582400.438, Max-Change: 0.00902
Iteration: 76, Log-Lik: -582400.438, Max-Change: 0.08750
Iteration: 77, Log-Lik: -582400.436, Max-Change: 0.00258
Iteration: 78, Log-Lik: -582400.436, Max-Change: 0.00367
Iteration: 79, Log-Lik: -582400.436, Max-Change: 0.00222
Iteration: 80, Log-Lik: -582400.436, Max-Change: 0.00324
Iteration: 81, Log-Lik: -582400.436, Max-Change: 0.00321
Iteration: 82, Log-Lik: -582400.435, Max-Change: 0.00315
Iteration: 83, Log-Lik: -582400.435, Max-Change: 0.00256
Iteration: 84, Log-Lik: -582400.435, Max-Change: 0.00243
Iteration: 85, Log-Lik: -582400.435, Max-Change: 0.06841
Iteration: 86, Log-Lik: -582400.434, Max-Change: 0.00184
Iteration: 87, Log-Lik: -582400.434, Max-Change: 0.00177
Iteration: 88, Log-Lik: -582400.433, Max-Change: 0.01101
Iteration: 89, Log-Lik: -582400.433, Max-Change: 0.00152
Iteration: 90, Log-Lik: -582400.433, Max-Change: 0.21020
Iteration: 91, Log-Lik: -582400.430, Max-Change: 0.00150
Iteration: 92, Log-Lik: -582400.430, Max-Change: 0.00227
Iteration: 93, Log-Lik: -582400.430, Max-Change: 0.00215
Iteration: 94, Log-Lik: -582400.430, Max-Change: 0.00110
Iteration: 95, Log-Lik: -582400.430, Max-Change: 0.00190
Iteration: 96, Log-Lik: -582400.429, Max-Change: 0.00177
Iteration: 97, Log-Lik: -582400.429, Max-Change: 0.00126
Iteration: 98, Log-Lik: -582400.429, Max-Change: 0.00171
Iteration: 99, Log-Lik: -582400.429, Max-Change: 0.00157
Iteration: 100, Log-Lik: -582400.429, Max-Change: 0.00144
Iteration: 101, Log-Lik: -582400.429, Max-Change: 0.00147
Iteration: 102, Log-Lik: -582400.429, Max-Change: 0.00154
Iteration: 103, Log-Lik: -582400.429, Max-Change: 0.00214
Iteration: 104, Log-Lik: -582400.429, Max-Change: 0.00146
Iteration: 105, Log-Lik: -582400.429, Max-Change: 0.00160
Iteration: 106, Log-Lik: -582400.429, Max-Change: 0.00212
Iteration: 107, Log-Lik: -582400.429, Max-Change: 0.00079
Iteration: 108, Log-Lik: -582400.429, Max-Change: 0.00162
Iteration: 109, Log-Lik: -582400.429, Max-Change: 0.01694
Iteration: 110, Log-Lik: -582400.429, Max-Change: 0.00077
Iteration: 111, Log-Lik: -582400.429, Max-Change: 0.00148
Iteration: 112, Log-Lik: -582400.428, Max-Change: 0.00078
Iteration: 113, Log-Lik: -582400.428, Max-Change: 0.00148
Iteration: 114, Log-Lik: -582400.428, Max-Change: 0.00140
Iteration: 115, Log-Lik: -582400.428, Max-Change: 0.00188
Iteration: 116, Log-Lik: -582400.428, Max-Change: 0.00152
Iteration: 117, Log-Lik: -582400.428, Max-Change: 0.00159
Iteration: 118, Log-Lik: -582400.428, Max-Change: 0.00153
Iteration: 119, Log-Lik: -582400.428, Max-Change: 0.00180
Iteration: 120, Log-Lik: -582400.428, Max-Change: 0.00183
Iteration: 121, Log-Lik: -582400.428, Max-Change: 0.00148
Iteration: 122, Log-Lik: -582400.428, Max-Change: 0.00144
Iteration: 123, Log-Lik: -582400.428, Max-Change: 0.00147
Iteration: 124, Log-Lik: -582400.428, Max-Change: 0.00157
Iteration: 125, Log-Lik: -582400.428, Max-Change: 0.00144
Iteration: 126, Log-Lik: -582400.428, Max-Change: 0.00143
Iteration: 127, Log-Lik: -582400.428, Max-Change: 0.00154
Iteration: 128, Log-Lik: -582400.428, Max-Change: 0.00145
Iteration: 129, Log-Lik: -582400.428, Max-Change: 0.00146
Iteration: 130, Log-Lik: -582400.428, Max-Change: 0.00213
Iteration: 131, Log-Lik: -582400.428, Max-Change: 0.00081
Iteration: 132, Log-Lik: -582400.428, Max-Change: 0.00144
Iteration: 133, Log-Lik: -582400.427, Max-Change: 0.00119
Iteration: 134, Log-Lik: -582400.427, Max-Change: 0.00147
Iteration: 135, Log-Lik: -582400.427, Max-Change: 0.00146
Iteration: 136, Log-Lik: -582400.427, Max-Change: 0.00141
Iteration: 137, Log-Lik: -582400.427, Max-Change: 0.00152
Iteration: 138, Log-Lik: -582400.427, Max-Change: 0.00154
Iteration: 139, Log-Lik: -582400.427, Max-Change: 0.00109
Iteration: 140, Log-Lik: -582400.427, Max-Change: 0.00117
Iteration: 141, Log-Lik: -582400.427, Max-Change: 0.00120
Iteration: 142, Log-Lik: -582400.427, Max-Change: 0.00082
Iteration: 143, Log-Lik: -582400.427, Max-Change: 0.00139
Iteration: 144, Log-Lik: -582400.427, Max-Change: 0.00139
Iteration: 145, Log-Lik: -582400.427, Max-Change: 0.00141
Iteration: 146, Log-Lik: -582400.427, Max-Change: 0.00153
Iteration: 147, Log-Lik: -582400.427, Max-Change: 0.00154
Iteration: 148, Log-Lik: -582400.427, Max-Change: 0.00105
Iteration: 149, Log-Lik: -582400.427, Max-Change: 0.00113
Iteration: 150, Log-Lik: -582400.427, Max-Change: 0.00115
Iteration: 151, Log-Lik: -582400.427, Max-Change: 0.00160
Iteration: 152, Log-Lik: -582400.427, Max-Change: 0.00129
Iteration: 153, Log-Lik: -582400.427, Max-Change: 0.00131
Iteration: 154, Log-Lik: -582400.427, Max-Change: 0.00149
Iteration: 155, Log-Lik: -582400.427, Max-Change: 0.00159
Iteration: 156, Log-Lik: -582400.427, Max-Change: 0.00160
Iteration: 157, Log-Lik: -582400.426, Max-Change: 0.00127
Iteration: 158, Log-Lik: -582400.426, Max-Change: 0.00123
Iteration: 159, Log-Lik: -582400.426, Max-Change: 0.00128
Iteration: 160, Log-Lik: -582400.426, Max-Change: 0.00163
Iteration: 161, Log-Lik: -582400.426, Max-Change: 0.00116
Iteration: 162, Log-Lik: -582400.426, Max-Change: 0.00118
Iteration: 163, Log-Lik: -582400.426, Max-Change: 0.00126
Iteration: 164, Log-Lik: -582400.426, Max-Change: 0.00147
Iteration: 165, Log-Lik: -582400.426, Max-Change: 0.00149
Iteration: 166, Log-Lik: -582400.426, Max-Change: 0.00107
Iteration: 167, Log-Lik: -582400.426, Max-Change: 0.00108
Iteration: 168, Log-Lik: -582400.426, Max-Change: 0.00111
Iteration: 169, Log-Lik: -582400.426, Max-Change: 0.00071
Iteration: 170, Log-Lik: -582400.426, Max-Change: 0.00126
Iteration: 171, Log-Lik: -582400.426, Max-Change: 0.00123
Iteration: 172, Log-Lik: -582400.426, Max-Change: 0.00103
Iteration: 173, Log-Lik: -582400.426, Max-Change: 0.00132
Iteration: 174, Log-Lik: -582400.426, Max-Change: 0.00132
Iteration: 175, Log-Lik: -582400.426, Max-Change: 0.00158
Iteration: 176, Log-Lik: -582400.426, Max-Change: 0.00147
Iteration: 177, Log-Lik: -582400.426, Max-Change: 0.00150
Iteration: 178, Log-Lik: -582400.426, Max-Change: 0.00127
Iteration: 179, Log-Lik: -582400.426, Max-Change: 0.00124
Iteration: 180, Log-Lik: -582400.426, Max-Change: 0.00127
Iteration: 181, Log-Lik: -582400.426, Max-Change: 0.00002

Step 7: Fit with anchor items, conservative threshold

Iteration: 1, Log-Lik: -590087.404, Max-Change: 1.51151
Iteration: 2, Log-Lik: -583167.733, Max-Change: 0.43000
Iteration: 3, Log-Lik: -582871.192, Max-Change: 0.24100
Iteration: 4, Log-Lik: -582784.444, Max-Change: 0.14321
Iteration: 5, Log-Lik: -582736.358, Max-Change: 0.12584
Iteration: 6, Log-Lik: -582704.200, Max-Change: 0.12073
Iteration: 7, Log-Lik: -582681.659, Max-Change: 0.10526
Iteration: 8, Log-Lik: -582665.170, Max-Change: 0.08973
Iteration: 9, Log-Lik: -582653.172, Max-Change: 0.06757
Iteration: 10, Log-Lik: -582644.146, Max-Change: 0.05147
Iteration: 11, Log-Lik: -582637.267, Max-Change: 0.04381
Iteration: 12, Log-Lik: -582631.894, Max-Change: 0.03616
Iteration: 13, Log-Lik: -582627.682, Max-Change: 0.03231
Iteration: 14, Log-Lik: -582624.240, Max-Change: 0.02931
Iteration: 15, Log-Lik: -582621.388, Max-Change: 0.02666
Iteration: 16, Log-Lik: -582610.253, Max-Change: 0.03881
Iteration: 17, Log-Lik: -582609.216, Max-Change: 0.02105
Iteration: 18, Log-Lik: -582608.408, Max-Change: 0.01749
Iteration: 19, Log-Lik: -582605.553, Max-Change: 0.01224
Iteration: 20, Log-Lik: -582605.082, Max-Change: 0.01143
Iteration: 21, Log-Lik: -582604.684, Max-Change: 0.01045
Iteration: 22, Log-Lik: -582602.803, Max-Change: 0.00747
Iteration: 23, Log-Lik: -582602.606, Max-Change: 0.00517
Iteration: 24, Log-Lik: -582602.434, Max-Change: 0.00333
Iteration: 25, Log-Lik: -582601.843, Max-Change: 0.00316
Iteration: 26, Log-Lik: -582601.737, Max-Change: 0.00213
Iteration: 27, Log-Lik: -582601.641, Max-Change: 0.00147
Iteration: 28, Log-Lik: -582601.179, Max-Change: 0.00309
Iteration: 29, Log-Lik: -582601.130, Max-Change: 0.00096
Iteration: 30, Log-Lik: -582601.087, Max-Change: 0.00069
Iteration: 31, Log-Lik: -582600.883, Max-Change: 0.00208
Iteration: 32, Log-Lik: -582600.861, Max-Change: 0.00094
Iteration: 33, Log-Lik: -582600.841, Max-Change: 0.00047
Iteration: 34, Log-Lik: -582600.795, Max-Change: 0.00067
Iteration: 35, Log-Lik: -582600.781, Max-Change: 0.00051
Iteration: 36, Log-Lik: -582600.768, Max-Change: 0.00043
Iteration: 37, Log-Lik: -582600.707, Max-Change: 0.00110
Iteration: 38, Log-Lik: -582600.701, Max-Change: 0.00032
Iteration: 39, Log-Lik: -582600.695, Max-Change: 0.00030
Iteration: 40, Log-Lik: -582600.668, Max-Change: 0.00076
Iteration: 41, Log-Lik: -582600.665, Max-Change: 0.00023
Iteration: 42, Log-Lik: -582600.662, Max-Change: 0.00026
Iteration: 43, Log-Lik: -582600.650, Max-Change: 0.00049
Iteration: 44, Log-Lik: -582600.648, Max-Change: 0.00014
Iteration: 45, Log-Lik: -582600.647, Max-Change: 0.00011
Iteration: 46, Log-Lik: -582600.641, Max-Change: 0.00034
Iteration: 47, Log-Lik: -582600.641, Max-Change: 0.00010

Step 8: Get scores

Size of the bias in distractors according to DIF.

germanbias$effect_size_test
$liberal

$conservative
germanbias$effect_size_items
$liberal

$conservative
germanbias$fits$anchor_conservative %>% plot(type = "trace")

e2og$distadj = case_when(
  e2og$biasc == 1 ~ e2og$mirtdist - germanbias$effect_size_test$conservative$Value[4],
  TRUE ~ e2og$mirtdist
)
print("difference in distractors adjusted:")
[1] "difference in distractors adjusted:"
cohen.d(data=e2og, distadj ~ biasc)
Call: cohen.d(x = distadj ~ biasc, data = e2og)
Cohen d statistic of difference between two means
        lower effect upper
distadj  0.02    0.1  0.19

Multivariate (Mahalanobis) distance between groups
[1] 0.1
r equivalent of difference between two means
distadj 
   0.02 
print("difference in distractors unadjusted:")
[1] "difference in distractors unadjusted:"
cohen.d(data=e2og, mirtdist ~ biasc)
Call: cohen.d(x = mirtdist ~ biasc, data = e2og)
Cohen d statistic of difference between two means
         lower effect upper
mirtdist -0.02   0.07  0.16

Multivariate (Mahalanobis) distance between groups
[1] 0.072
r equivalent of difference between two means
mirtdist 
    0.01 

Bias testing in answers for German-speaking countries vs Angloshere.

germanbias2 = DIF_test(
  items = e2og[, 138:297],
  model = 1,
  group = e2og$biasc,
  itemtype = '2PL'
)
There are 8 steps
Step 1: Initial joint fit

Iteration: 1, Log-Lik: -993626.951, Max-Change: 3.29044
Iteration: 2, Log-Lik: -984661.671, Max-Change: 2.18278
Iteration: 3, Log-Lik: -982768.727, Max-Change: 0.93002
Iteration: 4, Log-Lik: -982359.938, Max-Change: 0.41899
Iteration: 5, Log-Lik: -982252.705, Max-Change: 0.13152
Iteration: 6, Log-Lik: -982225.114, Max-Change: 0.02620
Iteration: 7, Log-Lik: -982212.734, Max-Change: 0.01012
Iteration: 8, Log-Lik: -982209.342, Max-Change: 0.00586
Iteration: 9, Log-Lik: -982208.050, Max-Change: 0.00374
Iteration: 10, Log-Lik: -982207.278, Max-Change: 0.00336
Iteration: 11, Log-Lik: -982206.936, Max-Change: 0.00136
Iteration: 12, Log-Lik: -982206.753, Max-Change: 0.00182
Iteration: 13, Log-Lik: -982206.527, Max-Change: 0.00197
Iteration: 14, Log-Lik: -982206.364, Max-Change: 0.00137
Iteration: 15, Log-Lik: -982206.289, Max-Change: 0.00109
Iteration: 16, Log-Lik: -982206.212, Max-Change: 0.00117
Iteration: 17, Log-Lik: -982206.159, Max-Change: 0.00132
Iteration: 18, Log-Lik: -982206.109, Max-Change: 0.00118
Iteration: 19, Log-Lik: -982206.035, Max-Change: 0.00041
Iteration: 20, Log-Lik: -982206.016, Max-Change: 0.00035
Iteration: 21, Log-Lik: -982206.006, Max-Change: 0.00028
Iteration: 22, Log-Lik: -982205.974, Max-Change: 0.00022
Iteration: 23, Log-Lik: -982205.967, Max-Change: 0.00020
Iteration: 24, Log-Lik: -982205.961, Max-Change: 0.00020
Iteration: 25, Log-Lik: -982205.931, Max-Change: 0.00020
Iteration: 26, Log-Lik: -982205.927, Max-Change: 0.00102
Iteration: 27, Log-Lik: -982205.909, Max-Change: 0.00102
Iteration: 28, Log-Lik: -982205.869, Max-Change: 0.00023
Iteration: 29, Log-Lik: -982205.865, Max-Change: 0.00019
Iteration: 30, Log-Lik: -982205.863, Max-Change: 0.00095
Iteration: 31, Log-Lik: -982205.858, Max-Change: 0.00091
Iteration: 32, Log-Lik: -982205.857, Max-Change: 0.00021
Iteration: 33, Log-Lik: -982205.854, Max-Change: 0.00018
Iteration: 34, Log-Lik: -982205.853, Max-Change: 0.00087
Iteration: 35, Log-Lik: -982205.850, Max-Change: 0.00085
Iteration: 36, Log-Lik: -982205.849, Max-Change: 0.00017
Iteration: 37, Log-Lik: -982205.848, Max-Change: 0.00017
Iteration: 38, Log-Lik: -982205.847, Max-Change: 0.00082
Iteration: 39, Log-Lik: -982205.845, Max-Change: 0.00080
Iteration: 40, Log-Lik: -982205.844, Max-Change: 0.00016
Iteration: 41, Log-Lik: -982205.843, Max-Change: 0.00078
Iteration: 42, Log-Lik: -982205.842, Max-Change: 0.00015
Iteration: 43, Log-Lik: -982205.842, Max-Change: 0.00015
Iteration: 44, Log-Lik: -982205.841, Max-Change: 0.00076
Iteration: 45, Log-Lik: -982205.840, Max-Change: 0.00015
Iteration: 46, Log-Lik: -982205.840, Max-Change: 0.00074
Iteration: 47, Log-Lik: -982205.839, Max-Change: 0.00015
Iteration: 48, Log-Lik: -982205.838, Max-Change: 0.00072
Iteration: 49, Log-Lik: -982205.838, Max-Change: 0.00016
Iteration: 50, Log-Lik: -982205.836, Max-Change: 0.00014
Iteration: 51, Log-Lik: -982205.836, Max-Change: 0.00069
Iteration: 52, Log-Lik: -982205.835, Max-Change: 0.00013
Iteration: 53, Log-Lik: -982205.835, Max-Change: 0.00067
Iteration: 54, Log-Lik: -982205.834, Max-Change: 0.00013
Iteration: 55, Log-Lik: -982205.834, Max-Change: 0.00066
Iteration: 56, Log-Lik: -982205.834, Max-Change: 0.00013
Iteration: 57, Log-Lik: -982205.833, Max-Change: 0.00064
Iteration: 58, Log-Lik: -982205.833, Max-Change: 0.00014
Iteration: 59, Log-Lik: -982205.832, Max-Change: 0.00012
Iteration: 60, Log-Lik: -982205.832, Max-Change: 0.00061
Iteration: 61, Log-Lik: -982205.831, Max-Change: 0.00012
Iteration: 62, Log-Lik: -982205.831, Max-Change: 0.00059
Iteration: 63, Log-Lik: -982205.830, Max-Change: 0.00012
Iteration: 64, Log-Lik: -982205.830, Max-Change: 0.00058
Iteration: 65, Log-Lik: -982205.830, Max-Change: 0.00011
Iteration: 66, Log-Lik: -982205.830, Max-Change: 0.00057
Iteration: 67, Log-Lik: -982205.830, Max-Change: 0.00012
Iteration: 68, Log-Lik: -982205.829, Max-Change: 0.00011
Iteration: 69, Log-Lik: -982205.829, Max-Change: 0.00054
Iteration: 70, Log-Lik: -982205.829, Max-Change: 0.00011
Iteration: 71, Log-Lik: -982205.828, Max-Change: 0.00053
Iteration: 72, Log-Lik: -982205.828, Max-Change: 0.00010
Iteration: 73, Log-Lik: -982205.828, Max-Change: 0.00051
Iteration: 74, Log-Lik: -982205.828, Max-Change: 0.00010
Iteration: 75, Log-Lik: -982205.828, Max-Change: 0.00050
Iteration: 76, Log-Lik: -982205.827, Max-Change: 0.00010
Iteration: 77, Log-Lik: -982205.827, Max-Change: 0.00048
Iteration: 78, Log-Lik: -982205.827, Max-Change: 0.00009

Step 2: Initial MI fit

Iteration: 1, Log-Lik: -993578.707, Max-Change: 0.89345
Iteration: 2, Log-Lik: -982862.975, Max-Change: 0.18985
Iteration: 3, Log-Lik: -982251.118, Max-Change: 0.10382
Iteration: 4, Log-Lik: -982161.027, Max-Change: 0.06393
Iteration: 5, Log-Lik: -982139.171, Max-Change: 0.03838
Iteration: 6, Log-Lik: -982132.307, Max-Change: 0.02880
Iteration: 7, Log-Lik: -982129.804, Max-Change: 0.01607
Iteration: 8, Log-Lik: -982128.761, Max-Change: 0.01818
Iteration: 9, Log-Lik: -982128.234, Max-Change: 0.01168
Iteration: 10, Log-Lik: -982127.730, Max-Change: 0.00227
Iteration: 11, Log-Lik: -982127.549, Max-Change: 0.00123
Iteration: 12, Log-Lik: -982127.401, Max-Change: 0.00113
Iteration: 13, Log-Lik: -982126.824, Max-Change: 0.00461
Iteration: 14, Log-Lik: -982126.772, Max-Change: 0.00098
Iteration: 15, Log-Lik: -982126.735, Max-Change: 0.00044
Iteration: 16, Log-Lik: -982126.573, Max-Change: 0.00204
Iteration: 17, Log-Lik: -982126.557, Max-Change: 0.00040
Iteration: 18, Log-Lik: -982126.544, Max-Change: 0.00037
Iteration: 19, Log-Lik: -982126.484, Max-Change: 0.00143
Iteration: 20, Log-Lik: -982126.478, Max-Change: 0.00022
Iteration: 21, Log-Lik: -982126.473, Max-Change: 0.00020
Iteration: 22, Log-Lik: -982126.450, Max-Change: 0.00080
Iteration: 23, Log-Lik: -982126.447, Max-Change: 0.00017
Iteration: 24, Log-Lik: -982126.446, Max-Change: 0.00013
Iteration: 25, Log-Lik: -982126.437, Max-Change: 0.00049
Iteration: 26, Log-Lik: -982126.436, Max-Change: 0.00011
Iteration: 27, Log-Lik: -982126.436, Max-Change: 0.00008

Step 3: Leave one out MI testing

  |=                                                 | 1 % ~14m 51s      
  |==                                                | 2 % ~13m 53s      
  |==                                                | 4 % ~14m 11s      
  |===                                               | 5 % ~13m 54s      
  |====                                              | 6 % ~13m 27s      
  |====                                              | 8 % ~14m 12s      
  |=====                                             | 9 % ~14m 37s      
  |=====                                             | 10% ~14m 32s      
  |======                                            | 11% ~14m 23s      
  |=======                                           | 12% ~14m 07s      
  |=======                                           | 14% ~13m 51s      
  |========                                          | 15% ~13m 52s      
  |=========                                         | 16% ~17m 41s      
  |=========                                         | 18% ~17m 27s      
  |==========                                        | 19% ~16m 54s      
  |==========                                        | 20% ~16m 58s      
  |===========                                       | 21% ~16m 29s      
  |============                                      | 22% ~16m 48s      
  |============                                      | 24% ~16m 13s      
  |=============                                     | 25% ~15m 45s      
  |==============                                    | 26% ~15m 22s      
  |==============                                    | 28% ~15m 03s      
  |===============                                   | 29% ~14m 52s      
  |===============                                   | 30% ~14m 36s      
  |================                                  | 31% ~14m 16s      
  |=================                                 | 32% ~14m 10s      
  |=================                                 | 34% ~13m 47s      
  |==================                                | 35% ~13m 39s      
  |===================                               | 36% ~13m 17s      
  |===================                               | 38% ~12m 58s      
  |====================                              | 39% ~12m 37s      
  |====================                              | 40% ~12m 18s      
  |=====================                             | 41% ~14m 59s      
  |======================                            | 42% ~14m 42s      
  |======================                            | 44% ~14m 23s      
  |=======================                           | 45% ~13m 57s      
  |========================                          | 46% ~13m 31s      
  |========================                          | 48% ~13m 05s      
  |=========================                         | 49% ~12m 39s      
  |=========================                         | 50% ~12m 27s      
  |==========================                        | 51% ~12m 08s      
  |===========================                       | 52% ~11m 43s      
  |===========================                       | 54% ~11m 21s      
  |============================                      | 55% ~10m 60s      
  |=============================                     | 56% ~10m 35s      
  |=============================                     | 58% ~10m 14s      
  |==============================                    | 59% ~09m 51s      
  |==============================                    | 60% ~09m 30s      
  |===============================                   | 61% ~09m 12s      
  |================================                  | 62% ~08m 52s      
  |================================                  | 64% ~08m 31s      
  |=================================                 | 65% ~08m 12s      
  |==================================                | 66% ~07m 57s      
  |==================================                | 68% ~07m 37s      
  |===================================               | 69% ~07m 17s      
  |===================================               | 70% ~07m 09s      
  |====================================              | 71% ~06m 48s      
  |=====================================             | 72% ~06m 32s      
  |=====================================             | 74% ~06m 12s      
  |======================================            | 75% ~05m 52s      
  |=======================================           | 76% ~05m 32s      
  |=======================================           | 78% ~05m 13s      
  |========================================          | 79% ~05m 27s      
  |========================================          | 80% ~05m 17s      
  |=========================================         | 81% ~04m 56s      
  |==========================================        | 82% ~04m 35s      
  |==========================================        | 84% ~04m 14s      
  |===========================================       | 85% ~03m 53s      
  |============================================      | 86% ~03m 32s      
  |============================================      | 88% ~03m 12s      
  |=============================================     | 89% ~02m 52s      
  |=============================================     | 90% ~02m 32s      
  |==============================================    | 91% ~02m 12s      
  |===============================================   | 92% ~01m 53s      
  |===============================================   | 94% ~01m 34s      
  |================================================  | 95% ~01m 15s      
  |================================================= | 96% ~56s          
  |================================================= | 98% ~37s          
  |==================================================| 99% ~18s          
  |==================================================| 100% elapsed=24m 27s

Step 4: Fit without DIF items, liberal threshold

Iteration: 1, Log-Lik: -1061242.554, Max-Change: 2.74049
Iteration: 2, Log-Lik: -1060314.134, Max-Change: 2.45603
Iteration: 3, Log-Lik: -1060004.440, Max-Change: 1.00183
Iteration: 4, Log-Lik: -1059897.763, Max-Change: 0.48714
Iteration: 5, Log-Lik: -1059847.818, Max-Change: 0.13458
Iteration: 6, Log-Lik: -1059837.651, Max-Change: 0.02496
Iteration: 7, Log-Lik: -1059834.437, Max-Change: 0.01120
Iteration: 8, Log-Lik: -1059833.789, Max-Change: 0.00620
Iteration: 9, Log-Lik: -1059833.583, Max-Change: 0.00531
Iteration: 10, Log-Lik: -1059833.448, Max-Change: 0.00401
Iteration: 11, Log-Lik: -1059833.371, Max-Change: 0.00256
Iteration: 12, Log-Lik: -1059833.337, Max-Change: 0.00062
Iteration: 13, Log-Lik: -1059833.334, Max-Change: 0.00051
Iteration: 14, Log-Lik: -1059833.329, Max-Change: 0.00192
Iteration: 15, Log-Lik: -1059833.319, Max-Change: 0.00037
Iteration: 16, Log-Lik: -1059833.318, Max-Change: 0.00187
Iteration: 17, Log-Lik: -1059833.314, Max-Change: 0.00050
Iteration: 18, Log-Lik: -1059833.309, Max-Change: 0.00172
Iteration: 19, Log-Lik: -1059833.304, Max-Change: 0.00046
Iteration: 20, Log-Lik: -1059833.299, Max-Change: 0.00163
Iteration: 21, Log-Lik: -1059833.295, Max-Change: 0.00036
Iteration: 22, Log-Lik: -1059833.294, Max-Change: 0.00031
Iteration: 23, Log-Lik: -1059833.291, Max-Change: 0.00154
Iteration: 24, Log-Lik: -1059833.286, Max-Change: 0.00030
Iteration: 25, Log-Lik: -1059833.286, Max-Change: 0.00150
Iteration: 26, Log-Lik: -1059833.283, Max-Change: 0.00041
Iteration: 27, Log-Lik: -1059833.279, Max-Change: 0.00144
Iteration: 28, Log-Lik: -1059833.276, Max-Change: 0.00036
Iteration: 29, Log-Lik: -1059833.273, Max-Change: 0.00141
Iteration: 30, Log-Lik: -1059833.269, Max-Change: 0.00028
Iteration: 31, Log-Lik: -1059833.269, Max-Change: 0.00027
Iteration: 32, Log-Lik: -1059833.267, Max-Change: 0.00136
Iteration: 33, Log-Lik: -1059833.263, Max-Change: 0.00134
Iteration: 34, Log-Lik: -1059833.261, Max-Change: 0.00049
Iteration: 35, Log-Lik: -1059833.258, Max-Change: 0.00131
Iteration: 36, Log-Lik: -1059833.255, Max-Change: 0.00033
Iteration: 37, Log-Lik: -1059833.255, Max-Change: 0.00026
Iteration: 38, Log-Lik: -1059833.253, Max-Change: 0.00128
Iteration: 39, Log-Lik: -1059833.250, Max-Change: 0.00025
Iteration: 40, Log-Lik: -1059833.250, Max-Change: 0.00125
Iteration: 41, Log-Lik: -1059833.248, Max-Change: 0.00045
Iteration: 42, Log-Lik: -1059833.245, Max-Change: 0.00123
Iteration: 43, Log-Lik: -1059833.243, Max-Change: 0.00033
Iteration: 44, Log-Lik: -1059833.241, Max-Change: 0.00120
Iteration: 45, Log-Lik: -1059833.239, Max-Change: 0.00024
Iteration: 46, Log-Lik: -1059833.239, Max-Change: 0.00024
Iteration: 47, Log-Lik: -1059833.238, Max-Change: 0.00118
Iteration: 48, Log-Lik: -1059833.235, Max-Change: 0.00116
Iteration: 49, Log-Lik: -1059833.234, Max-Change: 0.00053
Iteration: 50, Log-Lik: -1059833.231, Max-Change: 0.00113
Iteration: 51, Log-Lik: -1059833.230, Max-Change: 0.00035
Iteration: 52, Log-Lik: -1059833.229, Max-Change: 0.00022
Iteration: 53, Log-Lik: -1059833.228, Max-Change: 0.00111
Iteration: 54, Log-Lik: -1059833.226, Max-Change: 0.00022
Iteration: 55, Log-Lik: -1059833.226, Max-Change: 0.00109
Iteration: 56, Log-Lik: -1059833.225, Max-Change: 0.00046
Iteration: 57, Log-Lik: -1059833.223, Max-Change: 0.00107
Iteration: 58, Log-Lik: -1059833.222, Max-Change: 0.00030
Iteration: 59, Log-Lik: -1059833.220, Max-Change: 0.00105
Iteration: 60, Log-Lik: -1059833.219, Max-Change: 0.00021
Iteration: 61, Log-Lik: -1059833.218, Max-Change: 0.00021
Iteration: 62, Log-Lik: -1059833.218, Max-Change: 0.00511
Iteration: 63, Log-Lik: -1059833.215, Max-Change: 0.00067
Iteration: 64, Log-Lik: -1059833.214, Max-Change: 0.00059
Iteration: 65, Log-Lik: -1059833.209, Max-Change: 0.00025
Iteration: 66, Log-Lik: -1059833.208, Max-Change: 0.00093
Iteration: 67, Log-Lik: -1059833.207, Max-Change: 0.00031
Iteration: 68, Log-Lik: -1059833.206, Max-Change: 0.00090
Iteration: 69, Log-Lik: -1059833.205, Max-Change: 0.00024
Iteration: 70, Log-Lik: -1059833.205, Max-Change: 0.00021
Iteration: 71, Log-Lik: -1059833.204, Max-Change: 0.00089
Iteration: 72, Log-Lik: -1059833.203, Max-Change: 0.00017
Iteration: 73, Log-Lik: -1059833.203, Max-Change: 0.00087
Iteration: 74, Log-Lik: -1059833.202, Max-Change: 0.00025
Iteration: 75, Log-Lik: -1059833.202, Max-Change: 0.00085
Iteration: 76, Log-Lik: -1059833.201, Max-Change: 0.00033
Iteration: 77, Log-Lik: -1059833.200, Max-Change: 0.00083
Iteration: 78, Log-Lik: -1059833.199, Max-Change: 0.00026
Iteration: 79, Log-Lik: -1059833.199, Max-Change: 0.00022
Iteration: 80, Log-Lik: -1059833.198, Max-Change: 0.00081
Iteration: 81, Log-Lik: -1059833.198, Max-Change: 0.00017
Iteration: 82, Log-Lik: -1059833.198, Max-Change: 0.00016
Iteration: 83, Log-Lik: -1059833.197, Max-Change: 0.00079
Iteration: 84, Log-Lik: -1059833.196, Max-Change: 0.00078
Iteration: 85, Log-Lik: -1059833.196, Max-Change: 0.00022
Iteration: 86, Log-Lik: -1059833.195, Max-Change: 0.00076
Iteration: 87, Log-Lik: -1059833.195, Max-Change: 0.00017
Iteration: 88, Log-Lik: -1059833.194, Max-Change: 0.00015
Iteration: 89, Log-Lik: -1059833.194, Max-Change: 0.00075
Iteration: 90, Log-Lik: -1059833.193, Max-Change: 0.00074
Iteration: 91, Log-Lik: -1059833.193, Max-Change: 0.00024
Iteration: 92, Log-Lik: -1059833.192, Max-Change: 0.00072
Iteration: 93, Log-Lik: -1059833.192, Max-Change: 0.00019
Iteration: 94, Log-Lik: -1059833.192, Max-Change: 0.00016
Iteration: 95, Log-Lik: -1059833.191, Max-Change: 0.00071
Iteration: 96, Log-Lik: -1059833.191, Max-Change: 0.00070
Iteration: 97, Log-Lik: -1059833.191, Max-Change: 0.00026
Iteration: 98, Log-Lik: -1059833.190, Max-Change: 0.00068
Iteration: 99, Log-Lik: -1059833.190, Max-Change: 0.00020
Iteration: 100, Log-Lik: -1059833.189, Max-Change: 0.00017
Iteration: 101, Log-Lik: -1059833.189, Max-Change: 0.00067
Iteration: 102, Log-Lik: -1059833.189, Max-Change: 0.00013
Iteration: 103, Log-Lik: -1059833.189, Max-Change: 0.00065
Iteration: 104, Log-Lik: -1059833.188, Max-Change: 0.00025
Iteration: 105, Log-Lik: -1059833.188, Max-Change: 0.00064
Iteration: 106, Log-Lik: -1059833.188, Max-Change: 0.00030
Iteration: 107, Log-Lik: -1059833.187, Max-Change: 0.00062
Iteration: 108, Log-Lik: -1059833.187, Max-Change: 0.00024
Iteration: 109, Log-Lik: -1059833.187, Max-Change: 0.00020
Iteration: 110, Log-Lik: -1059833.186, Max-Change: 0.00061
Iteration: 111, Log-Lik: -1059833.186, Max-Change: 0.00015
Iteration: 112, Log-Lik: -1059833.186, Max-Change: 0.00013
Iteration: 113, Log-Lik: -1059833.186, Max-Change: 0.00060
Iteration: 114, Log-Lik: -1059833.185, Max-Change: 0.00059
Iteration: 115, Log-Lik: -1059833.185, Max-Change: 0.00023
Iteration: 116, Log-Lik: -1059833.185, Max-Change: 0.00057
Iteration: 117, Log-Lik: -1059833.184, Max-Change: 0.00018
Iteration: 118, Log-Lik: -1059833.184, Max-Change: 0.00015
Iteration: 119, Log-Lik: -1059833.184, Max-Change: 0.00056
Iteration: 120, Log-Lik: -1059833.184, Max-Change: 0.00012
Iteration: 121, Log-Lik: -1059833.184, Max-Change: 0.00055
Iteration: 122, Log-Lik: -1059833.184, Max-Change: 0.00022
Iteration: 123, Log-Lik: -1059833.183, Max-Change: 0.00054
Iteration: 124, Log-Lik: -1059833.183, Max-Change: 0.00027
Iteration: 125, Log-Lik: -1059833.183, Max-Change: 0.00052
Iteration: 126, Log-Lik: -1059833.183, Max-Change: 0.00022
Iteration: 127, Log-Lik: -1059833.183, Max-Change: 0.00018
Iteration: 128, Log-Lik: -1059833.182, Max-Change: 0.00051
Iteration: 129, Log-Lik: -1059833.182, Max-Change: 0.00014
Iteration: 130, Log-Lik: -1059833.182, Max-Change: 0.00011
Iteration: 131, Log-Lik: -1059833.182, Max-Change: 0.00050
Iteration: 132, Log-Lik: -1059833.182, Max-Change: 0.00049
Iteration: 133, Log-Lik: -1059833.182, Max-Change: 0.00020
Iteration: 134, Log-Lik: -1059833.181, Max-Change: 0.00048
Iteration: 135, Log-Lik: -1059833.181, Max-Change: 0.00016
Iteration: 136, Log-Lik: -1059833.181, Max-Change: 0.00013
Iteration: 137, Log-Lik: -1059833.181, Max-Change: 0.00047
Iteration: 138, Log-Lik: -1059833.181, Max-Change: 0.00010
Iteration: 139, Log-Lik: -1059833.181, Max-Change: 0.00046
Iteration: 140, Log-Lik: -1059833.181, Max-Change: 0.00019
Iteration: 141, Log-Lik: -1059833.180, Max-Change: 0.00045
Iteration: 142, Log-Lik: -1059833.180, Max-Change: 0.00024
Iteration: 143, Log-Lik: -1059833.180, Max-Change: 0.00044
Iteration: 144, Log-Lik: -1059833.180, Max-Change: 0.00019
Iteration: 145, Log-Lik: -1059833.180, Max-Change: 0.00016
Iteration: 146, Log-Lik: -1059833.180, Max-Change: 0.00043
Iteration: 147, Log-Lik: -1059833.180, Max-Change: 0.00012
Iteration: 148, Log-Lik: -1059833.180, Max-Change: 0.00010
Iteration: 149, Log-Lik: -1059833.179, Max-Change: 0.00042
Iteration: 150, Log-Lik: -1059833.179, Max-Change: 0.00042
Iteration: 151, Log-Lik: -1059833.179, Max-Change: 0.00017
Iteration: 152, Log-Lik: -1059833.179, Max-Change: 0.00041
Iteration: 153, Log-Lik: -1059833.179, Max-Change: 0.00014
Iteration: 154, Log-Lik: -1059833.179, Max-Change: 0.00011
Iteration: 155, Log-Lik: -1059833.179, Max-Change: 0.00040
Iteration: 156, Log-Lik: -1059833.179, Max-Change: 0.00009

Step 5: Fit without DIF items, conservative threshold

Iteration: 1, Log-Lik: -1048029.408, Max-Change: 2.39354
Iteration: 2, Log-Lik: -1044736.768, Max-Change: 0.87498
Iteration: 3, Log-Lik: -1043823.137, Max-Change: 0.40188
Iteration: 4, Log-Lik: -1043527.814, Max-Change: 0.22133
Iteration: 5, Log-Lik: -1043413.953, Max-Change: 0.15013
Iteration: 6, Log-Lik: -1043368.084, Max-Change: 0.08838
Iteration: 7, Log-Lik: -1043336.572, Max-Change: 0.03485
Iteration: 8, Log-Lik: -1043326.994, Max-Change: 0.02043
Iteration: 9, Log-Lik: -1043323.205, Max-Change: 0.01282
Iteration: 10, Log-Lik: -1043320.487, Max-Change: 0.00541
Iteration: 11, Log-Lik: -1043319.973, Max-Change: 0.00302
Iteration: 12, Log-Lik: -1043319.704, Max-Change: 0.00271
Iteration: 13, Log-Lik: -1043319.349, Max-Change: 0.00384
Iteration: 14, Log-Lik: -1043319.245, Max-Change: 0.00225
Iteration: 15, Log-Lik: -1043319.194, Max-Change: 0.00164
Iteration: 16, Log-Lik: -1043319.116, Max-Change: 0.00130
Iteration: 17, Log-Lik: -1043319.100, Max-Change: 0.00037
Iteration: 18, Log-Lik: -1043319.092, Max-Change: 0.00031
Iteration: 19, Log-Lik: -1043319.067, Max-Change: 0.00030
Iteration: 20, Log-Lik: -1043319.065, Max-Change: 0.00027
Iteration: 21, Log-Lik: -1043319.063, Max-Change: 0.00024
Iteration: 22, Log-Lik: -1043319.054, Max-Change: 0.00086
Iteration: 23, Log-Lik: -1043319.051, Max-Change: 0.00072
Iteration: 24, Log-Lik: -1043319.049, Max-Change: 0.00012
Iteration: 25, Log-Lik: -1043319.049, Max-Change: 0.00012
Iteration: 26, Log-Lik: -1043319.049, Max-Change: 0.00057
Iteration: 27, Log-Lik: -1043319.048, Max-Change: 0.00048
Iteration: 28, Log-Lik: -1043319.048, Max-Change: 0.00028
Iteration: 29, Log-Lik: -1043319.047, Max-Change: 0.00037
Iteration: 30, Log-Lik: -1043319.047, Max-Change: 0.00014
Iteration: 31, Log-Lik: -1043319.047, Max-Change: 0.00009

Step 6: Fit with anchor items, liberal threshold

Iteration: 1, Log-Lik: -993578.707, Max-Change: 2.15050
Iteration: 2, Log-Lik: -977004.463, Max-Change: 0.21329
Iteration: 3, Log-Lik: -976405.244, Max-Change: 0.10486
Iteration: 4, Log-Lik: -976326.364, Max-Change: 0.14791
Iteration: 5, Log-Lik: -976304.656, Max-Change: 0.10527
Iteration: 6, Log-Lik: -976296.028, Max-Change: 0.07966
Iteration: 7, Log-Lik: -976291.901, Max-Change: 0.17403
Iteration: 8, Log-Lik: -976287.310, Max-Change: 0.06459
Iteration: 9, Log-Lik: -976285.311, Max-Change: 0.08557
Iteration: 10, Log-Lik: -976280.163, Max-Change: 0.05517
Iteration: 11, Log-Lik: -976278.532, Max-Change: 0.06516
Iteration: 12, Log-Lik: -976277.845, Max-Change: 0.09755
Iteration: 13, Log-Lik: -976275.618, Max-Change: 0.03828
Iteration: 14, Log-Lik: -976275.080, Max-Change: 0.07971
Iteration: 15, Log-Lik: -976274.592, Max-Change: 0.08007
Iteration: 16, Log-Lik: -976272.669, Max-Change: 0.01823
Iteration: 17, Log-Lik: -976272.359, Max-Change: 0.07159
Iteration: 18, Log-Lik: -976272.174, Max-Change: 0.07902
Iteration: 19, Log-Lik: -976271.415, Max-Change: 0.01515
Iteration: 20, Log-Lik: -976271.248, Max-Change: 0.05218
Iteration: 21, Log-Lik: -976271.179, Max-Change: 0.04525
Iteration: 22, Log-Lik: -976270.914, Max-Change: 0.01440
Iteration: 23, Log-Lik: -976270.855, Max-Change: 0.03893
Iteration: 24, Log-Lik: -976270.823, Max-Change: 0.03863
Iteration: 25, Log-Lik: -976270.676, Max-Change: 0.01260
Iteration: 26, Log-Lik: -976270.650, Max-Change: 0.03169
Iteration: 27, Log-Lik: -976270.634, Max-Change: 0.04124
Iteration: 28, Log-Lik: -976270.557, Max-Change: 0.00963
Iteration: 29, Log-Lik: -976270.549, Max-Change: 0.01920
Iteration: 30, Log-Lik: -976270.541, Max-Change: 0.02214
Iteration: 31, Log-Lik: -976270.500, Max-Change: 0.18187
Iteration: 32, Log-Lik: -976270.457, Max-Change: 0.01426
Iteration: 33, Log-Lik: -976270.453, Max-Change: 0.01627
Iteration: 34, Log-Lik: -976270.434, Max-Change: 0.01650
Iteration: 35, Log-Lik: -976270.430, Max-Change: 0.01344
Iteration: 36, Log-Lik: -976270.428, Max-Change: 0.01239
Iteration: 37, Log-Lik: -976270.416, Max-Change: 0.13984
Iteration: 38, Log-Lik: -976270.396, Max-Change: 0.00927
Iteration: 39, Log-Lik: -976270.395, Max-Change: 0.12686
Iteration: 40, Log-Lik: -976270.379, Max-Change: 0.02325
Iteration: 41, Log-Lik: -976270.377, Max-Change: 0.02812
Iteration: 42, Log-Lik: -976270.374, Max-Change: 0.11586
Iteration: 43, Log-Lik: -976270.360, Max-Change: 0.01192
Iteration: 44, Log-Lik: -976270.358, Max-Change: 0.00451
Iteration: 45, Log-Lik: -976270.358, Max-Change: 0.09019
Iteration: 46, Log-Lik: -976270.353, Max-Change: 0.01223
Iteration: 47, Log-Lik: -976270.349, Max-Change: 0.00695
Iteration: 48, Log-Lik: -976270.349, Max-Change: 0.00596
Iteration: 49, Log-Lik: -976270.346, Max-Change: 0.00317
Iteration: 50, Log-Lik: -976270.346, Max-Change: 0.00419
Iteration: 51, Log-Lik: -976270.345, Max-Change: 0.00388
Iteration: 52, Log-Lik: -976270.344, Max-Change: 0.09933
Iteration: 53, Log-Lik: -976270.337, Max-Change: 0.00394
Iteration: 54, Log-Lik: -976270.337, Max-Change: 0.00281
Iteration: 55, Log-Lik: -976270.336, Max-Change: 0.00297
Iteration: 56, Log-Lik: -976270.336, Max-Change: 0.00251
Iteration: 57, Log-Lik: -976270.336, Max-Change: 0.00245
Iteration: 58, Log-Lik: -976270.335, Max-Change: 0.07722
Iteration: 59, Log-Lik: -976270.331, Max-Change: 0.00261
Iteration: 60, Log-Lik: -976270.330, Max-Change: 0.01888
Iteration: 61, Log-Lik: -976270.329, Max-Change: 0.00184
Iteration: 62, Log-Lik: -976270.329, Max-Change: 0.02311
Iteration: 63, Log-Lik: -976270.328, Max-Change: 0.00296
Iteration: 64, Log-Lik: -976270.328, Max-Change: 0.00277
Iteration: 65, Log-Lik: -976270.328, Max-Change: 0.00181
Iteration: 66, Log-Lik: -976270.327, Max-Change: 0.00365
Iteration: 67, Log-Lik: -976270.327, Max-Change: 0.00178
Iteration: 68, Log-Lik: -976270.327, Max-Change: 0.07558
Iteration: 69, Log-Lik: -976270.323, Max-Change: 0.00166
Iteration: 70, Log-Lik: -976270.323, Max-Change: 0.00163
Iteration: 71, Log-Lik: -976270.323, Max-Change: 0.00283
Iteration: 72, Log-Lik: -976270.323, Max-Change: 0.00308
Iteration: 73, Log-Lik: -976270.322, Max-Change: 0.00143
Iteration: 74, Log-Lik: -976270.322, Max-Change: 0.00318
Iteration: 75, Log-Lik: -976270.322, Max-Change: 0.00259
Iteration: 76, Log-Lik: -976270.321, Max-Change: 0.05139
Iteration: 77, Log-Lik: -976270.319, Max-Change: 0.00239
Iteration: 78, Log-Lik: -976270.319, Max-Change: 0.00271
Iteration: 79, Log-Lik: -976270.318, Max-Change: 0.00202
Iteration: 80, Log-Lik: -976270.318, Max-Change: 0.00264
Iteration: 81, Log-Lik: -976270.318, Max-Change: 0.00251
Iteration: 82, Log-Lik: -976270.317, Max-Change: 0.09709
Iteration: 83, Log-Lik: -976270.313, Max-Change: 0.00225
Iteration: 84, Log-Lik: -976270.313, Max-Change: 0.00218
Iteration: 85, Log-Lik: -976270.312, Max-Change: 0.00261
Iteration: 86, Log-Lik: -976270.312, Max-Change: 0.00115
Iteration: 87, Log-Lik: -976270.312, Max-Change: 0.00239
Iteration: 88, Log-Lik: -976270.312, Max-Change: 0.00206
Iteration: 89, Log-Lik: -976270.312, Max-Change: 0.00208
Iteration: 90, Log-Lik: -976270.312, Max-Change: 0.00208
Iteration: 91, Log-Lik: -976270.311, Max-Change: 0.00499
Iteration: 92, Log-Lik: -976270.311, Max-Change: 0.00179
Iteration: 93, Log-Lik: -976270.311, Max-Change: 0.00112
Iteration: 94, Log-Lik: -976270.311, Max-Change: 0.00210
Iteration: 95, Log-Lik: -976270.311, Max-Change: 0.00214
Iteration: 96, Log-Lik: -976270.311, Max-Change: 0.00215
Iteration: 97, Log-Lik: -976270.311, Max-Change: 0.00215
Iteration: 98, Log-Lik: -976270.310, Max-Change: 0.00189
Iteration: 99, Log-Lik: -976270.310, Max-Change: 0.00187
Iteration: 100, Log-Lik: -976270.310, Max-Change: 0.00228
Iteration: 101, Log-Lik: -976270.310, Max-Change: 0.00226
Iteration: 102, Log-Lik: -976270.310, Max-Change: 0.00213
Iteration: 103, Log-Lik: -976270.309, Max-Change: 0.00386
Iteration: 104, Log-Lik: -976270.309, Max-Change: 0.00163
Iteration: 105, Log-Lik: -976270.309, Max-Change: 0.00232
Iteration: 106, Log-Lik: -976270.309, Max-Change: 0.00105
Iteration: 107, Log-Lik: -976270.309, Max-Change: 0.00202
Iteration: 108, Log-Lik: -976270.309, Max-Change: 0.00198
Iteration: 109, Log-Lik: -976270.308, Max-Change: 0.00244
Iteration: 110, Log-Lik: -976270.308, Max-Change: 0.13872
Iteration: 111, Log-Lik: -976270.304, Max-Change: 0.00214
Iteration: 112, Log-Lik: -976270.304, Max-Change: 0.00212
Iteration: 113, Log-Lik: -976270.304, Max-Change: 0.00184
Iteration: 114, Log-Lik: -976270.304, Max-Change: 0.00183
Iteration: 115, Log-Lik: -976270.303, Max-Change: 0.00173
Iteration: 116, Log-Lik: -976270.303, Max-Change: 0.00088
Iteration: 117, Log-Lik: -976270.303, Max-Change: 0.00168
Iteration: 118, Log-Lik: -976270.303, Max-Change: 0.00184
Iteration: 119, Log-Lik: -976270.303, Max-Change: 0.00180
Iteration: 120, Log-Lik: -976270.303, Max-Change: 0.00179
Iteration: 121, Log-Lik: -976270.303, Max-Change: 0.00145
Iteration: 122, Log-Lik: -976270.303, Max-Change: 0.00170
Iteration: 123, Log-Lik: -976270.303, Max-Change: 0.00166
Iteration: 124, Log-Lik: -976270.302, Max-Change: 0.00154
Iteration: 125, Log-Lik: -976270.302, Max-Change: 0.00149
Iteration: 126, Log-Lik: -976270.302, Max-Change: 0.00151
Iteration: 127, Log-Lik: -976270.302, Max-Change: 0.00346
Iteration: 128, Log-Lik: -976270.302, Max-Change: 0.00121
Iteration: 129, Log-Lik: -976270.302, Max-Change: 0.00178
Iteration: 130, Log-Lik: -976270.302, Max-Change: 0.00083
Iteration: 131, Log-Lik: -976270.302, Max-Change: 0.00166
Iteration: 132, Log-Lik: -976270.302, Max-Change: 0.00163
Iteration: 133, Log-Lik: -976270.301, Max-Change: 0.00184
Iteration: 134, Log-Lik: -976270.301, Max-Change: 0.00158
Iteration: 135, Log-Lik: -976270.301, Max-Change: 0.00161
Iteration: 136, Log-Lik: -976270.301, Max-Change: 0.00271
Iteration: 137, Log-Lik: -976270.301, Max-Change: 0.00087
Iteration: 138, Log-Lik: -976270.301, Max-Change: 0.00153
Iteration: 139, Log-Lik: -976270.301, Max-Change: 0.00160
Iteration: 140, Log-Lik: -976270.301, Max-Change: 0.00156
Iteration: 141, Log-Lik: -976270.301, Max-Change: 0.00164
Iteration: 142, Log-Lik: -976270.300, Max-Change: 0.12214
Iteration: 143, Log-Lik: -976270.297, Max-Change: 0.00101
Iteration: 144, Log-Lik: -976270.297, Max-Change: 0.00097
Iteration: 145, Log-Lik: -976270.297, Max-Change: 0.00114
Iteration: 146, Log-Lik: -976270.297, Max-Change: 0.00145
Iteration: 147, Log-Lik: -976270.297, Max-Change: 0.00142
Iteration: 148, Log-Lik: -976270.297, Max-Change: 0.00134
Iteration: 149, Log-Lik: -976270.297, Max-Change: 0.00069
Iteration: 150, Log-Lik: -976270.297, Max-Change: 0.00133
Iteration: 151, Log-Lik: -976270.297, Max-Change: 0.00160
Iteration: 152, Log-Lik: -976270.297, Max-Change: 0.00162
Iteration: 153, Log-Lik: -976270.297, Max-Change: 0.00159
Iteration: 154, Log-Lik: -976270.296, Max-Change: 0.00068
Iteration: 155, Log-Lik: -976270.296, Max-Change: 0.00135
Iteration: 156, Log-Lik: -976270.296, Max-Change: 0.00126
Iteration: 157, Log-Lik: -976270.296, Max-Change: 0.00115
Iteration: 158, Log-Lik: -976270.296, Max-Change: 0.00067
Iteration: 159, Log-Lik: -976270.296, Max-Change: 0.00129
Iteration: 160, Log-Lik: -976270.296, Max-Change: 0.00122
Iteration: 161, Log-Lik: -976270.296, Max-Change: 0.00133
Iteration: 162, Log-Lik: -976270.296, Max-Change: 0.00152
Iteration: 163, Log-Lik: -976270.296, Max-Change: 0.00066
Iteration: 164, Log-Lik: -976270.296, Max-Change: 0.00127
Iteration: 165, Log-Lik: -976270.296, Max-Change: 0.00123
Iteration: 166, Log-Lik: -976270.296, Max-Change: 0.00172
Iteration: 167, Log-Lik: -976270.296, Max-Change: 0.00065
Iteration: 168, Log-Lik: -976270.296, Max-Change: 0.00129
Iteration: 169, Log-Lik: -976270.296, Max-Change: 0.00184
Iteration: 170, Log-Lik: -976270.296, Max-Change: 0.00065
Iteration: 171, Log-Lik: -976270.295, Max-Change: 0.00125
Iteration: 172, Log-Lik: -976270.295, Max-Change: 0.00111
Iteration: 173, Log-Lik: -976270.295, Max-Change: 0.00110
Iteration: 174, Log-Lik: -976270.295, Max-Change: 0.00110
Iteration: 175, Log-Lik: -976270.295, Max-Change: 0.00120
Iteration: 176, Log-Lik: -976270.295, Max-Change: 0.00064
Iteration: 177, Log-Lik: -976270.295, Max-Change: 0.00124
Iteration: 178, Log-Lik: -976270.295, Max-Change: 0.00113
Iteration: 179, Log-Lik: -976270.295, Max-Change: 0.00111
Iteration: 180, Log-Lik: -976270.295, Max-Change: 0.00111
Iteration: 181, Log-Lik: -976270.295, Max-Change: 0.00134
Iteration: 182, Log-Lik: -976270.295, Max-Change: 0.00063
Iteration: 183, Log-Lik: -976270.295, Max-Change: 0.00124
Iteration: 184, Log-Lik: -976270.295, Max-Change: 0.00120
Iteration: 185, Log-Lik: -976270.295, Max-Change: 0.00118
Iteration: 186, Log-Lik: -976270.295, Max-Change: 0.00118
Iteration: 187, Log-Lik: -976270.295, Max-Change: 0.00146
Iteration: 188, Log-Lik: -976270.295, Max-Change: 0.00121
Iteration: 189, Log-Lik: -976270.295, Max-Change: 0.00119
Iteration: 190, Log-Lik: -976270.294, Max-Change: 0.00108
Iteration: 191, Log-Lik: -976270.294, Max-Change: 0.00105
Iteration: 192, Log-Lik: -976270.294, Max-Change: 0.00105
Iteration: 193, Log-Lik: -976270.294, Max-Change: 0.00062
Iteration: 194, Log-Lik: -976270.294, Max-Change: 0.00122
Iteration: 195, Log-Lik: -976270.294, Max-Change: 0.00118
Iteration: 196, Log-Lik: -976270.294, Max-Change: 0.00226
Iteration: 197, Log-Lik: -976270.294, Max-Change: 0.00101
Iteration: 198, Log-Lik: -976270.294, Max-Change: 0.00061
Iteration: 199, Log-Lik: -976270.294, Max-Change: 0.00061
Iteration: 200, Log-Lik: -976270.294, Max-Change: 0.00117
Iteration: 201, Log-Lik: -976270.294, Max-Change: 0.00110
Iteration: 202, Log-Lik: -976270.294, Max-Change: 0.00123
Iteration: 203, Log-Lik: -976270.294, Max-Change: 0.00087
Iteration: 204, Log-Lik: -976270.294, Max-Change: 0.00109
Iteration: 205, Log-Lik: -976270.294, Max-Change: 0.00162
Iteration: 206, Log-Lik: -976270.294, Max-Change: 0.00060
Iteration: 207, Log-Lik: -976270.294, Max-Change: 0.00121
Iteration: 208, Log-Lik: -976270.294, Max-Change: 0.00159
Iteration: 209, Log-Lik: -976270.294, Max-Change: 0.00154
Iteration: 210, Log-Lik: -976270.294, Max-Change: 0.00152
Iteration: 211, Log-Lik: -976270.293, Max-Change: 0.00119
Iteration: 212, Log-Lik: -976270.293, Max-Change: 0.00119
Iteration: 213, Log-Lik: -976270.293, Max-Change: 0.00124
Iteration: 214, Log-Lik: -976270.293, Max-Change: 0.00096
Iteration: 215, Log-Lik: -976270.293, Max-Change: 0.00099
Iteration: 216, Log-Lik: -976270.293, Max-Change: 0.00100
Iteration: 217, Log-Lik: -976270.293, Max-Change: 0.00195
Iteration: 218, Log-Lik: -976270.293, Max-Change: 0.00096
Iteration: 219, Log-Lik: -976270.293, Max-Change: 0.00098
Iteration: 220, Log-Lik: -976270.293, Max-Change: 0.00135
Iteration: 221, Log-Lik: -976270.293, Max-Change: 0.00098
Iteration: 222, Log-Lik: -976270.293, Max-Change: 0.00098
Iteration: 223, Log-Lik: -976270.293, Max-Change: 0.00701
Iteration: 224, Log-Lik: -976270.293, Max-Change: 0.00056
Iteration: 225, Log-Lik: -976270.293, Max-Change: 0.00108
Iteration: 226, Log-Lik: -976270.292, Max-Change: 0.00111
Iteration: 227, Log-Lik: -976270.292, Max-Change: 0.00109
Iteration: 228, Log-Lik: -976270.292, Max-Change: 0.00109
Iteration: 229, Log-Lik: -976270.292, Max-Change: 0.00002

Step 7: Fit with anchor items, conservative threshold

Iteration: 1, Log-Lik: -993578.707, Max-Change: 2.15508
Iteration: 2, Log-Lik: -977166.817, Max-Change: 0.25920
Iteration: 3, Log-Lik: -976562.965, Max-Change: 0.14472
Iteration: 4, Log-Lik: -976482.411, Max-Change: 0.15249
Iteration: 5, Log-Lik: -976460.042, Max-Change: 0.08350
Iteration: 6, Log-Lik: -976451.559, Max-Change: 0.13053
Iteration: 7, Log-Lik: -976445.844, Max-Change: 0.09642
Iteration: 8, Log-Lik: -976442.655, Max-Change: 0.10188
Iteration: 9, Log-Lik: -976440.380, Max-Change: 0.07787
Iteration: 10, Log-Lik: -976436.965, Max-Change: 0.06698
Iteration: 11, Log-Lik: -976435.825, Max-Change: 0.10051
Iteration: 12, Log-Lik: -976435.006, Max-Change: 0.10390
Iteration: 13, Log-Lik: -976432.728, Max-Change: 0.03627
Iteration: 14, Log-Lik: -976431.758, Max-Change: 0.06471
Iteration: 15, Log-Lik: -976431.600, Max-Change: 0.09894
Iteration: 16, Log-Lik: -976431.122, Max-Change: 0.04208
Iteration: 17, Log-Lik: -976431.037, Max-Change: 0.03677
Iteration: 18, Log-Lik: -976430.976, Max-Change: 0.11610
Iteration: 19, Log-Lik: -976430.813, Max-Change: 0.05062
Iteration: 20, Log-Lik: -976430.764, Max-Change: 0.05068
Iteration: 21, Log-Lik: -976430.720, Max-Change: 0.04593
Iteration: 22, Log-Lik: -976430.561, Max-Change: 0.01100
Iteration: 23, Log-Lik: -976430.546, Max-Change: 0.02872
Iteration: 24, Log-Lik: -976430.537, Max-Change: 0.00574
Iteration: 25, Log-Lik: -976430.535, Max-Change: 0.00475
Iteration: 26, Log-Lik: -976430.528, Max-Change: 0.00745
Iteration: 27, Log-Lik: -976430.522, Max-Change: 0.00460
Iteration: 28, Log-Lik: -976430.512, Max-Change: 0.00591
Iteration: 29, Log-Lik: -976430.508, Max-Change: 0.00536
Iteration: 30, Log-Lik: -976430.504, Max-Change: 0.00489
Iteration: 31, Log-Lik: -976430.486, Max-Change: 0.00093
Iteration: 32, Log-Lik: -976430.484, Max-Change: 0.00036
Iteration: 33, Log-Lik: -976430.482, Max-Change: 0.00045
Iteration: 34, Log-Lik: -976430.475, Max-Change: 0.00056
Iteration: 35, Log-Lik: -976430.474, Max-Change: 0.00071
Iteration: 36, Log-Lik: -976430.474, Max-Change: 0.00063
Iteration: 37, Log-Lik: -976430.472, Max-Change: 0.00029
Iteration: 38, Log-Lik: -976430.471, Max-Change: 0.00009

Step 8: Get scores

Size of the bias in answers according to DIF.

germanbias2$effect_size_test
$liberal

$conservative
germanbias2$effect_size_items
$liberal

$conservative
germanbias2$fits$anchor_conservative %>% plot(type = "trace")

e2og$ansadj = case_when(
  e2og$biasc == 1 ~ e2og$mirtans - germanbias2$effect_size_test$conservative$Value[4],
  TRUE ~ e2og$mirtans
)
print("difference in answers adjusted:")
[1] "difference in answers adjusted:"
cohen.d(data=e2og, ansadj ~ biasc)
Call: cohen.d(x = ansadj ~ biasc, data = e2og)
Cohen d statistic of difference between two means
       lower effect upper
ansadj -0.96  -0.87 -0.78

Multivariate (Mahalanobis) distance between groups
[1] 0.87
r equivalent of difference between two means
ansadj 
 -0.16 
print("difference in answers unadjusted:")
[1] "difference in answers unadjusted:"
cohen.d(data=e2og, mirtans ~ biasc)
Call: cohen.d(x = mirtans ~ biasc, data = e2og)
Cohen d statistic of difference between two means
        lower effect upper
mirtans -0.82  -0.73 -0.64

Multivariate (Mahalanobis) distance between groups
[1] 0.73
r equivalent of difference between two means
mirtans 
  -0.14 

Size of the bias in score according to DIF.

e2og$adjscore = e2og$ansadj + e2og$distadj
print("difference in score adjusted:")
[1] "difference in score adjusted:"
cohen.d(data=e2og, adjscore ~ biasc)
Call: cohen.d(x = adjscore ~ biasc, data = e2og)
Cohen d statistic of difference between two means
         lower effect upper
adjscore -0.62  -0.54 -0.45

Multivariate (Mahalanobis) distance between groups
[1] 0.54
r equivalent of difference between two means
adjscore 
    -0.1 
print("difference in score unadjusted:")
[1] "difference in score unadjusted:"
cohen.d(data=e2og, gkdsum2 ~ biasc)
Call: cohen.d(x = gkdsum2 ~ biasc, data = e2og)
Cohen d statistic of difference between two means
        lower effect upper
gkdsum2 -0.55  -0.46 -0.37

Multivariate (Mahalanobis) distance between groups
[1] 0.46
r equivalent of difference between two means
gkdsum2 
  -0.09 

Plotting and saving distractor bias chart

sexbias2$fits$anchor_conservative %>% plot(type = "trace")
ggsave(filename="gktractorbias.jpg", device ="jpeg", path="plots", width=9, height=5, dpi=320)

Bias testing for men vs women for distractors.

###################
e2o$sex <- e2o$gender
e2o$sex[e2o$sex==3] <- NA
e2o$sex[e2o$sex==0] <- NA

e2o$distadj = case_when(
  e2o$sex == 2 ~ e2o$mirtdist - sexbias2$effect_size_test$conservative$Value[4],
  TRUE ~ e2o$mirtdist
)

sexbias2 = DIF_test(
  items = e2o[, 298:457],
  model = 1,
  group = e2o$sex,
  itemtype = '2PL'
)
There are 8 steps
Step 1: Initial joint fit

Iteration: 1, Log-Lik: -776806.513, Max-Change: 1.18593
Iteration: 2, Log-Lik: -770331.843, Max-Change: 0.46400
Iteration: 3, Log-Lik: -769212.799, Max-Change: 0.49419
Iteration: 4, Log-Lik: -768791.079, Max-Change: 0.12983
Iteration: 5, Log-Lik: -768544.564, Max-Change: 0.10751
Iteration: 6, Log-Lik: -768470.216, Max-Change: 0.08971
Iteration: 7, Log-Lik: -768431.807, Max-Change: 0.05999
Iteration: 8, Log-Lik: -768393.469, Max-Change: 0.03986
Iteration: 9, Log-Lik: -768364.962, Max-Change: 0.05580
Iteration: 10, Log-Lik: -768348.056, Max-Change: 0.02669
Iteration: 11, Log-Lik: -768330.750, Max-Change: 0.03015
Iteration: 12, Log-Lik: -768319.294, Max-Change: 0.02426
Iteration: 13, Log-Lik: -768310.538, Max-Change: 0.02233
Iteration: 14, Log-Lik: -768303.627, Max-Change: 0.01998
Iteration: 15, Log-Lik: -768298.472, Max-Change: 0.01021
Iteration: 16, Log-Lik: -768294.572, Max-Change: 0.01044
Iteration: 17, Log-Lik: -768291.299, Max-Change: 0.00999
Iteration: 18, Log-Lik: -768288.531, Max-Change: 0.00962
Iteration: 19, Log-Lik: -768277.129, Max-Change: 0.00291
Iteration: 20, Log-Lik: -768276.171, Max-Change: 0.00326
Iteration: 21, Log-Lik: -768275.387, Max-Change: 0.00318
Iteration: 22, Log-Lik: -768271.587, Max-Change: 0.00212
Iteration: 23, Log-Lik: -768271.210, Max-Change: 0.00209
Iteration: 24, Log-Lik: -768270.861, Max-Change: 0.00204
Iteration: 25, Log-Lik: -768269.164, Max-Change: 0.00159
Iteration: 26, Log-Lik: -768268.986, Max-Change: 0.00118
Iteration: 27, Log-Lik: -768268.834, Max-Change: 0.00158
Iteration: 28, Log-Lik: -768268.502, Max-Change: 0.00093
Iteration: 29, Log-Lik: -768268.377, Max-Change: 0.00109
Iteration: 30, Log-Lik: -768268.273, Max-Change: 0.00108
Iteration: 31, Log-Lik: -768267.817, Max-Change: 0.00100
Iteration: 32, Log-Lik: -768267.742, Max-Change: 0.00092
Iteration: 33, Log-Lik: -768267.683, Max-Change: 0.00085
Iteration: 34, Log-Lik: -768267.394, Max-Change: 0.00072
Iteration: 35, Log-Lik: -768267.364, Max-Change: 0.00071
Iteration: 36, Log-Lik: -768267.336, Max-Change: 0.00069
Iteration: 37, Log-Lik: -768267.198, Max-Change: 0.00036
Iteration: 38, Log-Lik: -768267.188, Max-Change: 0.00019
Iteration: 39, Log-Lik: -768267.179, Max-Change: 0.00020
Iteration: 40, Log-Lik: -768267.144, Max-Change: 0.00023
Iteration: 41, Log-Lik: -768267.138, Max-Change: 0.00022
Iteration: 42, Log-Lik: -768267.132, Max-Change: 0.00021
Iteration: 43, Log-Lik: -768267.101, Max-Change: 0.00021
Iteration: 44, Log-Lik: -768267.097, Max-Change: 0.00018
Iteration: 45, Log-Lik: -768267.093, Max-Change: 0.00018
Iteration: 46, Log-Lik: -768267.073, Max-Change: 0.00018
Iteration: 47, Log-Lik: -768267.070, Max-Change: 0.00018
Iteration: 48, Log-Lik: -768267.067, Max-Change: 0.00017
Iteration: 49, Log-Lik: -768267.054, Max-Change: 0.00017
Iteration: 50, Log-Lik: -768267.052, Max-Change: 0.00016
Iteration: 51, Log-Lik: -768267.050, Max-Change: 0.00016
Iteration: 52, Log-Lik: -768267.042, Max-Change: 0.00016
Iteration: 53, Log-Lik: -768267.040, Max-Change: 0.00015
Iteration: 54, Log-Lik: -768267.039, Max-Change: 0.00015
Iteration: 55, Log-Lik: -768267.033, Max-Change: 0.00015
Iteration: 56, Log-Lik: -768267.032, Max-Change: 0.00014
Iteration: 57, Log-Lik: -768267.031, Max-Change: 0.00071
Iteration: 58, Log-Lik: -768267.025, Max-Change: 0.00013
Iteration: 59, Log-Lik: -768267.025, Max-Change: 0.00066
Iteration: 60, Log-Lik: -768267.022, Max-Change: 0.00021
Iteration: 61, Log-Lik: -768267.021, Max-Change: 0.00013
Iteration: 62, Log-Lik: -768267.021, Max-Change: 0.00062
Iteration: 63, Log-Lik: -768267.019, Max-Change: 0.00027
Iteration: 64, Log-Lik: -768267.018, Max-Change: 0.00014
Iteration: 65, Log-Lik: -768267.018, Max-Change: 0.00059
Iteration: 66, Log-Lik: -768267.016, Max-Change: 0.00032
Iteration: 67, Log-Lik: -768267.016, Max-Change: 0.00016
Iteration: 68, Log-Lik: -768267.015, Max-Change: 0.00056
Iteration: 69, Log-Lik: -768267.014, Max-Change: 0.00034
Iteration: 70, Log-Lik: -768267.014, Max-Change: 0.00015
Iteration: 71, Log-Lik: -768267.013, Max-Change: 0.00053
Iteration: 72, Log-Lik: -768267.012, Max-Change: 0.00034
Iteration: 73, Log-Lik: -768267.012, Max-Change: 0.00015
Iteration: 74, Log-Lik: -768267.011, Max-Change: 0.00050
Iteration: 75, Log-Lik: -768267.011, Max-Change: 0.00032
Iteration: 76, Log-Lik: -768267.010, Max-Change: 0.00014
Iteration: 77, Log-Lik: -768267.010, Max-Change: 0.00047
Iteration: 78, Log-Lik: -768267.009, Max-Change: 0.00030
Iteration: 79, Log-Lik: -768267.009, Max-Change: 0.00013
Iteration: 80, Log-Lik: -768267.009, Max-Change: 0.00045
Iteration: 81, Log-Lik: -768267.008, Max-Change: 0.00028
Iteration: 82, Log-Lik: -768267.008, Max-Change: 0.00012
Iteration: 83, Log-Lik: -768267.008, Max-Change: 0.00043
Iteration: 84, Log-Lik: -768267.007, Max-Change: 0.00026
Iteration: 85, Log-Lik: -768267.007, Max-Change: 0.00011
Iteration: 86, Log-Lik: -768267.007, Max-Change: 0.00041
Iteration: 87, Log-Lik: -768267.006, Max-Change: 0.00024
Iteration: 88, Log-Lik: -768267.006, Max-Change: 0.00010
Iteration: 89, Log-Lik: -768267.006, Max-Change: 0.00041
Iteration: 90, Log-Lik: -768267.006, Max-Change: 0.00023
Iteration: 91, Log-Lik: -768267.006, Max-Change: 0.00010

Step 2: Initial MI fit

Iteration: 1, Log-Lik: -776815.195, Max-Change: 1.25512
Iteration: 2, Log-Lik: -768762.316, Max-Change: 0.40521
Iteration: 3, Log-Lik: -768429.836, Max-Change: 0.24264
Iteration: 4, Log-Lik: -768356.770, Max-Change: 0.13832
Iteration: 5, Log-Lik: -768314.750, Max-Change: 0.10103
Iteration: 6, Log-Lik: -768283.817, Max-Change: 0.10357
Iteration: 7, Log-Lik: -768258.010, Max-Change: 0.09177
Iteration: 8, Log-Lik: -768236.760, Max-Change: 0.06769
Iteration: 9, Log-Lik: -768219.462, Max-Change: 0.05307
Iteration: 10, Log-Lik: -768205.406, Max-Change: 0.05271
Iteration: 11, Log-Lik: -768193.702, Max-Change: 0.03132
Iteration: 12, Log-Lik: -768184.337, Max-Change: 0.02697
Iteration: 13, Log-Lik: -768176.620, Max-Change: 0.03642
Iteration: 14, Log-Lik: -768169.994, Max-Change: 0.02164
Iteration: 15, Log-Lik: -768164.617, Max-Change: 0.02834
Iteration: 16, Log-Lik: -768160.011, Max-Change: 0.02848
Iteration: 17, Log-Lik: -768156.113, Max-Change: 0.01635
Iteration: 18, Log-Lik: -768152.987, Max-Change: 0.01906
Iteration: 19, Log-Lik: -768144.163, Max-Change: 0.02920
Iteration: 20, Log-Lik: -768140.722, Max-Change: 0.01192
Iteration: 21, Log-Lik: -768139.861, Max-Change: 0.01931
Iteration: 22, Log-Lik: -768138.238, Max-Change: 0.00936
Iteration: 23, Log-Lik: -768137.696, Max-Change: 0.01107
Iteration: 24, Log-Lik: -768137.396, Max-Change: 0.00940
Iteration: 25, Log-Lik: -768136.608, Max-Change: 0.00908
Iteration: 26, Log-Lik: -768136.268, Max-Change: 0.00312
Iteration: 27, Log-Lik: -768136.180, Max-Change: 0.00182
Iteration: 28, Log-Lik: -768135.973, Max-Change: 0.00428
Iteration: 29, Log-Lik: -768135.893, Max-Change: 0.00199
Iteration: 30, Log-Lik: -768135.865, Max-Change: 0.00121
Iteration: 31, Log-Lik: -768135.787, Max-Change: 0.00214
Iteration: 32, Log-Lik: -768135.763, Max-Change: 0.00079
Iteration: 33, Log-Lik: -768135.750, Max-Change: 0.00052
Iteration: 34, Log-Lik: -768135.699, Max-Change: 0.00170
Iteration: 35, Log-Lik: -768135.684, Max-Change: 0.00054
Iteration: 36, Log-Lik: -768135.677, Max-Change: 0.00031
Iteration: 37, Log-Lik: -768135.646, Max-Change: 0.00106
Iteration: 38, Log-Lik: -768135.638, Max-Change: 0.00032
Iteration: 39, Log-Lik: -768135.634, Max-Change: 0.00022
Iteration: 40, Log-Lik: -768135.613, Max-Change: 0.00072
Iteration: 41, Log-Lik: -768135.608, Max-Change: 0.00021
Iteration: 42, Log-Lik: -768135.605, Max-Change: 0.00017
Iteration: 43, Log-Lik: -768135.590, Max-Change: 0.00053
Iteration: 44, Log-Lik: -768135.586, Max-Change: 0.00015
Iteration: 45, Log-Lik: -768135.584, Max-Change: 0.00013
Iteration: 46, Log-Lik: -768135.574, Max-Change: 0.00041
Iteration: 47, Log-Lik: -768135.571, Max-Change: 0.00011
Iteration: 48, Log-Lik: -768135.570, Max-Change: 0.00011
Iteration: 49, Log-Lik: -768135.562, Max-Change: 0.00033
Iteration: 50, Log-Lik: -768135.560, Max-Change: 0.00009

Step 3: Leave one out MI testing

  |=                                                 | 1 % ~22m 10s      
  |==                                                | 2 % ~20m 08s      
  |==                                                | 4 % ~19m 48s      
  |===                                               | 5 % ~19m 39s      
  |====                                              | 6 % ~19m 22s      
  |====                                              | 8 % ~17m 47s      
  |=====                                             | 9 % ~17m 21s      
  |=====                                             | 10% ~16m 41s      
  |======                                            | 11% ~16m 15s      
  |=======                                           | 12% ~15m 58s      
  |=======                                           | 14% ~16m 21s      
  |========                                          | 15% ~16m 23s      
  |=========                                         | 16% ~16m 22s      
  |=========                                         | 18% ~16m 18s      
  |==========                                        | 19% ~15m 57s      
  |==========                                        | 20% ~15m 32s      
  |===========                                       | 21% ~15m 21s      
  |============                                      | 22% ~15m 01s      
  |============                                      | 24% ~14m 44s      
  |=============                                     | 25% ~14m 25s      
  |==============                                    | 26% ~14m 07s      
  |==============                                    | 28% ~14m 07s      
  |===============                                   | 29% ~14m 11s      
  |===============                                   | 30% ~13m 54s      
  |================                                  | 31% ~13m 43s      
  |=================                                 | 32% ~13m 28s      
  |=================                                 | 34% ~13m 13s      
  |==================                                | 35% ~12m 57s      
  |===================                               | 36% ~13m 04s      
  |===================                               | 38% ~12m 46s      
  |====================                              | 39% ~12m 28s      
  |====================                              | 40% ~12m 11s      
  |=====================                             | 41% ~11m 58s      
  |======================                            | 42% ~11m 55s      
  |======================                            | 44% ~12m 09s      
  |=======================                           | 45% ~11m 51s      
  |========================                          | 46% ~11m 39s      
  |========================                          | 48% ~11m 22s      
  |=========================                         | 49% ~11m 00s      
  |=========================                         | 50% ~10m 46s      
  |==========================                        | 51% ~10m 30s      
  |===========================                       | 52% ~10m 15s      
  |===========================                       | 54% ~10m 04s      
  |============================                      | 55% ~09m 42s      
  |=============================                     | 56% ~09m 21s      
  |=============================                     | 58% ~09m 06s      
  |==============================                    | 59% ~08m 46s      
  |==============================                    | 60% ~08m 27s      
  |===============================                   | 61% ~08m 09s      
  |================================                  | 62% ~07m 53s      
  |================================                  | 64% ~07m 43s      
  |=================================                 | 65% ~07m 26s      
  |==================================                | 66% ~07m 11s      
  |==================================                | 68% ~06m 58s      
  |===================================               | 69% ~06m 42s      
  |===================================               | 70% ~06m 25s      
  |====================================              | 71% ~06m 08s      
  |=====================================             | 72% ~05m 51s      
  |=====================================             | 74% ~05m 34s      
  |======================================            | 75% ~05m 16s      
  |=======================================           | 76% ~05m 02s      
  |=======================================           | 78% ~04m 45s      
  |========================================          | 79% ~04m 29s      
  |========================================          | 80% ~04m 12s      
  |=========================================         | 81% ~03m 56s      
  |==========================================        | 82% ~03m 41s      
  |==========================================        | 84% ~03m 25s      
  |===========================================       | 85% ~03m 10s      
  |============================================      | 86% ~02m 54s      
  |============================================      | 88% ~02m 38s      
  |=============================================     | 89% ~02m 22s      
  |=============================================     | 90% ~02m 06s      
  |==============================================    | 91% ~01m 50s      
  |===============================================   | 92% ~01m 35s      
  |===============================================   | 94% ~01m 18s      
  |================================================  | 95% ~01m 03s      
  |================================================= | 96% ~47s          
  |================================================= | 98% ~31s          
  |==================================================| 99% ~16s          
  |==================================================| 100% elapsed=20m 56s

Step 4: Fit without DIF items, liberal threshold

Iteration: 1, Log-Lik: -840978.739, Max-Change: 1.53429
Iteration: 2, Log-Lik: -838966.515, Max-Change: 0.60562
Iteration: 3, Log-Lik: -838319.491, Max-Change: 0.42073
Iteration: 4, Log-Lik: -838103.154, Max-Change: 0.19151
Iteration: 5, Log-Lik: -838001.823, Max-Change: 0.12237
Iteration: 6, Log-Lik: -837948.867, Max-Change: 0.12008
Iteration: 7, Log-Lik: -837907.969, Max-Change: 0.05628
Iteration: 8, Log-Lik: -837891.715, Max-Change: 0.05985
Iteration: 9, Log-Lik: -837885.008, Max-Change: 0.02282
Iteration: 10, Log-Lik: -837880.814, Max-Change: 0.01759
Iteration: 11, Log-Lik: -837878.422, Max-Change: 0.01185
Iteration: 12, Log-Lik: -837876.892, Max-Change: 0.01249
Iteration: 13, Log-Lik: -837874.195, Max-Change: 0.00282
Iteration: 14, Log-Lik: -837873.937, Max-Change: 0.00316
Iteration: 15, Log-Lik: -837873.756, Max-Change: 0.00246
Iteration: 16, Log-Lik: -837873.447, Max-Change: 0.00227
Iteration: 17, Log-Lik: -837873.372, Max-Change: 0.00193
Iteration: 18, Log-Lik: -837873.334, Max-Change: 0.00092
Iteration: 19, Log-Lik: -837873.319, Max-Change: 0.00061
Iteration: 20, Log-Lik: -837873.306, Max-Change: 0.00061
Iteration: 21, Log-Lik: -837873.296, Max-Change: 0.00060
Iteration: 22, Log-Lik: -837873.253, Max-Change: 0.00249
Iteration: 23, Log-Lik: -837873.239, Max-Change: 0.00031
Iteration: 24, Log-Lik: -837873.237, Max-Change: 0.00156
Iteration: 25, Log-Lik: -837873.228, Max-Change: 0.00044
Iteration: 26, Log-Lik: -837873.227, Max-Change: 0.00133
Iteration: 27, Log-Lik: -837873.223, Max-Change: 0.00082
Iteration: 28, Log-Lik: -837873.222, Max-Change: 0.00045
Iteration: 29, Log-Lik: -837873.221, Max-Change: 0.00142
Iteration: 30, Log-Lik: -837873.217, Max-Change: 0.00072
Iteration: 31, Log-Lik: -837873.216, Max-Change: 0.00038
Iteration: 32, Log-Lik: -837873.215, Max-Change: 0.00140
Iteration: 33, Log-Lik: -837873.213, Max-Change: 0.00066
Iteration: 34, Log-Lik: -837873.212, Max-Change: 0.00035
Iteration: 35, Log-Lik: -837873.211, Max-Change: 0.00140
Iteration: 36, Log-Lik: -837873.208, Max-Change: 0.00058
Iteration: 37, Log-Lik: -837873.208, Max-Change: 0.00031
Iteration: 38, Log-Lik: -837873.207, Max-Change: 0.00137
Iteration: 39, Log-Lik: -837873.205, Max-Change: 0.00053
Iteration: 40, Log-Lik: -837873.204, Max-Change: 0.00029
Iteration: 41, Log-Lik: -837873.203, Max-Change: 0.00134
Iteration: 42, Log-Lik: -837873.201, Max-Change: 0.00048
Iteration: 43, Log-Lik: -837873.201, Max-Change: 0.00026
Iteration: 44, Log-Lik: -837873.200, Max-Change: 0.00131
Iteration: 45, Log-Lik: -837873.198, Max-Change: 0.00045
Iteration: 46, Log-Lik: -837873.197, Max-Change: 0.00026
Iteration: 47, Log-Lik: -837873.197, Max-Change: 0.00127
Iteration: 48, Log-Lik: -837873.195, Max-Change: 0.00041
Iteration: 49, Log-Lik: -837873.194, Max-Change: 0.00025
Iteration: 50, Log-Lik: -837873.194, Max-Change: 0.00124
Iteration: 51, Log-Lik: -837873.192, Max-Change: 0.00037
Iteration: 52, Log-Lik: -837873.192, Max-Change: 0.00024
Iteration: 53, Log-Lik: -837873.191, Max-Change: 0.00121
Iteration: 54, Log-Lik: -837873.190, Max-Change: 0.00033
Iteration: 55, Log-Lik: -837873.189, Max-Change: 0.00024
Iteration: 56, Log-Lik: -837873.189, Max-Change: 0.00118
Iteration: 57, Log-Lik: -837873.187, Max-Change: 0.00035
Iteration: 58, Log-Lik: -837873.187, Max-Change: 0.00023
Iteration: 59, Log-Lik: -837873.186, Max-Change: 0.00114
Iteration: 60, Log-Lik: -837873.185, Max-Change: 0.00040
Iteration: 61, Log-Lik: -837873.185, Max-Change: 0.00022
Iteration: 62, Log-Lik: -837873.184, Max-Change: 0.00111
Iteration: 63, Log-Lik: -837873.183, Max-Change: 0.00044
Iteration: 64, Log-Lik: -837873.182, Max-Change: 0.00022
Iteration: 65, Log-Lik: -837873.182, Max-Change: 0.00108
Iteration: 66, Log-Lik: -837873.181, Max-Change: 0.00048
Iteration: 67, Log-Lik: -837873.180, Max-Change: 0.00021
Iteration: 68, Log-Lik: -837873.180, Max-Change: 0.00105
Iteration: 69, Log-Lik: -837873.179, Max-Change: 0.00050
Iteration: 70, Log-Lik: -837873.179, Max-Change: 0.00021
Iteration: 71, Log-Lik: -837873.178, Max-Change: 0.00102
Iteration: 72, Log-Lik: -837873.177, Max-Change: 0.00051
Iteration: 73, Log-Lik: -837873.177, Max-Change: 0.00022
Iteration: 74, Log-Lik: -837873.177, Max-Change: 0.00099
Iteration: 75, Log-Lik: -837873.176, Max-Change: 0.00052
Iteration: 76, Log-Lik: -837873.175, Max-Change: 0.00022
Iteration: 77, Log-Lik: -837873.175, Max-Change: 0.00097
Iteration: 78, Log-Lik: -837873.174, Max-Change: 0.00052
Iteration: 79, Log-Lik: -837873.174, Max-Change: 0.00022
Iteration: 80, Log-Lik: -837873.173, Max-Change: 0.00094
Iteration: 81, Log-Lik: -837873.173, Max-Change: 0.00052
Iteration: 82, Log-Lik: -837873.172, Max-Change: 0.00021
Iteration: 83, Log-Lik: -837873.172, Max-Change: 0.00091
Iteration: 84, Log-Lik: -837873.171, Max-Change: 0.00051
Iteration: 85, Log-Lik: -837873.171, Max-Change: 0.00021
Iteration: 86, Log-Lik: -837873.171, Max-Change: 0.00089
Iteration: 87, Log-Lik: -837873.170, Max-Change: 0.00051
Iteration: 88, Log-Lik: -837873.170, Max-Change: 0.00021
Iteration: 89, Log-Lik: -837873.169, Max-Change: 0.00086
Iteration: 90, Log-Lik: -837873.169, Max-Change: 0.00050
Iteration: 91, Log-Lik: -837873.168, Max-Change: 0.00020
Iteration: 92, Log-Lik: -837873.168, Max-Change: 0.00084
Iteration: 93, Log-Lik: -837873.168, Max-Change: 0.00049
Iteration: 94, Log-Lik: -837873.167, Max-Change: 0.00020
Iteration: 95, Log-Lik: -837873.167, Max-Change: 0.00082
Iteration: 96, Log-Lik: -837873.167, Max-Change: 0.00048
Iteration: 97, Log-Lik: -837873.166, Max-Change: 0.00019
Iteration: 98, Log-Lik: -837873.166, Max-Change: 0.00079
Iteration: 99, Log-Lik: -837873.166, Max-Change: 0.00047
Iteration: 100, Log-Lik: -837873.165, Max-Change: 0.00019
Iteration: 101, Log-Lik: -837873.165, Max-Change: 0.00077
Iteration: 102, Log-Lik: -837873.165, Max-Change: 0.00046
Iteration: 103, Log-Lik: -837873.164, Max-Change: 0.00019
Iteration: 104, Log-Lik: -837873.164, Max-Change: 0.00075
Iteration: 105, Log-Lik: -837873.164, Max-Change: 0.00045
Iteration: 106, Log-Lik: -837873.163, Max-Change: 0.00018
Iteration: 107, Log-Lik: -837873.163, Max-Change: 0.00073
Iteration: 108, Log-Lik: -837873.163, Max-Change: 0.00044
Iteration: 109, Log-Lik: -837873.163, Max-Change: 0.00018
Iteration: 110, Log-Lik: -837873.163, Max-Change: 0.00071
Iteration: 111, Log-Lik: -837873.162, Max-Change: 0.00043
Iteration: 112, Log-Lik: -837873.162, Max-Change: 0.00017
Iteration: 113, Log-Lik: -837873.162, Max-Change: 0.00069
Iteration: 114, Log-Lik: -837873.161, Max-Change: 0.00042
Iteration: 115, Log-Lik: -837873.161, Max-Change: 0.00017
Iteration: 116, Log-Lik: -837873.161, Max-Change: 0.00067
Iteration: 117, Log-Lik: -837873.161, Max-Change: 0.00041
Iteration: 118, Log-Lik: -837873.160, Max-Change: 0.00016
Iteration: 119, Log-Lik: -837873.160, Max-Change: 0.00065
Iteration: 120, Log-Lik: -837873.160, Max-Change: 0.00040
Iteration: 121, Log-Lik: -837873.160, Max-Change: 0.00016
Iteration: 122, Log-Lik: -837873.160, Max-Change: 0.00063
Iteration: 123, Log-Lik: -837873.159, Max-Change: 0.00039
Iteration: 124, Log-Lik: -837873.159, Max-Change: 0.00016
Iteration: 125, Log-Lik: -837873.159, Max-Change: 0.00062
Iteration: 126, Log-Lik: -837873.159, Max-Change: 0.00038
Iteration: 127, Log-Lik: -837873.159, Max-Change: 0.00015
Iteration: 128, Log-Lik: -837873.158, Max-Change: 0.00060
Iteration: 129, Log-Lik: -837873.158, Max-Change: 0.00037
Iteration: 130, Log-Lik: -837873.158, Max-Change: 0.00015
Iteration: 131, Log-Lik: -837873.158, Max-Change: 0.00058
Iteration: 132, Log-Lik: -837873.158, Max-Change: 0.00036
Iteration: 133, Log-Lik: -837873.158, Max-Change: 0.00014
Iteration: 134, Log-Lik: -837873.157, Max-Change: 0.00057
Iteration: 135, Log-Lik: -837873.157, Max-Change: 0.00035
Iteration: 136, Log-Lik: -837873.157, Max-Change: 0.00014
Iteration: 137, Log-Lik: -837873.157, Max-Change: 0.00055
Iteration: 138, Log-Lik: -837873.157, Max-Change: 0.00034
Iteration: 139, Log-Lik: -837873.157, Max-Change: 0.00014
Iteration: 140, Log-Lik: -837873.156, Max-Change: 0.00053
Iteration: 141, Log-Lik: -837873.156, Max-Change: 0.00033
Iteration: 142, Log-Lik: -837873.156, Max-Change: 0.00013
Iteration: 143, Log-Lik: -837873.156, Max-Change: 0.00052
Iteration: 144, Log-Lik: -837873.156, Max-Change: 0.00032
Iteration: 145, Log-Lik: -837873.156, Max-Change: 0.00013
Iteration: 146, Log-Lik: -837873.156, Max-Change: 0.00051
Iteration: 147, Log-Lik: -837873.155, Max-Change: 0.00031
Iteration: 148, Log-Lik: -837873.155, Max-Change: 0.00013
Iteration: 149, Log-Lik: -837873.155, Max-Change: 0.00049
Iteration: 150, Log-Lik: -837873.155, Max-Change: 0.00030
Iteration: 151, Log-Lik: -837873.155, Max-Change: 0.00012
Iteration: 152, Log-Lik: -837873.155, Max-Change: 0.00048
Iteration: 153, Log-Lik: -837873.155, Max-Change: 0.00030
Iteration: 154, Log-Lik: -837873.155, Max-Change: 0.00012
Iteration: 155, Log-Lik: -837873.154, Max-Change: 0.00046
Iteration: 156, Log-Lik: -837873.154, Max-Change: 0.00029
Iteration: 157, Log-Lik: -837873.154, Max-Change: 0.00012
Iteration: 158, Log-Lik: -837873.154, Max-Change: 0.00045
Iteration: 159, Log-Lik: -837873.154, Max-Change: 0.00028
Iteration: 160, Log-Lik: -837873.154, Max-Change: 0.00011
Iteration: 161, Log-Lik: -837873.154, Max-Change: 0.00044
Iteration: 162, Log-Lik: -837873.154, Max-Change: 0.00027
Iteration: 163, Log-Lik: -837873.154, Max-Change: 0.00011
Iteration: 164, Log-Lik: -837873.154, Max-Change: 0.00043
Iteration: 165, Log-Lik: -837873.153, Max-Change: 0.00027
Iteration: 166, Log-Lik: -837873.153, Max-Change: 0.00011
Iteration: 167, Log-Lik: -837873.153, Max-Change: 0.00041
Iteration: 168, Log-Lik: -837873.153, Max-Change: 0.00026
Iteration: 169, Log-Lik: -837873.153, Max-Change: 0.00011
Iteration: 170, Log-Lik: -837873.153, Max-Change: 0.00040
Iteration: 171, Log-Lik: -837873.153, Max-Change: 0.00025
Iteration: 172, Log-Lik: -837873.153, Max-Change: 0.00010
Iteration: 173, Log-Lik: -837873.153, Max-Change: 0.00039
Iteration: 174, Log-Lik: -837873.153, Max-Change: 0.00025
Iteration: 175, Log-Lik: -837873.153, Max-Change: 0.00010

Step 5: Fit without DIF items, conservative threshold

Iteration: 1, Log-Lik: -823894.161, Max-Change: 1.53637
Iteration: 2, Log-Lik: -821015.619, Max-Change: 0.55303
Iteration: 3, Log-Lik: -820243.095, Max-Change: 0.46018
Iteration: 4, Log-Lik: -819886.095, Max-Change: 0.19036
Iteration: 5, Log-Lik: -819661.680, Max-Change: 0.07867
Iteration: 6, Log-Lik: -819597.576, Max-Change: 0.12321
Iteration: 7, Log-Lik: -819579.060, Max-Change: 0.05626
Iteration: 8, Log-Lik: -819564.273, Max-Change: 0.03410
Iteration: 9, Log-Lik: -819549.452, Max-Change: 0.02589
Iteration: 10, Log-Lik: -819539.955, Max-Change: 0.02693
Iteration: 11, Log-Lik: -819534.145, Max-Change: 0.01925
Iteration: 12, Log-Lik: -819530.326, Max-Change: 0.01756
Iteration: 13, Log-Lik: -819522.424, Max-Change: 0.00542
Iteration: 14, Log-Lik: -819521.608, Max-Change: 0.00441
Iteration: 15, Log-Lik: -819520.976, Max-Change: 0.00398
Iteration: 16, Log-Lik: -819518.512, Max-Change: 0.00271
Iteration: 17, Log-Lik: -819518.379, Max-Change: 0.00159
Iteration: 18, Log-Lik: -819518.274, Max-Change: 0.00154
Iteration: 19, Log-Lik: -819517.908, Max-Change: 0.00295
Iteration: 20, Log-Lik: -819517.827, Max-Change: 0.00105
Iteration: 21, Log-Lik: -819517.796, Max-Change: 0.00080
Iteration: 22, Log-Lik: -819517.778, Max-Change: 0.00036
Iteration: 23, Log-Lik: -819517.766, Max-Change: 0.00037
Iteration: 24, Log-Lik: -819517.755, Max-Change: 0.00038
Iteration: 25, Log-Lik: -819517.703, Max-Change: 0.00037
Iteration: 26, Log-Lik: -819517.698, Max-Change: 0.00175
Iteration: 27, Log-Lik: -819517.675, Max-Change: 0.00045
Iteration: 28, Log-Lik: -819517.674, Max-Change: 0.00034
Iteration: 29, Log-Lik: -819517.671, Max-Change: 0.00029
Iteration: 30, Log-Lik: -819517.668, Max-Change: 0.00029
Iteration: 31, Log-Lik: -819517.654, Max-Change: 0.00026
Iteration: 32, Log-Lik: -819517.652, Max-Change: 0.00130
Iteration: 33, Log-Lik: -819517.645, Max-Change: 0.00040
Iteration: 34, Log-Lik: -819517.645, Max-Change: 0.00026
Iteration: 35, Log-Lik: -819517.644, Max-Change: 0.00118
Iteration: 36, Log-Lik: -819517.640, Max-Change: 0.00051
Iteration: 37, Log-Lik: -819517.639, Max-Change: 0.00031
Iteration: 38, Log-Lik: -819517.638, Max-Change: 0.00107
Iteration: 39, Log-Lik: -819517.636, Max-Change: 0.00058
Iteration: 40, Log-Lik: -819517.635, Max-Change: 0.00032
Iteration: 41, Log-Lik: -819517.635, Max-Change: 0.00097
Iteration: 42, Log-Lik: -819517.633, Max-Change: 0.00060
Iteration: 43, Log-Lik: -819517.632, Max-Change: 0.00030
Iteration: 44, Log-Lik: -819517.632, Max-Change: 0.00088
Iteration: 45, Log-Lik: -819517.631, Max-Change: 0.00056
Iteration: 46, Log-Lik: -819517.630, Max-Change: 0.00027
Iteration: 47, Log-Lik: -819517.630, Max-Change: 0.00080
Iteration: 48, Log-Lik: -819517.629, Max-Change: 0.00051
Iteration: 49, Log-Lik: -819517.628, Max-Change: 0.00024
Iteration: 50, Log-Lik: -819517.628, Max-Change: 0.00074
Iteration: 51, Log-Lik: -819517.627, Max-Change: 0.00046
Iteration: 52, Log-Lik: -819517.627, Max-Change: 0.00022
Iteration: 53, Log-Lik: -819517.627, Max-Change: 0.00068
Iteration: 54, Log-Lik: -819517.626, Max-Change: 0.00041
Iteration: 55, Log-Lik: -819517.625, Max-Change: 0.00020
Iteration: 56, Log-Lik: -819517.625, Max-Change: 0.00063
Iteration: 57, Log-Lik: -819517.624, Max-Change: 0.00037
Iteration: 58, Log-Lik: -819517.624, Max-Change: 0.00018
Iteration: 59, Log-Lik: -819517.624, Max-Change: 0.00059
Iteration: 60, Log-Lik: -819517.623, Max-Change: 0.00034
Iteration: 61, Log-Lik: -819517.623, Max-Change: 0.00017
Iteration: 62, Log-Lik: -819517.623, Max-Change: 0.00056
Iteration: 63, Log-Lik: -819517.622, Max-Change: 0.00032
Iteration: 64, Log-Lik: -819517.622, Max-Change: 0.00016
Iteration: 65, Log-Lik: -819517.622, Max-Change: 0.00057
Iteration: 66, Log-Lik: -819517.621, Max-Change: 0.00030
Iteration: 67, Log-Lik: -819517.621, Max-Change: 0.00015
Iteration: 68, Log-Lik: -819517.621, Max-Change: 0.00058
Iteration: 69, Log-Lik: -819517.620, Max-Change: 0.00029
Iteration: 70, Log-Lik: -819517.620, Max-Change: 0.00015
Iteration: 71, Log-Lik: -819517.620, Max-Change: 0.00058
Iteration: 72, Log-Lik: -819517.619, Max-Change: 0.00028
Iteration: 73, Log-Lik: -819517.619, Max-Change: 0.00014
Iteration: 74, Log-Lik: -819517.619, Max-Change: 0.00058
Iteration: 75, Log-Lik: -819517.619, Max-Change: 0.00027
Iteration: 76, Log-Lik: -819517.618, Max-Change: 0.00014
Iteration: 77, Log-Lik: -819517.618, Max-Change: 0.00058
Iteration: 78, Log-Lik: -819517.618, Max-Change: 0.00026
Iteration: 79, Log-Lik: -819517.618, Max-Change: 0.00013
Iteration: 80, Log-Lik: -819517.618, Max-Change: 0.00058
Iteration: 81, Log-Lik: -819517.617, Max-Change: 0.00025
Iteration: 82, Log-Lik: -819517.617, Max-Change: 0.00013
Iteration: 83, Log-Lik: -819517.617, Max-Change: 0.00058
Iteration: 84, Log-Lik: -819517.616, Max-Change: 0.00024
Iteration: 85, Log-Lik: -819517.616, Max-Change: 0.00013
Iteration: 86, Log-Lik: -819517.616, Max-Change: 0.00058
Iteration: 87, Log-Lik: -819517.616, Max-Change: 0.00024
Iteration: 88, Log-Lik: -819517.615, Max-Change: 0.00012
Iteration: 89, Log-Lik: -819517.615, Max-Change: 0.00057
Iteration: 90, Log-Lik: -819517.615, Max-Change: 0.00023
Iteration: 91, Log-Lik: -819517.615, Max-Change: 0.00012
Iteration: 92, Log-Lik: -819517.615, Max-Change: 0.00057
Iteration: 93, Log-Lik: -819517.614, Max-Change: 0.00023
Iteration: 94, Log-Lik: -819517.614, Max-Change: 0.00012
Iteration: 95, Log-Lik: -819517.614, Max-Change: 0.00056
Iteration: 96, Log-Lik: -819517.614, Max-Change: 0.00022
Iteration: 97, Log-Lik: -819517.614, Max-Change: 0.00012
Iteration: 98, Log-Lik: -819517.613, Max-Change: 0.00056
Iteration: 99, Log-Lik: -819517.613, Max-Change: 0.00022
Iteration: 100, Log-Lik: -819517.613, Max-Change: 0.00011
Iteration: 101, Log-Lik: -819517.613, Max-Change: 0.00055
Iteration: 102, Log-Lik: -819517.612, Max-Change: 0.00021
Iteration: 103, Log-Lik: -819517.612, Max-Change: 0.00011
Iteration: 104, Log-Lik: -819517.612, Max-Change: 0.00275
Iteration: 105, Log-Lik: -819517.612, Max-Change: 0.00119
Iteration: 106, Log-Lik: -819517.611, Max-Change: 0.00074
Iteration: 107, Log-Lik: -819517.610, Max-Change: 0.00024
Iteration: 108, Log-Lik: -819517.610, Max-Change: 0.00053
Iteration: 109, Log-Lik: -819517.610, Max-Change: 0.00042
Iteration: 110, Log-Lik: -819517.609, Max-Change: 0.00014
Iteration: 111, Log-Lik: -819517.609, Max-Change: 0.00052
Iteration: 112, Log-Lik: -819517.609, Max-Change: 0.00029
Iteration: 113, Log-Lik: -819517.609, Max-Change: 0.00010
Iteration: 114, Log-Lik: -819517.609, Max-Change: 0.00257
Iteration: 115, Log-Lik: -819517.609, Max-Change: 0.00103
Iteration: 116, Log-Lik: -819517.607, Max-Change: 0.00034
Iteration: 117, Log-Lik: -819517.607, Max-Change: 0.00011
Iteration: 118, Log-Lik: -819517.607, Max-Change: 0.00049
Iteration: 119, Log-Lik: -819517.607, Max-Change: 0.00032
Iteration: 120, Log-Lik: -819517.606, Max-Change: 0.00011
Iteration: 121, Log-Lik: -819517.606, Max-Change: 0.00048
Iteration: 122, Log-Lik: -819517.606, Max-Change: 0.00030
Iteration: 123, Log-Lik: -819517.606, Max-Change: 0.00010

Step 6: Fit with anchor items, liberal threshold

Iteration: 1, Log-Lik: -776815.195, Max-Change: 1.17734
Iteration: 2, Log-Lik: -764510.756, Max-Change: 0.38899
Iteration: 3, Log-Lik: -764051.802, Max-Change: 0.33120
Iteration: 4, Log-Lik: -763924.040, Max-Change: 0.18710
Iteration: 5, Log-Lik: -763870.760, Max-Change: 0.09472
Iteration: 6, Log-Lik: -763845.173, Max-Change: 0.11956
Iteration: 7, Log-Lik: -763826.460, Max-Change: 0.12383
Iteration: 8, Log-Lik: -763810.445, Max-Change: 0.10516
Iteration: 9, Log-Lik: -763798.973, Max-Change: 0.08379
Iteration: 10, Log-Lik: -763789.211, Max-Change: 0.07927
Iteration: 11, Log-Lik: -763780.836, Max-Change: 0.09191
Iteration: 12, Log-Lik: -763773.524, Max-Change: 0.07552
Iteration: 13, Log-Lik: -763767.058, Max-Change: 0.08272
Iteration: 14, Log-Lik: -763761.511, Max-Change: 0.05546
Iteration: 15, Log-Lik: -763756.468, Max-Change: 0.04821
Iteration: 16, Log-Lik: -763752.092, Max-Change: 0.04569
Iteration: 17, Log-Lik: -763748.159, Max-Change: 0.06995
Iteration: 18, Log-Lik: -763744.218, Max-Change: 0.06457
Iteration: 19, Log-Lik: -763733.656, Max-Change: 0.04428
Iteration: 20, Log-Lik: -763726.433, Max-Change: 0.03632
Iteration: 21, Log-Lik: -763724.643, Max-Change: 0.02945
Iteration: 22, Log-Lik: -763720.764, Max-Change: 0.02520
Iteration: 23, Log-Lik: -763718.421, Max-Change: 0.02802
Iteration: 24, Log-Lik: -763717.567, Max-Change: 0.03005
Iteration: 25, Log-Lik: -763715.339, Max-Change: 0.01960
Iteration: 26, Log-Lik: -763713.696, Max-Change: 0.01303
Iteration: 27, Log-Lik: -763713.300, Max-Change: 0.04731
Iteration: 28, Log-Lik: -763712.757, Max-Change: 0.03685
Iteration: 29, Log-Lik: -763712.438, Max-Change: 0.03660
Iteration: 30, Log-Lik: -763712.154, Max-Change: 0.02244
Iteration: 31, Log-Lik: -763711.668, Max-Change: 0.01283
Iteration: 32, Log-Lik: -763711.447, Max-Change: 0.01665
Iteration: 33, Log-Lik: -763711.273, Max-Change: 0.02193
Iteration: 34, Log-Lik: -763710.790, Max-Change: 0.00872
Iteration: 35, Log-Lik: -763710.487, Max-Change: 0.00381
Iteration: 36, Log-Lik: -763710.401, Max-Change: 0.00591
Iteration: 37, Log-Lik: -763710.231, Max-Change: 0.00370
Iteration: 38, Log-Lik: -763710.154, Max-Change: 0.00314
Iteration: 39, Log-Lik: -763710.105, Max-Change: 0.00270
Iteration: 40, Log-Lik: -763709.969, Max-Change: 0.00481
Iteration: 41, Log-Lik: -763709.881, Max-Change: 0.00148
Iteration: 42, Log-Lik: -763709.856, Max-Change: 0.00095
Iteration: 43, Log-Lik: -763709.795, Max-Change: 0.00257
Iteration: 44, Log-Lik: -763709.765, Max-Change: 0.00092
Iteration: 45, Log-Lik: -763709.752, Max-Change: 0.00066
Iteration: 46, Log-Lik: -763709.709, Max-Change: 0.00247
Iteration: 47, Log-Lik: -763709.686, Max-Change: 0.00074
Iteration: 48, Log-Lik: -763709.679, Max-Change: 0.00049
Iteration: 49, Log-Lik: -763709.655, Max-Change: 0.00155
Iteration: 50, Log-Lik: -763709.645, Max-Change: 0.00049
Iteration: 51, Log-Lik: -763709.641, Max-Change: 0.00034
Iteration: 52, Log-Lik: -763709.625, Max-Change: 0.00129
Iteration: 53, Log-Lik: -763709.618, Max-Change: 0.00037
Iteration: 54, Log-Lik: -763709.615, Max-Change: 0.00025
Iteration: 55, Log-Lik: -763709.607, Max-Change: 0.00067
Iteration: 56, Log-Lik: -763709.604, Max-Change: 0.00024
Iteration: 57, Log-Lik: -763709.602, Max-Change: 0.00018
Iteration: 58, Log-Lik: -763709.595, Max-Change: 0.00069
Iteration: 59, Log-Lik: -763709.592, Max-Change: 0.00021
Iteration: 60, Log-Lik: -763709.591, Max-Change: 0.00014
Iteration: 61, Log-Lik: -763709.585, Max-Change: 0.00056
Iteration: 62, Log-Lik: -763709.584, Max-Change: 0.00016
Iteration: 63, Log-Lik: -763709.583, Max-Change: 0.00012
Iteration: 64, Log-Lik: -763709.579, Max-Change: 0.00040
Iteration: 65, Log-Lik: -763709.578, Max-Change: 0.00012
Iteration: 66, Log-Lik: -763709.577, Max-Change: 0.00009

Step 7: Fit with anchor items, conservative threshold

Iteration: 1, Log-Lik: -776815.195, Max-Change: 1.23925
Iteration: 2, Log-Lik: -764555.590, Max-Change: 0.35201
Iteration: 3, Log-Lik: -764188.659, Max-Change: 0.26383
Iteration: 4, Log-Lik: -764097.402, Max-Change: 0.21578
Iteration: 5, Log-Lik: -764050.041, Max-Change: 0.12576
Iteration: 6, Log-Lik: -764021.516, Max-Change: 0.10682
Iteration: 7, Log-Lik: -763999.925, Max-Change: 0.08268
Iteration: 8, Log-Lik: -763983.684, Max-Change: 0.05045
Iteration: 9, Log-Lik: -763969.891, Max-Change: 0.04761
Iteration: 10, Log-Lik: -763958.401, Max-Change: 0.05105
Iteration: 11, Log-Lik: -763948.054, Max-Change: 0.02790
Iteration: 12, Log-Lik: -763939.725, Max-Change: 0.03025
Iteration: 13, Log-Lik: -763932.282, Max-Change: 0.02119
Iteration: 14, Log-Lik: -763926.123, Max-Change: 0.03160
Iteration: 15, Log-Lik: -763920.397, Max-Change: 0.02214
Iteration: 16, Log-Lik: -763915.711, Max-Change: 0.02350
Iteration: 17, Log-Lik: -763911.512, Max-Change: 0.01920
Iteration: 18, Log-Lik: -763907.945, Max-Change: 0.01457
Iteration: 19, Log-Lik: -763898.237, Max-Change: 0.03628
Iteration: 20, Log-Lik: -763893.022, Max-Change: 0.01357
Iteration: 21, Log-Lik: -763891.606, Max-Change: 0.01167
Iteration: 22, Log-Lik: -763888.480, Max-Change: 0.02258
Iteration: 23, Log-Lik: -763886.341, Max-Change: 0.00654
Iteration: 24, Log-Lik: -763885.878, Max-Change: 0.00910
Iteration: 25, Log-Lik: -763885.015, Max-Change: 0.00693
Iteration: 26, Log-Lik: -763884.666, Max-Change: 0.00674
Iteration: 27, Log-Lik: -763884.417, Max-Change: 0.00578
Iteration: 28, Log-Lik: -763883.804, Max-Change: 0.00973
Iteration: 29, Log-Lik: -763883.412, Max-Change: 0.00299
Iteration: 30, Log-Lik: -763883.322, Max-Change: 0.00181
Iteration: 31, Log-Lik: -763883.148, Max-Change: 0.00383
Iteration: 32, Log-Lik: -763883.071, Max-Change: 0.00176
Iteration: 33, Log-Lik: -763883.031, Max-Change: 0.00117
Iteration: 34, Log-Lik: -763882.924, Max-Change: 0.00397
Iteration: 35, Log-Lik: -763882.862, Max-Change: 0.00119
Iteration: 36, Log-Lik: -763882.846, Max-Change: 0.00074
Iteration: 37, Log-Lik: -763882.804, Max-Change: 0.00227
Iteration: 38, Log-Lik: -763882.783, Max-Change: 0.00068
Iteration: 39, Log-Lik: -763882.775, Max-Change: 0.00045
Iteration: 40, Log-Lik: -763882.752, Max-Change: 0.00157
Iteration: 41, Log-Lik: -763882.742, Max-Change: 0.00045
Iteration: 42, Log-Lik: -763882.739, Max-Change: 0.00029
Iteration: 43, Log-Lik: -763882.726, Max-Change: 0.00093
Iteration: 44, Log-Lik: -763882.722, Max-Change: 0.00028
Iteration: 45, Log-Lik: -763882.720, Max-Change: 0.00021
Iteration: 46, Log-Lik: -763882.711, Max-Change: 0.00071
Iteration: 47, Log-Lik: -763882.708, Max-Change: 0.00020
Iteration: 48, Log-Lik: -763882.707, Max-Change: 0.00013
Iteration: 49, Log-Lik: -763882.701, Max-Change: 0.00044
Iteration: 50, Log-Lik: -763882.700, Max-Change: 0.00013
Iteration: 51, Log-Lik: -763882.699, Max-Change: 0.00010
Iteration: 52, Log-Lik: -763882.694, Max-Change: 0.00038
Iteration: 53, Log-Lik: -763882.693, Max-Change: 0.00010
Iteration: 54, Log-Lik: -763882.692, Max-Change: 0.00009

Step 8: Get scores

Checking the stats in the DIF dataframe

options(max.print=1000)
print(sexbias2$DIF_stats, n=1000)
sexbias2$effect_size_items[2]
$conservative
sexbias2$effect_size_items
$liberal

$conservative
sexbias2$DIF_stats
sexbias2$effect_size_test
$liberal

$conservative
sexbias2$effect_size_items
$liberal

$conservative
NA

DIF testing for answers.

e2o$distadj = case_when(
  e2o$sex == 2 ~ e2o$mirtdist - sexbias2$effect_size_test$conservative$Value[4],
  TRUE ~ e2o$mirtdist
)

sexbias = DIF_test(
  items = e2o[, 138:297],
  model = 1,
  group = e2o$sex,
  itemtype = '2PL'
)
There are 8 steps
Step 1: Initial joint fit

Iteration: 1, Log-Lik: -1332859.347, Max-Change: 1.23262
Iteration: 2, Log-Lik: -1318152.330, Max-Change: 0.41066
Iteration: 3, Log-Lik: -1315644.740, Max-Change: 0.30725
Iteration: 4, Log-Lik: -1314716.382, Max-Change: 0.14995
Iteration: 5, Log-Lik: -1314528.548, Max-Change: 0.08736
Iteration: 6, Log-Lik: -1314473.182, Max-Change: 0.04047
Iteration: 7, Log-Lik: -1314456.367, Max-Change: 0.02108
Iteration: 8, Log-Lik: -1314450.611, Max-Change: 0.00959
Iteration: 9, Log-Lik: -1314448.017, Max-Change: 0.00589
Iteration: 10, Log-Lik: -1314446.559, Max-Change: 0.00378
Iteration: 11, Log-Lik: -1314445.961, Max-Change: 0.00331
Iteration: 12, Log-Lik: -1314445.512, Max-Change: 0.00259
Iteration: 13, Log-Lik: -1314444.690, Max-Change: 0.00177
Iteration: 14, Log-Lik: -1314444.488, Max-Change: 0.00156
Iteration: 15, Log-Lik: -1314444.362, Max-Change: 0.00303
Iteration: 16, Log-Lik: -1314444.129, Max-Change: 0.00159
Iteration: 17, Log-Lik: -1314444.012, Max-Change: 0.00141
Iteration: 18, Log-Lik: -1314443.983, Max-Change: 0.00048
Iteration: 19, Log-Lik: -1314443.967, Max-Change: 0.00034
Iteration: 20, Log-Lik: -1314443.952, Max-Change: 0.00034
Iteration: 21, Log-Lik: -1314443.940, Max-Change: 0.00033
Iteration: 22, Log-Lik: -1314443.883, Max-Change: 0.00165
Iteration: 23, Log-Lik: -1314443.859, Max-Change: 0.00076
Iteration: 24, Log-Lik: -1314443.853, Max-Change: 0.00034
Iteration: 25, Log-Lik: -1314443.851, Max-Change: 0.00137
Iteration: 26, Log-Lik: -1314443.835, Max-Change: 0.00137
Iteration: 27, Log-Lik: -1314443.825, Max-Change: 0.00057
Iteration: 28, Log-Lik: -1314443.824, Max-Change: 0.00036
Iteration: 29, Log-Lik: -1314443.822, Max-Change: 0.00135
Iteration: 30, Log-Lik: -1314443.816, Max-Change: 0.00080
Iteration: 31, Log-Lik: -1314443.815, Max-Change: 0.00043
Iteration: 32, Log-Lik: -1314443.813, Max-Change: 0.00131
Iteration: 33, Log-Lik: -1314443.810, Max-Change: 0.00094
Iteration: 34, Log-Lik: -1314443.808, Max-Change: 0.00042
Iteration: 35, Log-Lik: -1314443.807, Max-Change: 0.00126
Iteration: 36, Log-Lik: -1314443.804, Max-Change: 0.00095
Iteration: 37, Log-Lik: -1314443.802, Max-Change: 0.00039
Iteration: 38, Log-Lik: -1314443.802, Max-Change: 0.00121
Iteration: 39, Log-Lik: -1314443.800, Max-Change: 0.00086
Iteration: 40, Log-Lik: -1314443.798, Max-Change: 0.00033
Iteration: 41, Log-Lik: -1314443.798, Max-Change: 0.00115
Iteration: 42, Log-Lik: -1314443.796, Max-Change: 0.00075
Iteration: 43, Log-Lik: -1314443.795, Max-Change: 0.00029
Iteration: 44, Log-Lik: -1314443.794, Max-Change: 0.00109
Iteration: 45, Log-Lik: -1314443.793, Max-Change: 0.00064
Iteration: 46, Log-Lik: -1314443.792, Max-Change: 0.00024
Iteration: 47, Log-Lik: -1314443.792, Max-Change: 0.00103
Iteration: 48, Log-Lik: -1314443.791, Max-Change: 0.00054
Iteration: 49, Log-Lik: -1314443.790, Max-Change: 0.00020
Iteration: 50, Log-Lik: -1314443.790, Max-Change: 0.00097
Iteration: 51, Log-Lik: -1314443.789, Max-Change: 0.00050
Iteration: 52, Log-Lik: -1314443.788, Max-Change: 0.00019
Iteration: 53, Log-Lik: -1314443.788, Max-Change: 0.00092
Iteration: 54, Log-Lik: -1314443.787, Max-Change: 0.00049
Iteration: 55, Log-Lik: -1314443.787, Max-Change: 0.00017
Iteration: 56, Log-Lik: -1314443.786, Max-Change: 0.00087
Iteration: 57, Log-Lik: -1314443.786, Max-Change: 0.00047
Iteration: 58, Log-Lik: -1314443.785, Max-Change: 0.00016
Iteration: 59, Log-Lik: -1314443.785, Max-Change: 0.00081
Iteration: 60, Log-Lik: -1314443.785, Max-Change: 0.00046
Iteration: 61, Log-Lik: -1314443.784, Max-Change: 0.00016
Iteration: 62, Log-Lik: -1314443.784, Max-Change: 0.00077
Iteration: 63, Log-Lik: -1314443.784, Max-Change: 0.00044
Iteration: 64, Log-Lik: -1314443.783, Max-Change: 0.00015
Iteration: 65, Log-Lik: -1314443.783, Max-Change: 0.00072
Iteration: 66, Log-Lik: -1314443.783, Max-Change: 0.00043
Iteration: 67, Log-Lik: -1314443.783, Max-Change: 0.00015
Iteration: 68, Log-Lik: -1314443.782, Max-Change: 0.00068
Iteration: 69, Log-Lik: -1314443.782, Max-Change: 0.00041
Iteration: 70, Log-Lik: -1314443.782, Max-Change: 0.00014
Iteration: 71, Log-Lik: -1314443.782, Max-Change: 0.00064
Iteration: 72, Log-Lik: -1314443.781, Max-Change: 0.00039
Iteration: 73, Log-Lik: -1314443.781, Max-Change: 0.00013
Iteration: 74, Log-Lik: -1314443.781, Max-Change: 0.00060
Iteration: 75, Log-Lik: -1314443.781, Max-Change: 0.00037
Iteration: 76, Log-Lik: -1314443.781, Max-Change: 0.00013
Iteration: 77, Log-Lik: -1314443.781, Max-Change: 0.00056
Iteration: 78, Log-Lik: -1314443.780, Max-Change: 0.00036
Iteration: 79, Log-Lik: -1314443.780, Max-Change: 0.00012
Iteration: 80, Log-Lik: -1314443.780, Max-Change: 0.00053
Iteration: 81, Log-Lik: -1314443.780, Max-Change: 0.00034
Iteration: 82, Log-Lik: -1314443.780, Max-Change: 0.00011
Iteration: 83, Log-Lik: -1314443.780, Max-Change: 0.00050
Iteration: 84, Log-Lik: -1314443.780, Max-Change: 0.00032
Iteration: 85, Log-Lik: -1314443.779, Max-Change: 0.00011
Iteration: 86, Log-Lik: -1314443.779, Max-Change: 0.00047
Iteration: 87, Log-Lik: -1314443.779, Max-Change: 0.00031
Iteration: 88, Log-Lik: -1314443.779, Max-Change: 0.00010
Iteration: 89, Log-Lik: -1314443.779, Max-Change: 0.00044
Iteration: 90, Log-Lik: -1314443.779, Max-Change: 0.00029
Iteration: 91, Log-Lik: -1314443.779, Max-Change: 0.00010

Step 2: Initial MI fit

Iteration: 1, Log-Lik: -1332792.316, Max-Change: 0.88513
Iteration: 2, Log-Lik: -1316788.248, Max-Change: 0.24552
Iteration: 3, Log-Lik: -1315053.075, Max-Change: 0.11824
Iteration: 4, Log-Lik: -1314581.967, Max-Change: 0.07793
Iteration: 5, Log-Lik: -1314434.003, Max-Change: 0.06617
Iteration: 6, Log-Lik: -1314385.096, Max-Change: 0.05115
Iteration: 7, Log-Lik: -1314367.720, Max-Change: 0.03056
Iteration: 8, Log-Lik: -1314360.632, Max-Change: 0.02991
Iteration: 9, Log-Lik: -1314356.840, Max-Change: 0.01388
Iteration: 10, Log-Lik: -1314352.559, Max-Change: 0.00815
Iteration: 11, Log-Lik: -1314350.821, Max-Change: 0.00669
Iteration: 12, Log-Lik: -1314349.314, Max-Change: 0.00371
Iteration: 13, Log-Lik: -1314344.189, Max-Change: 0.01376
Iteration: 14, Log-Lik: -1314342.799, Max-Change: 0.00315
Iteration: 15, Log-Lik: -1314342.145, Max-Change: 0.00507
Iteration: 16, Log-Lik: -1314340.226, Max-Change: 0.00649
Iteration: 17, Log-Lik: -1314339.682, Max-Change: 0.00197
Iteration: 18, Log-Lik: -1314339.335, Max-Change: 0.00187
Iteration: 19, Log-Lik: -1314338.298, Max-Change: 0.00416
Iteration: 20, Log-Lik: -1314338.015, Max-Change: 0.00233
Iteration: 21, Log-Lik: -1314337.821, Max-Change: 0.00174
Iteration: 22, Log-Lik: -1314337.021, Max-Change: 0.00395
Iteration: 23, Log-Lik: -1314336.813, Max-Change: 0.00107
Iteration: 24, Log-Lik: -1314336.716, Max-Change: 0.00105
Iteration: 25, Log-Lik: -1314336.297, Max-Change: 0.00276
Iteration: 26, Log-Lik: -1314336.194, Max-Change: 0.00080
Iteration: 27, Log-Lik: -1314336.140, Max-Change: 0.00079
Iteration: 28, Log-Lik: -1314335.894, Max-Change: 0.00213
Iteration: 29, Log-Lik: -1314335.837, Max-Change: 0.00062
Iteration: 30, Log-Lik: -1314335.804, Max-Change: 0.00060
Iteration: 31, Log-Lik: -1314335.647, Max-Change: 0.00168
Iteration: 32, Log-Lik: -1314335.612, Max-Change: 0.00048
Iteration: 33, Log-Lik: -1314335.590, Max-Change: 0.00047
Iteration: 34, Log-Lik: -1314335.485, Max-Change: 0.00135
Iteration: 35, Log-Lik: -1314335.462, Max-Change: 0.00039
Iteration: 36, Log-Lik: -1314335.447, Max-Change: 0.00038
Iteration: 37, Log-Lik: -1314335.374, Max-Change: 0.00110
Iteration: 38, Log-Lik: -1314335.358, Max-Change: 0.00032
Iteration: 39, Log-Lik: -1314335.348, Max-Change: 0.00031
Iteration: 40, Log-Lik: -1314335.297, Max-Change: 0.00091
Iteration: 41, Log-Lik: -1314335.286, Max-Change: 0.00026
Iteration: 42, Log-Lik: -1314335.279, Max-Change: 0.00026
Iteration: 43, Log-Lik: -1314335.243, Max-Change: 0.00075
Iteration: 44, Log-Lik: -1314335.235, Max-Change: 0.00022
Iteration: 45, Log-Lik: -1314335.230, Max-Change: 0.00022
Iteration: 46, Log-Lik: -1314335.204, Max-Change: 0.00063
Iteration: 47, Log-Lik: -1314335.199, Max-Change: 0.00018
Iteration: 48, Log-Lik: -1314335.195, Max-Change: 0.00017
Iteration: 49, Log-Lik: -1314335.177, Max-Change: 0.00053
Iteration: 50, Log-Lik: -1314335.173, Max-Change: 0.00015
Iteration: 51, Log-Lik: -1314335.171, Max-Change: 0.00015
Iteration: 52, Log-Lik: -1314335.158, Max-Change: 0.00044
Iteration: 53, Log-Lik: -1314335.155, Max-Change: 0.00012
Iteration: 54, Log-Lik: -1314335.153, Max-Change: 0.00014
Iteration: 55, Log-Lik: -1314335.144, Max-Change: 0.00035
Iteration: 56, Log-Lik: -1314335.142, Max-Change: 0.00011
Iteration: 57, Log-Lik: -1314335.141, Max-Change: 0.00010
Iteration: 58, Log-Lik: -1314335.134, Max-Change: 0.00031
Iteration: 59, Log-Lik: -1314335.133, Max-Change: 0.00009

Step 3: Leave one out MI testing

  |=                                                 | 1 % ~20m 22s      
  |==                                                | 2 % ~27m 35s      
  |==                                                | 4 % ~25m 06s      
  |===                                               | 5 % ~23m 14s      
  |====                                              | 6 % ~23m 24s      
  |====                                              | 8 % ~22m 24s      
  |=====                                             | 9 % ~21m 39s      
  |=====                                             | 10% ~22m 07s      
  |======                                            | 11% ~21m 26s      
  |=======                                           | 12% ~20m 37s      
  |=======                                           | 14% ~20m 02s      
  |========                                          | 15% ~19m 32s      
  |=========                                         | 16% ~19m 09s      
  |=========                                         | 18% ~18m 53s      
  |==========                                        | 19% ~18m 34s      
  |==========                                        | 20% ~18m 12s      
  |===========                                       | 21% ~17m 53s      
  |============                                      | 22% ~17m 35s      
  |============                                      | 24% ~17m 26s      
  |=============                                     | 25% ~17m 42s      
  |==============                                    | 26% ~17m 25s      
  |==============                                    | 28% ~17m 07s      
  |===============                                   | 29% ~17m 04s      
  |===============                                   | 30% ~16m 58s      
  |================                                  | 31% ~16m 51s      
  |=================                                 | 32% ~16m 49s      
  |=================                                 | 34% ~16m 36s      
  |==================                                | 35% ~16m 20s      
  |===================                               | 36% ~16m 15s      
  |===================                               | 38% ~16m 00s      
  |====================                              | 39% ~15m 41s      
  |====================                              | 40% ~15m 30s      
  |=====================                             | 41% ~15m 12s      
  |======================                            | 42% ~14m 50s      
  |======================                            | 44% ~14m 29s      
  |=======================                           | 45% ~14m 17s      
  |========================                          | 46% ~14m 01s      
  |========================                          | 48% ~13m 39s      
  |=========================                         | 49% ~13m 17s      
  |=========================                         | 50% ~12m 59s      
  |==========================                        | 51% ~12m 37s      
  |===========================                       | 52% ~12m 21s      
  |===========================                       | 54% ~12m 05s      
  |============================                      | 55% ~11m 42s      
  |=============================                     | 56% ~11m 25s      
  |=============================                     | 58% ~11m 01s      
  |==============================                    | 59% ~10m 36s      
  |==============================                    | 60% ~10m 14s      
  |===============================                   | 61% ~09m 52s      
  |================================                  | 62% ~09m 32s      
  |================================                  | 64% ~09m 12s      
  |=================================                 | 65% ~08m 57s      
  |==================================                | 66% ~08m 41s      
  |==================================                | 68% ~08m 25s      
  |===================================               | 69% ~08m 06s      
  |===================================               | 70% ~07m 48s      
  |====================================              | 71% ~07m 28s      
  |=====================================             | 72% ~07m 07s      
  |=====================================             | 74% ~06m 48s      
  |======================================            | 75% ~06m 29s      
  |=======================================           | 76% ~06m 07s      
  |=======================================           | 78% ~05m 47s      
  |========================================          | 79% ~05m 27s      
  |========================================          | 80% ~05m 08s      
  |=========================================         | 81% ~04m 51s      
  |==========================================        | 82% ~04m 31s      
  |==========================================        | 84% ~04m 12s      
  |===========================================       | 85% ~03m 52s      
  |============================================      | 86% ~03m 32s      
  |============================================      | 88% ~03m 12s      
  |=============================================     | 89% ~02m 52s      
  |=============================================     | 90% ~02m 33s      
  |==============================================    | 91% ~02m 13s      
  |===============================================   | 92% ~01m 55s      
  |===============================================   | 94% ~01m 36s      
  |================================================  | 95% ~01m 17s      
  |================================================= | 96% ~57s          
  |================================================= | 98% ~38s          
  |==================================================| 99% ~19s          
  |==================================================| 100% elapsed=25m 35s

Step 4: Fit without DIF items, liberal threshold

Iteration: 1, Log-Lik: -1429907.192, Max-Change: 0.86438
Iteration: 2, Log-Lik: -1428413.537, Max-Change: 0.53201
Iteration: 3, Log-Lik: -1428087.353, Max-Change: 0.18132
Iteration: 4, Log-Lik: -1427939.703, Max-Change: 0.08800
Iteration: 5, Log-Lik: -1427892.169, Max-Change: 0.06047
Iteration: 6, Log-Lik: -1427876.682, Max-Change: 0.02758
Iteration: 7, Log-Lik: -1427871.817, Max-Change: 0.01601
Iteration: 8, Log-Lik: -1427870.098, Max-Change: 0.00834
Iteration: 9, Log-Lik: -1427869.533, Max-Change: 0.00541
Iteration: 10, Log-Lik: -1427869.191, Max-Change: 0.00336
Iteration: 11, Log-Lik: -1427869.126, Max-Change: 0.00085
Iteration: 12, Log-Lik: -1427869.110, Max-Change: 0.00078
Iteration: 13, Log-Lik: -1427869.102, Max-Change: 0.00342
Iteration: 14, Log-Lik: -1427869.078, Max-Change: 0.00044
Iteration: 15, Log-Lik: -1427869.074, Max-Change: 0.00205
Iteration: 16, Log-Lik: -1427869.067, Max-Change: 0.00082
Iteration: 17, Log-Lik: -1427869.061, Max-Change: 0.00039
Iteration: 18, Log-Lik: -1427869.059, Max-Change: 0.00037
Iteration: 19, Log-Lik: -1427869.058, Max-Change: 0.00906
Iteration: 20, Log-Lik: -1427869.041, Max-Change: 0.00113
Iteration: 21, Log-Lik: -1427869.032, Max-Change: 0.00052
Iteration: 22, Log-Lik: -1427869.030, Max-Change: 0.00027
Iteration: 23, Log-Lik: -1427869.028, Max-Change: 0.00027
Iteration: 24, Log-Lik: -1427869.028, Max-Change: 0.00137
Iteration: 25, Log-Lik: -1427869.026, Max-Change: 0.00041
Iteration: 26, Log-Lik: -1427869.024, Max-Change: 0.00027
Iteration: 27, Log-Lik: -1427869.023, Max-Change: 0.00026
Iteration: 28, Log-Lik: -1427869.023, Max-Change: 0.00652
Iteration: 29, Log-Lik: -1427869.015, Max-Change: 0.00037
Iteration: 30, Log-Lik: -1427869.013, Max-Change: 0.00018
Iteration: 31, Log-Lik: -1427869.013, Max-Change: 0.00019
Iteration: 32, Log-Lik: -1427869.013, Max-Change: 0.00094
Iteration: 33, Log-Lik: -1427869.012, Max-Change: 0.00022
Iteration: 34, Log-Lik: -1427869.012, Max-Change: 0.00019
Iteration: 35, Log-Lik: -1427869.011, Max-Change: 0.00096
Iteration: 36, Log-Lik: -1427869.011, Max-Change: 0.00026
Iteration: 37, Log-Lik: -1427869.010, Max-Change: 0.00018
Iteration: 38, Log-Lik: -1427869.010, Max-Change: 0.00090
Iteration: 39, Log-Lik: -1427869.010, Max-Change: 0.00025
Iteration: 40, Log-Lik: -1427869.009, Max-Change: 0.00017
Iteration: 41, Log-Lik: -1427869.009, Max-Change: 0.00086
Iteration: 42, Log-Lik: -1427869.009, Max-Change: 0.00024
Iteration: 43, Log-Lik: -1427869.008, Max-Change: 0.00016
Iteration: 44, Log-Lik: -1427869.008, Max-Change: 0.00081
Iteration: 45, Log-Lik: -1427869.008, Max-Change: 0.00022
Iteration: 46, Log-Lik: -1427869.007, Max-Change: 0.00016
Iteration: 47, Log-Lik: -1427869.007, Max-Change: 0.00077
Iteration: 48, Log-Lik: -1427869.007, Max-Change: 0.00021
Iteration: 49, Log-Lik: -1427869.006, Max-Change: 0.00015
Iteration: 50, Log-Lik: -1427869.006, Max-Change: 0.00073
Iteration: 51, Log-Lik: -1427869.006, Max-Change: 0.00020
Iteration: 52, Log-Lik: -1427869.006, Max-Change: 0.00014
Iteration: 53, Log-Lik: -1427869.006, Max-Change: 0.00069
Iteration: 54, Log-Lik: -1427869.005, Max-Change: 0.00019
Iteration: 55, Log-Lik: -1427869.005, Max-Change: 0.00013
Iteration: 56, Log-Lik: -1427869.005, Max-Change: 0.00066
Iteration: 57, Log-Lik: -1427869.005, Max-Change: 0.00018
Iteration: 58, Log-Lik: -1427869.004, Max-Change: 0.00013
Iteration: 59, Log-Lik: -1427869.004, Max-Change: 0.00062
Iteration: 60, Log-Lik: -1427869.004, Max-Change: 0.00017
Iteration: 61, Log-Lik: -1427869.004, Max-Change: 0.00012
Iteration: 62, Log-Lik: -1427869.004, Max-Change: 0.00059
Iteration: 63, Log-Lik: -1427869.004, Max-Change: 0.00016
Iteration: 64, Log-Lik: -1427869.003, Max-Change: 0.00011
Iteration: 65, Log-Lik: -1427869.003, Max-Change: 0.00056
Iteration: 66, Log-Lik: -1427869.003, Max-Change: 0.00015
Iteration: 67, Log-Lik: -1427869.003, Max-Change: 0.00011
Iteration: 68, Log-Lik: -1427869.003, Max-Change: 0.00053
Iteration: 69, Log-Lik: -1427869.003, Max-Change: 0.00014
Iteration: 70, Log-Lik: -1427869.003, Max-Change: 0.00010
Iteration: 71, Log-Lik: -1427869.003, Max-Change: 0.00050
Iteration: 72, Log-Lik: -1427869.002, Max-Change: 0.00013
Iteration: 73, Log-Lik: -1427869.002, Max-Change: 0.00010

Step 5: Fit without DIF items, conservative threshold

Iteration: 1, Log-Lik: -1425629.819, Max-Change: 0.77561
Iteration: 2, Log-Lik: -1423369.025, Max-Change: 0.28575
Iteration: 3, Log-Lik: -1422920.135, Max-Change: 0.41680
Iteration: 4, Log-Lik: -1422816.385, Max-Change: 0.15176
Iteration: 5, Log-Lik: -1422752.893, Max-Change: 0.03773
Iteration: 6, Log-Lik: -1422737.245, Max-Change: 0.03063
Iteration: 7, Log-Lik: -1422731.738, Max-Change: 0.01280
Iteration: 8, Log-Lik: -1422729.785, Max-Change: 0.00702
Iteration: 9, Log-Lik: -1422729.064, Max-Change: 0.00454
Iteration: 10, Log-Lik: -1422728.527, Max-Change: 0.00293
Iteration: 11, Log-Lik: -1422728.457, Max-Change: 0.00084
Iteration: 12, Log-Lik: -1422728.437, Max-Change: 0.00074
Iteration: 13, Log-Lik: -1422728.425, Max-Change: 0.00354
Iteration: 14, Log-Lik: -1422728.388, Max-Change: 0.00058
Iteration: 15, Log-Lik: -1422728.383, Max-Change: 0.00268
Iteration: 16, Log-Lik: -1422728.374, Max-Change: 0.00114
Iteration: 17, Log-Lik: -1422728.362, Max-Change: 0.00052
Iteration: 18, Log-Lik: -1422728.358, Max-Change: 0.00052
Iteration: 19, Log-Lik: -1422728.356, Max-Change: 0.01287
Iteration: 20, Log-Lik: -1422728.338, Max-Change: 0.00313
Iteration: 21, Log-Lik: -1422728.299, Max-Change: 0.00044
Iteration: 22, Log-Lik: -1422728.297, Max-Change: 0.00041
Iteration: 23, Log-Lik: -1422728.296, Max-Change: 0.00205
Iteration: 24, Log-Lik: -1422728.295, Max-Change: 0.00068
Iteration: 25, Log-Lik: -1422728.291, Max-Change: 0.00039
Iteration: 26, Log-Lik: -1422728.290, Max-Change: 0.00193
Iteration: 27, Log-Lik: -1422728.289, Max-Change: 0.00060
Iteration: 28, Log-Lik: -1422728.286, Max-Change: 0.00037
Iteration: 29, Log-Lik: -1422728.285, Max-Change: 0.00181
Iteration: 30, Log-Lik: -1422728.284, Max-Change: 0.00052
Iteration: 31, Log-Lik: -1422728.282, Max-Change: 0.00034
Iteration: 32, Log-Lik: -1422728.281, Max-Change: 0.00171
Iteration: 33, Log-Lik: -1422728.280, Max-Change: 0.00047
Iteration: 34, Log-Lik: -1422728.278, Max-Change: 0.00033
Iteration: 35, Log-Lik: -1422728.277, Max-Change: 0.00162
Iteration: 36, Log-Lik: -1422728.276, Max-Change: 0.00043
Iteration: 37, Log-Lik: -1422728.274, Max-Change: 0.00031
Iteration: 38, Log-Lik: -1422728.274, Max-Change: 0.00153
Iteration: 39, Log-Lik: -1422728.273, Max-Change: 0.00039
Iteration: 40, Log-Lik: -1422728.272, Max-Change: 0.00029
Iteration: 41, Log-Lik: -1422728.271, Max-Change: 0.00146
Iteration: 42, Log-Lik: -1422728.270, Max-Change: 0.00037
Iteration: 43, Log-Lik: -1422728.269, Max-Change: 0.00028
Iteration: 44, Log-Lik: -1422728.268, Max-Change: 0.00138
Iteration: 45, Log-Lik: -1422728.268, Max-Change: 0.00034
Iteration: 46, Log-Lik: -1422728.267, Max-Change: 0.00026
Iteration: 47, Log-Lik: -1422728.266, Max-Change: 0.00131
Iteration: 48, Log-Lik: -1422728.266, Max-Change: 0.00032
Iteration: 49, Log-Lik: -1422728.265, Max-Change: 0.00025
Iteration: 50, Log-Lik: -1422728.264, Max-Change: 0.00124
Iteration: 51, Log-Lik: -1422728.264, Max-Change: 0.00030
Iteration: 52, Log-Lik: -1422728.263, Max-Change: 0.00024
Iteration: 53, Log-Lik: -1422728.263, Max-Change: 0.00118
Iteration: 54, Log-Lik: -1422728.262, Max-Change: 0.00028
Iteration: 55, Log-Lik: -1422728.261, Max-Change: 0.00022
Iteration: 56, Log-Lik: -1422728.261, Max-Change: 0.00111
Iteration: 57, Log-Lik: -1422728.260, Max-Change: 0.00027
Iteration: 58, Log-Lik: -1422728.260, Max-Change: 0.00021
Iteration: 59, Log-Lik: -1422728.260, Max-Change: 0.00106
Iteration: 60, Log-Lik: -1422728.259, Max-Change: 0.00025
Iteration: 61, Log-Lik: -1422728.259, Max-Change: 0.00020
Iteration: 62, Log-Lik: -1422728.258, Max-Change: 0.00100
Iteration: 63, Log-Lik: -1422728.258, Max-Change: 0.00024
Iteration: 64, Log-Lik: -1422728.257, Max-Change: 0.00019
Iteration: 65, Log-Lik: -1422728.257, Max-Change: 0.00095
Iteration: 66, Log-Lik: -1422728.257, Max-Change: 0.00022
Iteration: 67, Log-Lik: -1422728.256, Max-Change: 0.00018
Iteration: 68, Log-Lik: -1422728.256, Max-Change: 0.00090
Iteration: 69, Log-Lik: -1422728.256, Max-Change: 0.00021
Iteration: 70, Log-Lik: -1422728.256, Max-Change: 0.00017
Iteration: 71, Log-Lik: -1422728.255, Max-Change: 0.00085
Iteration: 72, Log-Lik: -1422728.255, Max-Change: 0.00020
Iteration: 73, Log-Lik: -1422728.255, Max-Change: 0.00016
Iteration: 74, Log-Lik: -1422728.255, Max-Change: 0.00081
Iteration: 75, Log-Lik: -1422728.254, Max-Change: 0.00019
Iteration: 76, Log-Lik: -1422728.254, Max-Change: 0.00015
Iteration: 77, Log-Lik: -1422728.254, Max-Change: 0.00077
Iteration: 78, Log-Lik: -1422728.254, Max-Change: 0.00018
Iteration: 79, Log-Lik: -1422728.253, Max-Change: 0.00015
Iteration: 80, Log-Lik: -1422728.253, Max-Change: 0.00073
Iteration: 81, Log-Lik: -1422728.253, Max-Change: 0.00017
Iteration: 82, Log-Lik: -1422728.253, Max-Change: 0.00014
Iteration: 83, Log-Lik: -1422728.253, Max-Change: 0.00069
Iteration: 84, Log-Lik: -1422728.252, Max-Change: 0.00016
Iteration: 85, Log-Lik: -1422728.252, Max-Change: 0.00013
Iteration: 86, Log-Lik: -1422728.252, Max-Change: 0.00065
Iteration: 87, Log-Lik: -1422728.252, Max-Change: 0.00015
Iteration: 88, Log-Lik: -1422728.252, Max-Change: 0.00012
Iteration: 89, Log-Lik: -1422728.252, Max-Change: 0.00062
Iteration: 90, Log-Lik: -1422728.252, Max-Change: 0.00014
Iteration: 91, Log-Lik: -1422728.251, Max-Change: 0.00012
Iteration: 92, Log-Lik: -1422728.251, Max-Change: 0.00059
Iteration: 93, Log-Lik: -1422728.251, Max-Change: 0.00014
Iteration: 94, Log-Lik: -1422728.251, Max-Change: 0.00011
Iteration: 95, Log-Lik: -1422728.251, Max-Change: 0.00056
Iteration: 96, Log-Lik: -1422728.251, Max-Change: 0.00013
Iteration: 97, Log-Lik: -1422728.251, Max-Change: 0.00011
Iteration: 98, Log-Lik: -1422728.251, Max-Change: 0.00053
Iteration: 99, Log-Lik: -1422728.251, Max-Change: 0.00012
Iteration: 100, Log-Lik: -1422728.250, Max-Change: 0.00010
Iteration: 101, Log-Lik: -1422728.250, Max-Change: 0.00050
Iteration: 102, Log-Lik: -1422728.250, Max-Change: 0.00012
Iteration: 103, Log-Lik: -1422728.250, Max-Change: 0.00010

Step 6: Fit with anchor items, liberal threshold

Iteration: 1, Log-Lik: -1332792.316, Max-Change: 1.77661
Iteration: 2, Log-Lik: -1283724.736, Max-Change: 0.26957
Iteration: 3, Log-Lik: -1281549.134, Max-Change: 0.15538
Iteration: 4, Log-Lik: -1281095.714, Max-Change: 0.08548
Iteration: 5, Log-Lik: -1280982.987, Max-Change: 0.05514
Iteration: 6, Log-Lik: -1280944.843, Max-Change: 0.02484
Iteration: 7, Log-Lik: -1280925.889, Max-Change: 0.03846
Iteration: 8, Log-Lik: -1280913.599, Max-Change: 0.02033
Iteration: 9, Log-Lik: -1280904.793, Max-Change: 0.01603
Iteration: 10, Log-Lik: -1280898.236, Max-Change: 0.01461
Iteration: 11, Log-Lik: -1280893.190, Max-Change: 0.00973
Iteration: 12, Log-Lik: -1280889.267, Max-Change: 0.00900
Iteration: 13, Log-Lik: -1280877.124, Max-Change: 0.01960
Iteration: 14, Log-Lik: -1280875.485, Max-Change: 0.00387
Iteration: 15, Log-Lik: -1280874.756, Max-Change: 0.00420
Iteration: 16, Log-Lik: -1280872.894, Max-Change: 0.00899
Iteration: 17, Log-Lik: -1280872.202, Max-Change: 0.00496
Iteration: 18, Log-Lik: -1280871.705, Max-Change: 0.00361
Iteration: 19, Log-Lik: -1280869.876, Max-Change: 0.01245
Iteration: 20, Log-Lik: -1280869.088, Max-Change: 0.00229
Iteration: 21, Log-Lik: -1280868.805, Max-Change: 0.00243
Iteration: 22, Log-Lik: -1280867.762, Max-Change: 0.00904
Iteration: 23, Log-Lik: -1280867.302, Max-Change: 0.00207
Iteration: 24, Log-Lik: -1280867.140, Max-Change: 0.00263
Iteration: 25, Log-Lik: -1280866.533, Max-Change: 0.00659
Iteration: 26, Log-Lik: -1280866.270, Max-Change: 0.00120
Iteration: 27, Log-Lik: -1280866.175, Max-Change: 0.00123
Iteration: 28, Log-Lik: -1280865.817, Max-Change: 0.00480
Iteration: 29, Log-Lik: -1280865.666, Max-Change: 0.00162
Iteration: 30, Log-Lik: -1280865.610, Max-Change: 0.00098
Iteration: 31, Log-Lik: -1280865.396, Max-Change: 0.00350
Iteration: 32, Log-Lik: -1280865.308, Max-Change: 0.00079
Iteration: 33, Log-Lik: -1280865.275, Max-Change: 0.00081
Iteration: 34, Log-Lik: -1280865.145, Max-Change: 0.00254
Iteration: 35, Log-Lik: -1280865.094, Max-Change: 0.00061
Iteration: 36, Log-Lik: -1280865.073, Max-Change: 0.00063
Iteration: 37, Log-Lik: -1280864.993, Max-Change: 0.00184
Iteration: 38, Log-Lik: -1280864.962, Max-Change: 0.00053
Iteration: 39, Log-Lik: -1280864.950, Max-Change: 0.00048
Iteration: 40, Log-Lik: -1280864.899, Max-Change: 0.00132
Iteration: 41, Log-Lik: -1280864.881, Max-Change: 0.00044
Iteration: 42, Log-Lik: -1280864.873, Max-Change: 0.00038
Iteration: 43, Log-Lik: -1280864.840, Max-Change: 0.00094
Iteration: 44, Log-Lik: -1280864.828, Max-Change: 0.00034
Iteration: 45, Log-Lik: -1280864.823, Max-Change: 0.00033
Iteration: 46, Log-Lik: -1280864.801, Max-Change: 0.00072
Iteration: 47, Log-Lik: -1280864.794, Max-Change: 0.00026
Iteration: 48, Log-Lik: -1280864.791, Max-Change: 0.00026
Iteration: 49, Log-Lik: -1280864.776, Max-Change: 0.00060
Iteration: 50, Log-Lik: -1280864.772, Max-Change: 0.00024
Iteration: 51, Log-Lik: -1280864.770, Max-Change: 0.00020
Iteration: 52, Log-Lik: -1280864.759, Max-Change: 0.00050
Iteration: 53, Log-Lik: -1280864.756, Max-Change: 0.00020
Iteration: 54, Log-Lik: -1280864.755, Max-Change: 0.00017
Iteration: 55, Log-Lik: -1280864.748, Max-Change: 0.00041
Iteration: 56, Log-Lik: -1280864.746, Max-Change: 0.00015
Iteration: 57, Log-Lik: -1280864.744, Max-Change: 0.00014
Iteration: 58, Log-Lik: -1280864.739, Max-Change: 0.00035
Iteration: 59, Log-Lik: -1280864.738, Max-Change: 0.00013
Iteration: 60, Log-Lik: -1280864.737, Max-Change: 0.00012
Iteration: 61, Log-Lik: -1280864.733, Max-Change: 0.00030
Iteration: 62, Log-Lik: -1280864.732, Max-Change: 0.00012
Iteration: 63, Log-Lik: -1280864.732, Max-Change: 0.00011
Iteration: 64, Log-Lik: -1280864.729, Max-Change: 0.00025
Iteration: 65, Log-Lik: -1280864.728, Max-Change: 0.00008

Step 7: Fit with anchor items, conservative threshold

Iteration: 1, Log-Lik: -1332792.316, Max-Change: 1.75386
Iteration: 2, Log-Lik: -1283808.529, Max-Change: 0.26776
Iteration: 3, Log-Lik: -1281606.400, Max-Change: 0.15984
Iteration: 4, Log-Lik: -1281135.870, Max-Change: 0.06626
Iteration: 5, Log-Lik: -1281015.828, Max-Change: 0.06897
Iteration: 6, Log-Lik: -1280973.912, Max-Change: 0.04954
Iteration: 7, Log-Lik: -1280953.271, Max-Change: 0.03063
Iteration: 8, Log-Lik: -1280941.488, Max-Change: 0.03315
Iteration: 9, Log-Lik: -1280933.740, Max-Change: 0.01746
Iteration: 10, Log-Lik: -1280928.557, Max-Change: 0.01210
Iteration: 11, Log-Lik: -1280924.914, Max-Change: 0.01374
Iteration: 12, Log-Lik: -1280922.223, Max-Change: 0.00803
Iteration: 13, Log-Lik: -1280917.482, Max-Change: 0.00758
Iteration: 14, Log-Lik: -1280916.438, Max-Change: 0.00619
Iteration: 15, Log-Lik: -1280915.592, Max-Change: 0.00587
Iteration: 16, Log-Lik: -1280912.564, Max-Change: 0.01378
Iteration: 17, Log-Lik: -1280911.668, Max-Change: 0.00353
Iteration: 18, Log-Lik: -1280911.293, Max-Change: 0.00244
Iteration: 19, Log-Lik: -1280909.934, Max-Change: 0.00954
Iteration: 20, Log-Lik: -1280909.383, Max-Change: 0.00526
Iteration: 21, Log-Lik: -1280909.178, Max-Change: 0.00323
Iteration: 22, Log-Lik: -1280908.426, Max-Change: 0.00616
Iteration: 23, Log-Lik: -1280908.154, Max-Change: 0.00283
Iteration: 24, Log-Lik: -1280908.036, Max-Change: 0.00140
Iteration: 25, Log-Lik: -1280907.676, Max-Change: 0.00324
Iteration: 26, Log-Lik: -1280907.557, Max-Change: 0.00135
Iteration: 27, Log-Lik: -1280907.480, Max-Change: 0.00117
Iteration: 28, Log-Lik: -1280907.166, Max-Change: 0.00351
Iteration: 29, Log-Lik: -1280907.059, Max-Change: 0.00092
Iteration: 30, Log-Lik: -1280907.014, Max-Change: 0.00092
Iteration: 31, Log-Lik: -1280906.825, Max-Change: 0.00239
Iteration: 32, Log-Lik: -1280906.764, Max-Change: 0.00071
Iteration: 33, Log-Lik: -1280906.736, Max-Change: 0.00070
Iteration: 34, Log-Lik: -1280906.618, Max-Change: 0.00167
Iteration: 35, Log-Lik: -1280906.582, Max-Change: 0.00058
Iteration: 36, Log-Lik: -1280906.565, Max-Change: 0.00056
Iteration: 37, Log-Lik: -1280906.489, Max-Change: 0.00135
Iteration: 38, Log-Lik: -1280906.467, Max-Change: 0.00047
Iteration: 39, Log-Lik: -1280906.456, Max-Change: 0.00045
Iteration: 40, Log-Lik: -1280906.405, Max-Change: 0.00109
Iteration: 41, Log-Lik: -1280906.391, Max-Change: 0.00038
Iteration: 42, Log-Lik: -1280906.384, Max-Change: 0.00039
Iteration: 43, Log-Lik: -1280906.349, Max-Change: 0.00089
Iteration: 44, Log-Lik: -1280906.340, Max-Change: 0.00031
Iteration: 45, Log-Lik: -1280906.335, Max-Change: 0.00032
Iteration: 46, Log-Lik: -1280906.310, Max-Change: 0.00074
Iteration: 47, Log-Lik: -1280906.304, Max-Change: 0.00023
Iteration: 48, Log-Lik: -1280906.301, Max-Change: 0.00025
Iteration: 49, Log-Lik: -1280906.283, Max-Change: 0.00061
Iteration: 50, Log-Lik: -1280906.279, Max-Change: 0.00021
Iteration: 51, Log-Lik: -1280906.276, Max-Change: 0.00019
Iteration: 52, Log-Lik: -1280906.264, Max-Change: 0.00051
Iteration: 53, Log-Lik: -1280906.261, Max-Change: 0.00016
Iteration: 54, Log-Lik: -1280906.259, Max-Change: 0.00017
Iteration: 55, Log-Lik: -1280906.250, Max-Change: 0.00043
Iteration: 56, Log-Lik: -1280906.248, Max-Change: 0.00014
Iteration: 57, Log-Lik: -1280906.246, Max-Change: 0.00014
Iteration: 58, Log-Lik: -1280906.240, Max-Change: 0.00036
Iteration: 59, Log-Lik: -1280906.238, Max-Change: 0.00012
Iteration: 60, Log-Lik: -1280906.237, Max-Change: 0.00012
Iteration: 61, Log-Lik: -1280906.232, Max-Change: 0.00030
Iteration: 62, Log-Lik: -1280906.231, Max-Change: 0.00010

Step 8: Get scores

Checking things in the dataframe

sexbias$effect_size_test
$liberal

$conservative
sexbias$effect_size_items
$liberal

$conservative
NA

Plotting bias in answers

sexbias$fits$anchor_conservative %>% plot(type = "trace")
ggsave(filename="gkansbias.jpg", device ="jpeg", path="plots", width=9, height=5, dpi=320)

Calculating the adjusted difference

e2o$ansadj = case_when(
  e2o$sex == 2 ~ e2o$mirtans - sexbias2$effect_size_test$conservative$Value[4],
  TRUE ~ e2o$mirtans
)

e2o$gkdadj = e2o$ansadj + e2o$distadj
SMD_matrix(e2o$gksumstand, e2o$sex, reliability = 0.93)
          1         2
1        NA 0.4376041
2 0.4376041        NA
SMD_matrix(e2o$gkdadj, e2o$sex, reliability = 0.93)
          1         2
1        NA 0.3105984
2 0.3105984        NA
SMD_matrix(as.vector(e2o$gkdsum2), e2o$sex, reliability = 0.93)
          1         2
1        NA 0.3063466
2 0.3063466        NA
LS0tDQp0aXRsZTogIkxvbmcgY29kZSAoc2V4IGRpZmZzKSINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQoNCkxvYWRpbmcgZGF0YS4NCmBgYHtyfQ0Kc2V0d2QoJ34nKQ0Kc2V0d2QoJ3Jmb2xkZXIvTUZHSzInKQ0KDQptZmdrZGF0YSA8LSByZWFkLmNzdihmaWxlPSJkYXRhL21mZ2tkYXRhLmNzdiIpDQpuaXEgPC0gcmVhZC5jc3YoZmlsZT0iZGF0YS9uaXEuY3N2IikNCg0KZW5nbmF0cyA8LSBtZmdrZGF0YQ0KDQplX3Rlc3QgPSBlbmduYXRzICU+JSBkcGx5cjo6c2VsZWN0KGNvbnRhaW5zKCJRIikpDQplX3Rlc3QgPSBlX3Rlc3QgJT4lIGRwbHlyOjpzZWxlY3QoY29udGFpbnMoIkUiKSkNCmBgYA0KDQpHaXZpbmcgY29sdW1ucyBuYW1lcyBhbmQgY29udmVydGluZyB0aGUgZGF0YXNldCdzIGFuc3dlciBmb3JtYXQgdG8gb25lIHRoYXQgY2FuDQpiZSB1c2VkLg0KYGBge3J9DQojIyMjIyMjI2ZsYWcgdW5kZXIgMTAwMCBtcw0KZm9yKGkgaW4gMTozMikgew0KICBlX3Rlc3RbLCBpXVtlX3Rlc3RbLCBpXSA8IDEwMDAgJiBlX3Rlc3RbLCBpXSA+IC0xXSA8LSBOQQ0KfQ0KDQojIyMjIyMjIyMjIyMjY3JlYXRlIGdyYXBoDQplMiA8LSBlbmduYXRzDQoNCmZvcihpIGluIDE6MzIpIHsNCiAgZTJbLCBpKjQtMV0gPC0gZV90ZXN0WywgaV0NCn0NCg0KIyMjIyMjIyMjY2FsY3VsYXRpbmcgc3Vtc2NvcmVzDQplMiA8LSBlbmduYXRzDQoNCmZvcihpIGluIDE6MzIpIHsNCiAgZTJbLCBpKjQtMV0gPC0gZV90ZXN0WywgaV0NCn0NCg0KDQpmb3IoaSBpbiAxOjM1Mikgew0KICBlMlssIDEzNyArIGldIDwtIE5BDQp9DQoNCmUyIDwtIGUyICU+JSANCiAgcmVuYW1lKCJRMTogRW1pbHkgRGlja2luc29uIiA9ICJWMTM4IiwNCiAgICAgICAgICJRMTogUm9iZXJ0IEZyb3N0IiA9ICJWMTM5IiwNCiAgICAgICAgICJRMTogU3lsdmlhIFBhdGgiID0gIlYxNDAiLA0KICAgICAgICAgIlExOiBNYXlhIEFuZ2Vsb3UiID0gIlYxNDEiLA0KICAgICAgICAgIlExOiBMYW5nc3RvbiBIdWdoZXMiID0gIlYxNDIiLA0KICAgICAgICAgIlEyOiBDYXRzIiA9ICJWMTQzIiwNCiAgICAgICAgICJRMjogVGhlIExpb24gS2luZyIgPSAiVjE0NCIsDQogICAgICAgICAiUTI6IEhhbWlsdG9uIiA9ICJWMTQ1IiwNCiAgICAgICAgICJRMjogV2lja2VkIiA9ICJWMTQ2IiwNCiAgICAgICAgICJRMjogS2lua3kgQm9vdHMiID0gIlYxNDciLA0KICAgICAgICAgIlEzOiBLd2FuemFhIiA9ICJWMTQ4IiwNCiAgICAgICAgICJRMzogQ2hyaXN0bWFzIiA9ICJWMTQ5IiwNCiAgICAgICAgICJRMzogUmFtYWRhbiIgPSAiVjE1MCIsDQogICAgICAgICAiUTM6IFlvbSBLaXBwdXIiID0gIlYxNTEiLA0KICAgICAgICAgIlEzOiBIYW51a2thaCIgPSAiVjE1MiIsDQogICAgICAgICAiUTQ6IENvdmVyR2lybCIgPSAiVjE1MyIsDQogICAgICAgICAiUTQ6IFNlcGhvcmEiID0gIlYxNTQiLA0KICAgICAgICAgIlE0OiBNYXliZWxsaW5lIiA9ICJWMTU1IiwNCiAgICAgICAgICJRNDogRGlvciIgPSAiVjE1NiIsDQogICAgICAgICAiUTQ6IFNoaXNlaWRvIiA9ICJWMTU3IiwNCiAgICAgICAgICJRNTogT3h5Y29kb25lIiA9ICJWMTU4IiwNCiAgICAgICAgICJRNTogSWJ1cHJvZmVuIiA9ICJWMTU5IiwNCiAgICAgICAgICJRNTogQ29kZWluZSIgPSAiVjE2MCIsDQogICAgICAgICAiUTU6IE1vcnBoaW5lIiA9ICJWMTYxIiwNCiAgICAgICAgICJRNTogQXNwcmluIiA9ICJWMTYyIiwNCiAgICAgICAgICJRNjogQUlEUyIgPSAiVjE2MyIsDQogICAgICAgICAiUTY6IEhlcnBlcyIgPSAiVjE2NCIsDQogICAgICAgICAiUTY6IENobGFteWRpYSIgPSAiVjE2NSIsDQogICAgICAgICAiUTY6IEh1bWFuIFBhcGlsbG9tYXZpcnVzIiA9ICJWMTY2IiwNCiAgICAgICAgICJRNjogVHJpY2hvbW9uaWFzaXMiID0gIlYxNjciLA0KICAgICAgICAgIlE3OiBDYW1lbCIgPSAiVjE2OCIsDQogICAgICAgICAiUTc6IE1hcmxib3JvIiA9ICJWMTY5IiwNCiAgICAgICAgICJRNzogTmV3cG9ydCIgPSAiVjE3MCIsDQogICAgICAgICAiUTc6IFBhbGwgTWF4IEJveCIgPSAiVjE3MSIsDQogICAgICAgICAiUTc6IFB5cmFtaWQiID0gIlYxNzIiLA0KICAgICAgICAgIlE4OiB3ZWVkIiA9ICJWMTczIiwNCiAgICAgICAgICJRODogNDIwIiA9ICJWMTc0IiwNCiAgICAgICAgICJRODogZ2FuamEiID0gIlYxNzUiLA0KICAgICAgICAgIlE4OiBjaHJvbmljIiA9ICJWMTc2IiwNCiAgICAgICAgICJRODogcmVlZmVyIiA9ICJWMTc3IiwNCiAgICAgICAgICJROTogU2VuZWdhbCIgPSAiVjE3OCIsDQogICAgICAgICAiUTk6IEl2b3J5IENvYXN0IiA9ICJWMTc5IiwNCiAgICAgICAgICJROTogUXVlYmVjIiA9ICJWMTgwIiwNCiAgICAgICAgICJROTogTW9yb2NjbyIgPSAiVjE4MSIsDQogICAgICAgICAiUTk6IFZpZXRuYW0iID0gIlYxODIiLA0KICAgICAgICAgIlExMDogVW5pdGVkIEtpbmdkb20iID0gIlYxODMiLA0KICAgICAgICAgIlExMDogSmFwYW4zIiA9ICJWMTg0IiwNCiAgICAgICAgICJRMTA6IFN3ZWRlbiIgPSAiVjE4NSIsDQogICAgICAgICAiUTEwOiBUaGFpbGFuZCIgPSAiVjE4NiIsDQogICAgICAgICAiUTEwOiBTYXVkaSBBcmFiaWEiID0gIlYxODciLA0KICAgICAgICAgIlExMTogU2F1ZGkgQXJhYmlhMiIgPSAiVjE4OCIsDQogICAgICAgICAiUTExOiBWZW5lenVlbGEiID0gIlYxODkiLA0KICAgICAgICAgIlExMTogTmlnZXJpYSIgPSAiVjE5MCIsDQogICAgICAgICAiUTExOiBOb3J3YXkiID0gIlYxOTEiLA0KICAgICAgICAgIlExMTogUWF0YXIiID0gIlYxOTIiLA0KICAgICAgICAgIlExMjogUnVzc2lhIiA9ICJWMTkzIiwNCiAgICAgICAgICJRMTI6IEZyYW5jZSIgPSAiVjE5NCIsDQogICAgICAgICAiUTEyOiBJc3JhZWwiID0gIlYxOTUiLA0KICAgICAgICAgIlExMjogQ2hpbmEiID0gIlYxOTYiLA0KICAgICAgICAgIlExMjogUGFraXN0YW4iID0gIlYxOTciLA0KICAgICAgICAgIlExMzogbXA0IiA9ICJWMTk4IiwNCiAgICAgICAgICJRMTM6IG1rdiIgPSAiVjE5OSIsDQogICAgICAgICAiUTEzOiBhdmkiID0gIlYyMDAiLA0KICAgICAgICAgIlExMzogd212IiA9ICJWMjAxIiwNCiAgICAgICAgICJRMTM6IG1vdiIgPSAiVjIwMiIsDQogICAgICAgICAiUTE0OiBJbnRlcm5ldCBFeHBsb3JlciIgPSAiVjIwMyIsDQogICAgICAgICAiUTE0OiBGaXJlZm94IiA9ICJWMjA0IiwNCiAgICAgICAgICJRMTQ6IFNhZmFyaSIgPSAiVjIwNSIsDQogICAgICAgICAiUTE0OiBPcGVyYSIgPSAiVjIwNiIsDQogICAgICAgICAiUTE0OiBDaHJvbWUiID0gIlYyMDciLA0KICAgICAgICAgIlExNTogVWJ1bnR1IiA9ICJWMjA4IiwNCiAgICAgICAgICJRMTU6IERlYmlhbiIgPSAiVjIwOSIsDQogICAgICAgICAiUTE1OiBGZWRvcmEiID0gIlYyMTAiLA0KICAgICAgICAgIlExNTogUkhFTCIgPSAiVjIxMSIsDQogICAgICAgICAiUTE1OiBTbGFja3dhcmUiID0gIlYyMTIiLA0KICAgICAgICAgIlExNjogMTAwIENvbnRpbnVlIiA9ICJWMjEzIiwNCiAgICAgICAgICJRMTY6IDUwMCBJbnRlcm5hbCBTZXJ2ZXIgRXJyb3IiID0gIlYyMTQiLA0KICAgICAgICAgIlExNjogMzAxIE1vdmVkIFBlcm1hbmVudGx5IiA9ICJWMjE1IiwNCiAgICAgICAgICJRMTY6IDQwNCBOb3QgRm91bmQiID0gIlYyMTYiLA0KICAgICAgICAgIlExNjogNTAyIEJhZCBHYXRld2F5IiA9ICJWMjE3IiwNCiAgICAgICAgICJRMTc6IFNoaXJ0IiA9ICJWMjE4IiwNCiAgICAgICAgICJRMTc6IFR1bmljIiA9ICJWMjE5IiwNCiAgICAgICAgICJRMTc6IFNhcm9uZyIgPSAiVjIyMCIsDQogICAgICAgICAiUTE3OiBTaGF3bCIgPSAiVjIyMSIsDQogICAgICAgICAiUTE3OiBDYW1pc29sZSIgPSAiVjIyMiIsDQogICAgICAgICAiUTE4OiBTYXciID0gIlYyMjMiLA0KICAgICAgICAgIlExODogQ2hpc2VsIiA9ICJWMjI0IiwNCiAgICAgICAgICJRMTg6IEJldmVsIiA9ICJWMjI1IiwNCiAgICAgICAgICJRMTg6IENhbGlwZXIiID0gIlYyMjYiLA0KICAgICAgICAgIlExODogQXdsIiA9ICJWMjI3IiwNCiAgICAgICAgICJRMTk6IE1lcmxvdCIgPSAiVjIyOCIsDQogICAgICAgICAiUTE5OiBDYWJlcm5ldCBzYXV2aWdub24iID0gIlYyMjkiLA0KICAgICAgICAgIlExOTogTWFsYmVjIiA9ICJWMjMwIiwNCiAgICAgICAgICJRMTk6IFNhbmdpb3Zlc2UiID0gIlYyMzEiLA0KICAgICAgICAgIlExOTogUGlub3QgTm9pciIgPSAiVjIzMiIsDQogICAgICAgICAiUTIwOiBSdW1teSIgPSAiVjIzMyIsDQogICAgICAgICAiUTIwOiBIZWFydHMiID0gIlYyMzQiLA0KICAgICAgICAgIlEyMDogUG9rZXIiID0gIlYyMzUiLA0KICAgICAgICAgIlEyMDogQnJpZGdlIiA9ICJWMjM2IiwNCiAgICAgICAgICJRMjA6IENyaWJiaWRnZSIgPSAiVjIzNyIsDQogICAgICAgICAiUTIxOiBSZXNpc3RvciIgPSAiVjIzOCIsDQogICAgICAgICAiUTIxOiBJbmR1Y3RvciIgPSAiVjIzOSIsDQogICAgICAgICAiUTIxOiBDYXBhY2l0b3IiID0gIlYyNDAiLA0KICAgICAgICAgIlEyMTogVHJhbnNpc3RvciIgPSAiVjI0MSIsDQogICAgICAgICAiUTIxOiBEaW9kZSIgPSAiVjI0MiIsDQogICAgICAgICAiUTIyOiBCaXRjb2luIiA9ICJWMjQzIiwNCiAgICAgICAgICJRMjI6IExpdGVjb2luIiA9ICJWMjQ0IiwNCiAgICAgICAgICJRMjI6IEV0aGVyaXVtIiA9ICJWMjQ1IiwNCiAgICAgICAgICJRMjI6IE1vbmVybyIgPSAiVjI0NiIsDQogICAgICAgICAiUTIyOiBSaXBwbGUiID0gIlYyNDciLA0KICAgICAgICAgIlEyMzogTWV4aWNvIiA9ICJWMjQ4IiwNCiAgICAgICAgICJRMjM6IEVneXB0IiA9ICJWMjQ5IiwNCiAgICAgICAgICJRMjM6IEluZGlhIiA9ICJWMjUwIiwNCiAgICAgICAgICJRMjM6IFN1ZGFuIiA9ICJWMjUxIiwNCiAgICAgICAgICJRMjM6IEluZG9uZXNpYSIgPSAiVjI1MiIsDQogICAgICAgICAiUTI0OiBBbCBDYXBvbmUiID0gIlYyNTMiLA0KICAgICAgICAgIlEyNDogVGVkIEthY3p5bnNraSIgPSAiVjI1NCIsDQogICAgICAgICAiUTI0OiBQYWJsbyBFc2NvYmFyIiA9ICJWMjU1IiwNCiAgICAgICAgICJRMjQ6IFRpbW90aHkgTWNWZWlnaCIgPSAiVjI1NiIsDQogICAgICAgICAiUTI0OiBKaW0gSm9uZXMiID0gIlYyNTciLA0KICAgICAgICAgIlEyNTogSW5maW5pdGUgSmVzdCIgPSAiVjI1OCIsDQogICAgICAgICAiUTI1OiBMZXMgTWlzZXJhYmxlcyIgPSAiVjI1OSIsDQogICAgICAgICAiUTI1OiBBdGxhcyBTaHJ1Z2dlZCIgPSAiVjI2MCIsDQogICAgICAgICAiUTI1OiBXYXIgYW5kIFBlYWNlIiA9ICJWMjYxIiwNCiAgICAgICAgICJRMjU6IENyeXB0b25vbWljb24iID0gIlYyNjIiLA0KICAgICAgICAgIlEyNjogTWlsZSIgPSAiVjI2MyIsDQogICAgICAgICAiUTI2OiBNZXRlciIgPSAiVjI2NCIsDQogICAgICAgICAiUTI2OiBGdXJsb25nIiA9ICJWMjY1IiwNCiAgICAgICAgICJRMjY6IFBhcnNlYyIgPSAiVjI2NiIsDQogICAgICAgICAiUTI2OiBBbmdzdHJvbSIgPSAiVjI2NyIsDQogICAgICAgICAiUTI3OiBDcm9zc0ZpdCIgPSAiVjI2OCIsDQogICAgICAgICAiUTI3OiBadW1iYSIgPSAiVjI2OSIsDQogICAgICAgICAiUTI3OiBCYXJyZSIgPSAiVjI3MCIsDQogICAgICAgICAiUTI3OiBQaWxhdGVzIiA9ICJWMjcxIiwNCiAgICAgICAgICJRMjc6IFRhYmF0YSIgPSAiVjI3MiIsDQogICAgICAgICAiUTI4OiBMT0wiID0gIlYyNzMiLA0KICAgICAgICAgIlEyODogUk9GTCIgPSAiVjI3NCIsDQogICAgICAgICAiUTI4OiBCUkIiID0gIlYyNzUiLA0KICAgICAgICAgIlEyODogR0ciID0gIlYyNzYiLA0KICAgICAgICAgIlEyODogRE0iID0gIlYyNzciLA0KICAgICAgICAgIlEyOTogb3JuYXRlIiA9ICJWMjc4IiwNCiAgICAgICAgICJRMjk6IGFkb3JuZWQiID0gIlYyNzkiLA0KICAgICAgICAgIlEyOTogY3VzaHkiID0gIlYyODAiLA0KICAgICAgICAgIlEyOTogcmVzcGxlbmRlbnQiID0gIlYyODEiLA0KICAgICAgICAgIlEyOTogc3BpZmZ5IiA9ICJWMjgyIiwNCiAgICAgICAgICJRMzA6IEhETUkiID0gIlYyODMiLA0KICAgICAgICAgIlEzMDogVVNCIiA9ICJWMjg0IiwNCiAgICAgICAgICJRMzA6IEV0aGVybmV0IiA9ICJWMjg1IiwNCiAgICAgICAgICJRMzA6IFNBVEEiID0gIlYyODYiLA0KICAgICAgICAgIlEzMDogRmlyZVdpcmUiID0gIlYyODciLA0KICAgICAgICAgIlEzMTogTGV1a2VtaWEiID0gIlYyODgiLA0KICAgICAgICAgIlEzMTogTHltcGhvbWEiID0gIlYyODkiLA0KICAgICAgICAgIlEzMTogTWVsYW5vbWEiID0gIlYyOTAiLA0KICAgICAgICAgIlEzMTogTWVzb3RoZWxpb21hIiA9ICJWMjkxIiwNCiAgICAgICAgICJRMzE6IFNhcmNvbWEiID0gIlYyOTIiLA0KICAgICAgICAgIlEzMjogQ2FsaWNvIiA9ICJWMjkzIiwNCiAgICAgICAgICJRMzI6IFBhaXNsZXkiID0gIlYyOTQiLA0KICAgICAgICAgIlEzMjogUGluc3RyaXBlIiA9ICJWMjk1IiwNCiAgICAgICAgICJRMzI6IFBsYWlkIiA9ICJWMjk2IiwNCiAgICAgICAgICJRMzI6IFRhcnRhbiIgPSAiVjI5NyIsDQogICAgICAgICAiUTE6IEVsaXphYmV0aCBDYWR5IFN0YW50b24iID0gIlYyOTgiLA0KICAgICAgICAgIlExOiBBYmlnYWlsIEFkYW1zIiA9ICJWMjk5IiwNCiAgICAgICAgICJRMTogTWFyY2VsIENvcmRvYmEiID0gIlYzMDAiLA0KICAgICAgICAgIlExOiBTdW4gVHp1IiA9ICJWMzAxIiwNCiAgICAgICAgICJRMTogVHJlbnQgTW9zZXNvbiIgPSAiVjMwMiIsDQogICAgICAgICAiUTI6IENhc2FibGFuY2EiID0gIlYzMDMiLA0KICAgICAgICAgIlEyOiBUaGUgVGluIE1hbiIgPSAiVjMwNCIsDQogICAgICAgICAiUTI6IEJsdWUgU3dlZGUgU2hvZXMiID0gIlYzMDUiLA0KICAgICAgICAgIlEyOiBDb21tb24gUHJvamVjdHMiID0gIlYzMDYiLA0KICAgICAgICAgIlEyOiBBbWFuZGluZSIgPSAiVjMwNyIsDQogICAgICAgICAiUTM6IE1pcmNoIE1hc2FsYSIgPSAiVjMwOCIsDQogICAgICAgICAiUTM6IFJlY29uY2lsaWF0aW9uIiA9ICJWMzA5IiwNCiAgICAgICAgICJRMzogQW1hZGFyIiA9ICJWMzEwIiwNCiAgICAgICAgICJRMzogRHVyZXN0IiA9ICJWMzExIiwNCiAgICAgICAgICJRMzogVml2ZXphIiA9ICJWMzEyIiwNCiAgICAgICAgICJRNDogVGhyaWZ0eUdhbCIgPSAiVjMxMyIsDQogICAgICAgICAiUTQ6IEFsbGVuZGEiID0gIlYzMTQiLA0KICAgICAgICAgIlE0OiBSZWlzIiA9ICJWMzE1IiwNCiAgICAgICAgICJRNDogTmV3QmVhdXR5VHJ1dGgiID0gIlYzMTYiLA0KICAgICAgICAgIlE0OiBBZWplb25nIiA9ICJWMzE3IiwNCiAgICAgICAgICJRNTogTW9kYWZpbmlsIiA9ICJWMzE4IiwNCiAgICAgICAgICJRNTogQ3JlYXRpbmUiID0gIlYzMTkiLA0KICAgICAgICAgIlE1OiBBbGVtdHV6dW1hYiIgPSAiVjMyMCIsDQogICAgICAgICAiUTU6IFNlbXRleCIgPSAiVjMyMSIsDQogICAgICAgICAiUTU6IENhcmJvcGxhdGluIiA9ICJWMzIyIiwNCiAgICAgICAgICJRNjogQm90dWxpc20iID0gIlYzMjMiLA0KICAgICAgICAgIlE2OiBTaGluZ2xlcyIgPSAiVjMyNCIsDQogICAgICAgICAiUTY6IFBuZXVtb25pYSIgPSAiVjMyNSIsDQogICAgICAgICAiUTY6IFR1YmVyY3Vsb3NpcyIgPSAiVjMyNiIsDQogICAgICAgICAiUTY6IFBlcnR1c2lzIiA9ICJWMzI3IiwNCiAgICAgICAgICJRNzogU2VhZ3JhbXMiID0gIlYzMjgiLA0KICAgICAgICAgIlE3OiBCbGFjayBWZWx2ZXQiID0gIlYzMjkiLA0KICAgICAgICAgIlE3OiBXaW5kc29yIiA9ICJWMzMwIiwNCiAgICAgICAgICJRNzogQmxhY2sgVHVya2V5IiA9ICJWMzMxIiwNCiAgICAgICAgICJRNzogU29sbyIgPSAiVjMzMiIsDQogICAgICAgICAiUTg6IHNtYWNrIiA9ICJWMzMzIiwNCiAgICAgICAgICJRODogdGlsdCIgPSAiVjMzNCIsDQogICAgICAgICAiUTg6IERuQiIgPSAiVjMzNSIsDQogICAgICAgICAiUTg6IEpvc2UgR2FyY2lhIiA9ICJWMzM2IiwNCiAgICAgICAgICJRODogSGVhdmVubHkgR3JlZW4iID0gIlYzMzciLA0KICAgICAgICAgIlE5OiBJbmRpYSAyIiA9ICJWMzM4IiwNCiAgICAgICAgICJROTogRmxvcmlkYSIgPSAiVjMzOSIsDQogICAgICAgICAiUTk6IEJyYXppbCIgPSAiVjM0MCIsDQogICAgICAgICAiUTk6IFNvdXRoIEFmcmljYSIgPSAiVjM0MSIsDQogICAgICAgICAiUTk6IEVneXB0IDIiID0gIlYzNDIiLA0KICAgICAgICAgIlExMDogRnJhbmNlIDIiID0gIlYzNDMiLA0KICAgICAgICAgIlExMDogR2VybWFueSIgPSAiVjM0NCIsDQogICAgICAgICAiUTEwOiBSdXNzaWEgMiIgPSAiVjM0NSIsDQogICAgICAgICAiUTEwOiBDaGluYSAyIiA9ICJWMzQ2IiwNCiAgICAgICAgICJRMTA6IEJyYXppbCAyIiA9ICJWMzQ3IiwNCiAgICAgICAgICJRMTE6IFppbWJhYndlIiA9ICJWMzQ4IiwNCiAgICAgICAgICJRMTE6IFN3ZWRlbjIiID0gIlYzNDkiLA0KICAgICAgICAgIlExMTogU2luZ2Fwb3JlIiA9ICJWMzUwIiwNCiAgICAgICAgICJRMTE6IFBhbmFtYSIgPSAiVjM1MSIsDQogICAgICAgICAiUTExOiBKYXBhbiIgPSAiVjM1MiIsDQogICAgICAgICAiUTEyOiBHZXJtYW55IDIiID0gIlYzNTMiLA0KICAgICAgICAgIlExMjogU2F1ZGkgQXJhYmlhIDMiID0gIlYzNTQiLA0KICAgICAgICAgIlExMjogTmlnZXJpYTIiID0gIlYzNTUiLA0KICAgICAgICAgIlExMjogTWV4aWNvIDIiID0gIlYzNTYiLA0KICAgICAgICAgIlExMjogU3BhaW4iID0gIlYzNTciLA0KICAgICAgICAgIlExMzogY3N2IiA9ICJWMzU4IiwNCiAgICAgICAgICJRMTM6IHhscyIgPSAiVjM1OSIsDQogICAgICAgICAiUTEzOiBmbGFjIiA9ICJWMzYwIiwNCiAgICAgICAgICJRMTM6IG1zaSIgPSAiVjM2MSIsDQogICAgICAgICAiUTEzOiBtcDMiID0gIlYzNjIiLA0KICAgICAgICAgIlExNDogU2xhdGUiID0gIlYzNjMiLA0KICAgICAgICAgIlExNDogRXhwZWRpdGlvbiIgPSAiVjM2NCIsDQogICAgICAgICAiUTE0OiBQaXBlcyIgPSAiVjM2NSIsDQogICAgICAgICAiUTE0OiBBZGVsZSIgPSAiVjM2NiIsDQogICAgICAgICAiUTE0OiBUZWxlZ3JhbSIgPSAiVjM2NyIsDQogICAgICAgICAiUTE1OiBJSVMiID0gIlYzNjgiLA0KICAgICAgICAgIlExNTogS29kaWFrIiA9ICJWMzY5IiwNCiAgICAgICAgICJRMTU6IFRlY2huaXRpdW0iID0gIlYzNzAiLA0KICAgICAgICAgIlExNTogT3JhY2xlIiA9ICJWMzcxIiwNCiAgICAgICAgICJRMTU6IEdvIiA9ICJWMzcyIiwNCiAgICAgICAgICJRMTY6IDUwMCBEZWxldGVkIiA9ICJWMzczIiwNCiAgICAgICAgICJRMTY6IDYwMCBFbmNyeXB0ZWQiID0gIlYzNzQiLA0KICAgICAgICAgIlExNjogMzAzIFBheW1lbnQgUHJvY2Vzc2luZyIgPSAiVjM3NSIsDQogICAgICAgICAiUTE2OiAyMDkgRG93bmxvYWQgQ29tcGxldGUiID0gIlYzNzYiLA0KICAgICAgICAgIlExNjogMTAxIFVzZSBQcm94eSIgPSAiVjM3NyIsDQogICAgICAgICAiUTE3OiBKYXlhbnRpIiA9ICJWMzc4IiwNCiAgICAgICAgICJRMTc6IFdyaXN0bGluZ3MiID0gIlYzNzkiLA0KICAgICAgICAgIlExNzogQ29ybmlrIiA9ICJWMzgwIiwNCiAgICAgICAgICJRMTc6IENoZWFwbmlrIiA9ICJWMzgxIiwNCiAgICAgICAgICJRMTc6IEZydXRpZ2VyIiA9ICJWMzgyIiwNCiAgICAgICAgICJRMTg6IFNrcmVlIiA9ICJWMzgzIiwNCiAgICAgICAgICJRMTg6IFdyeSIgPSAiVjM4NCIsDQogICAgICAgICAiUTE4OiBXaGlza2V0IiA9ICJWMzg1IiwNCiAgICAgICAgICJRMTg6IFNrYW5lIiA9ICJWMzg2IiwNCiAgICAgICAgICJRMTg6IEJydXRjaCIgPSAiVjM4NyIsDQogICAgICAgICAiUTE5OiBDaGFyZG9ubmF5IiA9ICJWMzg4IiwNCiAgICAgICAgICJRMTk6IFNlbWlsbG9uIiA9ICJWMzg5IiwNCiAgICAgICAgICJRMTk6IE1vc2NhdG8iID0gIlYzOTAiLA0KICAgICAgICAgIlExOTogR2V3dXVtbGFyenRyYW1pbmVyIiA9ICJWMzkxIiwNCiAgICAgICAgICJRMTk6IFJpZXNsaW5nIiA9ICJWMzkyIiwNCiAgICAgICAgICJRMjA6IFlhdHpoZSIgPSAiVjM5MyIsDQogICAgICAgICAiUTIwOiBDcm9xdWV0IiA9ICJWMzk0IiwNCiAgICAgICAgICJRMjA6IEJvY2NlIiA9ICJWMzk1IiwNCiAgICAgICAgICJRMjA6IEJsYWNrIDJzIiA9ICJWMzk2IiwNCiAgICAgICAgICJRMjA6IE1hbmhhdHRhbiIgPSAiVjM5NyIsDQogICAgICAgICAiUTIxOiBTaWduZXIiID0gIlYzOTgiLA0KICAgICAgICAgIlEyMTogU3ViZHVjdG9yIiA9ICJWMzk5IiwNCiAgICAgICAgICJRMjE6IEFubnVsdXMiID0gIlY0MDAiLA0KICAgICAgICAgIlEyMTogQm9zb24iID0gIlY0MDEiLA0KICAgICAgICAgIlEyMTogWmVub2lkIiA9ICJWNDAyIiwNCiAgICAgICAgICJRMjI6IEFscGhhQmF5IiA9ICJWNDAzIiwNCiAgICAgICAgICJRMjI6IERDQSIgPSAiVjQwNCIsDQogICAgICAgICAiUTIyOiBQYXlQYWwiID0gIlY0MDUiLA0KICAgICAgICAgIlEyMjogTGliZXJ0eSBMZWRnZXIiID0gIlY0MDYiLA0KICAgICAgICAgIlEyMjogRHdvcmsiID0gIlY0MDciLA0KICAgICAgICAgIlEyMzogR3JlZWNlIiA9ICJWNDA4IiwNCiAgICAgICAgICJRMjM6IFR1cmtleSIgPSAiVjQwOSIsDQogICAgICAgICAiUTIzOiBDb25nbyIgPSAiVjQxMCIsDQogICAgICAgICAiUTIzOiBNb25nb2xpYSIgPSAiVjQxMSIsDQogICAgICAgICAiUTIzOiBKYXBhbjIiID0gIlY0MTIiLA0KICAgICAgICAgIlEyNDogSGFydmV5IFBhcm5lbGwiID0gIlY0MTMiLA0KICAgICAgICAgIlEyNDogU2lkIE1jTWF0aCIgPSAiVjQxNCIsDQogICAgICAgICAiUTI0OiBKb2huIEdvb2RtYW4iID0gIlY0MTUiLA0KICAgICAgICAgIlEyNDogQnVzdGVyIEtlYXRvbiIgPSAiVjQxNiIsDQogICAgICAgICAiUTI0OiBQYXZlbCBUaWtob25vdiIgPSAiVjQxNyIsDQogICAgICAgICAiUTI1OiBQcmlkZSBhbmQgUHJlanVkaWNlIiA9ICJWNDE4IiwNCiAgICAgICAgICJRMjU6IEhhcnJ5IFBvdHRlciBhbmQgdGhlIFByaXNvbmVyIG9mIEF6a2FiYW4iID0gIlY0MTkiLA0KICAgICAgICAgIlEyNTogRmFocmVuaGVpdCA0NTEiID0gIlY0MjAiLA0KICAgICAgICAgIlEyNTogVG8gS2lsbCBhIE1vY2tpbmdiaXJkIiA9ICJWNDIxIiwNCiAgICAgICAgICJRMjU6IFNjaWVuY2UsIGFuZCBpdHMgQW50ZWNlZGVudHMiID0gIlY0MjIiLA0KICAgICAgICAgIlEyNjogTmV3dG9uIiA9ICJWNDIzIiwNCiAgICAgICAgICJRMjY6IFBhc2NhbCIgPSAiVjQyNCIsDQogICAgICAgICAiUTI2OiBQaXRjaCIgPSAiVjQyNSIsDQogICAgICAgICAiUTI2OiBIZXJ0eiIgPSAiVjQyNiIsDQogICAgICAgICAiUTI2OiBBbm51bSIgPSAiVjQyNyIsDQogICAgICAgICAiUTI3OiBTaGlhdHN1IiA9ICJWNDI4IiwNCiAgICAgICAgICJRMjc6IFJlZmxleG9sb2d5IiA9ICJWNDI5IiwNCiAgICAgICAgICJRMjc6IEdvb2JhIiA9ICJWNDMwIiwNCiAgICAgICAgICJRMjc6IFVsdHJhTWF4Rml0IiA9ICJWNDMxIiwNCiAgICAgICAgICJRMjc6IE5UUCIgPSAiVjQzMiIsDQogICAgICAgICAiUTI4OiBRVFkiID0gIlY0MzMiLA0KICAgICAgICAgIlEyODogRlVNIiA9ICJWNDM0IiwNCiAgICAgICAgICJRMjg6IEFFVCIgPSAiVjQzNSIsDQogICAgICAgICAiUTI4OiBUVCIgPSAiVjQzNiIsDQogICAgICAgICAiUTI4OiBNUkxPIiA9ICJWNDM3IiwNCiAgICAgICAgICJRMjk6IGVmZmVjdGl2ZSIgPSAiVjQzOCIsDQogICAgICAgICAiUTI5OiB2aXJpbGUiID0gIlY0MzkiLA0KICAgICAgICAgIlEyOTogZXN1bGVudCIgPSAiVjQ0MCIsDQogICAgICAgICAiUTI5OiBhZHNjaXRpdGlvdXMiID0gIlY0NDEiLA0KICAgICAgICAgIlEyOTogdGhhbGFzc2ljIiA9ICJWNDQyIiwNCiAgICAgICAgICJRMzA6IFdpRmkiID0gIlY0NDMiLA0KICAgICAgICAgIlEzMDogRC1IaWdoIiA9ICJWNDQ0IiwNCiAgICAgICAgICJRMzA6IDJJbnRlcmxpbmsiID0gIlY0NDUiLA0KICAgICAgICAgIlEzMDogUlRDIiA9ICJWNDQ2IiwNCiAgICAgICAgICJRMzA6IEhERCIgPSAiVjQ0NyIsDQogICAgICAgICAiUTMxOiBMeW1ub21hIiA9ICJWNDQ4IiwNCiAgICAgICAgICJRMzE6IENvbGVyZWN0aWEiID0gIlY0NDkiLA0KICAgICAgICAgIlEzMTogVml0aXN1cyIgPSAiVjQ1MCIsDQogICAgICAgICAiUTMxOiBUcmFkb21hIiA9ICJWNDUxIiwNCiAgICAgICAgICJRMzE6IENlbGxlbmlhIiA9ICJWNDUyIiwNCiAgICAgICAgICJRMzI6IFBlcml3aW5rbGUiID0gIlY0NTMiLA0KICAgICAgICAgIlEzMjogU25hcGRyYWdvbiIgPSAiVjQ1NCIsDQogICAgICAgICAiUTMyOiBTdGlsdGVkIiA9ICJWNDU1IiwNCiAgICAgICAgICJRMzI6IEFydm8iID0gIlY0NTYiLA0KICAgICAgICAgIlEzMjogVGFob21hIiA9ICJWNDU3Ig0KICApDQoNCmZvcihpIGluIDE6MzIpIHsNCiAgZTJbLCAxMzIrMStpKjVdW2dyZXBsKCJBMCIsIGUyWywgaSo0LTJdLCBmaXhlZD1UUlVFKV0gPC0gMQ0KICBlMlssIDEzMisxK2kqNV1bIWdyZXBsKCJBMCIsIGUyWywgaSo0LTJdLCBmaXhlZD1UUlVFKV0gPC0gMA0KICBlMlssIDEzMisyK2kqNV1bZ3JlcGwoIkExIiwgZTJbLCBpKjQtMl0sIGZpeGVkPVRSVUUpXSA8LSAxDQogIGUyWywgMTMyKzIraSo1XVshZ3JlcGwoIkExIiwgZTJbLCBpKjQtMl0sIGZpeGVkPVRSVUUpXSA8LSAwDQogIGUyWywgMTMyKzMraSo1XVtncmVwbCgiQTIiLCBlMlssIGkqNC0yXSwgZml4ZWQ9VFJVRSldIDwtIDENCiAgZTJbLCAxMzIrMytpKjVdWyFncmVwbCgiQTIiLCBlMlssIGkqNC0yXSwgZml4ZWQ9VFJVRSldIDwtIDANCiAgZTJbLCAxMzIrNCtpKjVdW2dyZXBsKCJBMyIsIGUyWywgaSo0LTJdLCBmaXhlZD1UUlVFKV0gPC0gMQ0KICBlMlssIDEzMis0K2kqNV1bIWdyZXBsKCJBMyIsIGUyWywgaSo0LTJdLCBmaXhlZD1UUlVFKV0gPC0gMA0KICBlMlssIDEzMis1K2kqNV1bZ3JlcGwoIkE0IiwgZTJbLCBpKjQtMl0sIGZpeGVkPVRSVUUpXSA8LSAxDQogIGUyWywgMTMyKzUraSo1XVshZ3JlcGwoIkE0IiwgZTJbLCBpKjQtMl0sIGZpeGVkPVRSVUUpXSA8LSAwDQogIGUyWywgMjkyKzEraSo1XVtncmVwbCgiQTUiLCBlMlssIGkqNC0yXSwgZml4ZWQ9VFJVRSldIDwtIDANCiAgZTJbLCAyOTIrMStpKjVdWyFncmVwbCgiQTUiLCBlMlssIGkqNC0yXSwgZml4ZWQ9VFJVRSldIDwtIDENCiAgZTJbLCAyOTIrMitpKjVdW2dyZXBsKCJBNiIsIGUyWywgaSo0LTJdLCBmaXhlZD1UUlVFKV0gPC0gMA0KICBlMlssIDI5MisyK2kqNV1bIWdyZXBsKCJBNiIsIGUyWywgaSo0LTJdLCBmaXhlZD1UUlVFKV0gPC0gMQ0KICBlMlssIDI5MiszK2kqNV1bZ3JlcGwoIkE3IiwgZTJbLCBpKjQtMl0sIGZpeGVkPVRSVUUpXSA8LSAwDQogIGUyWywgMjkyKzMraSo1XVshZ3JlcGwoIkE3IiwgZTJbLCBpKjQtMl0sIGZpeGVkPVRSVUUpXSA8LSAxDQogIGUyWywgMjkyKzQraSo1XVtncmVwbCgiQTgiLCBlMlssIGkqNC0yXSwgZml4ZWQ9VFJVRSldIDwtIDANCiAgZTJbLCAyOTIrNCtpKjVdWyFncmVwbCgiQTgiLCBlMlssIGkqNC0yXSwgZml4ZWQ9VFJVRSldIDwtIDENCiAgZTJbLCAyOTIrNStpKjVdW2dyZXBsKCJBOSIsIGUyWywgaSo0LTJdLCBmaXhlZD1UUlVFKV0gPC0gMA0KICBlMlssIDI5Mis1K2kqNV1bIWdyZXBsKCJBOSIsIGUyWywgaSo0LTJdLCBmaXhlZD1UUlVFKV0gPC0gMQ0KICBlMlssIDQ1NytpXSA8LSBlMlssIDEzMisxK2kqNV0gKyBlMlssIDEzMisyK2kqNV0gKyBlMlssIDEzMiszK2kqNV0gKyBlMlssIDEzMis0K2kqNV0gKyBlMlssIDEzMis1K2kqNV0gKyBlMlssIDI5MisxK2kqNV0gKyBlMlssIDI5MisyK2kqNV0gKyBlMlssIDI5MiszK2kqNV0gKyBlMlssIDI5Mis0K2kqNV0gKyBlMlssIDI5Mis1K2kqNV0gDQp9DQpgYGANCg0KQ2FsY3VsYXRpbmcgc2NvcmVzIG9uIHRoZSBnZW5lcmFsIGtub3dsZWRnZSB0ZXN0Lg0KYGBge3J9DQojIyMjIyMjIyNjYWxjdWxhdGluZyB0eXBlcyBvZiBzY29yZXMNCmUyJGdrc3VtID0gcm93U3VtcyhlMlssIDEzODo0NTddKQ0KZTIkZ2tzdW1zdGFuZCA8LSBub3JtYWxpc2UoZTIkZ2tzdW0pDQplMm8gPC0gbmEub21pdChlMikNCkdHX2Rlbmhpc3QoZTJvLCAiZ2tzdW0iLCBiaW5zPTUwKSANCmUydGVzdDMgPC0gZTJvWywgNDU4OjQ4OV0NCg0KbWVhbihlMm8kdGVzdGVsYXBzZSkNCm1lZGlhbihlMm8kdGVzdGVsYXBzZSkNCg0KZTJvY2VpbCA8LSBzdWJzZXQoZTJvLCBlMm8kZ2tzdW09PTMyMCkNCm1pcnRhbnN3ZXJzIDwtIG1pcnQoZTJvWywgMTM4OjI5N10sIG1vZGVsPTEsIGl0ZW10eXBlPSc0UEwnKQ0KbWlydGRpc3RyYWN0b3JzIDwtIG1pcnQoZTJvWywgMjk4OjQ1N10sIG1vZGVsPTEsIGl0ZW10eXBlPSc0UEwnKQ0KbWlydGFuc3dlcnMyIDwtIG1pcnQoZTJvWywgMTM4OjI5N10sIG1vZGVsPTEsIGl0ZW10eXBlPScyUEwnKQ0KbWlydGRpc3RyYWN0b3JzMiA8LSBtaXJ0KGUyb1ssIDI5ODo0NTddLCBtb2RlbD0xLCBpdGVtdHlwZT0nMlBMJykNCm1pcnRkaXN0cmFjdG9yc3MgPC0gbWlydChlMm9bLCAyOTg6NDU3XSwgbW9kZWw9MSwgaXRlbXR5cGU9J3NwbGluZScpDQphY3R1YWxtaXJ0IDwtIG1pcnQoZTJ0ZXN0MywgbW9kZWw9MSwgaXRlbXR5cGU9J2dyYWRlZCcpDQpzdW1tYXJ5KG1pcnRhbnN3ZXJzKQ0Kc3VtbWFyeShtaXJ0ZGlzdHJhY3RvcnMpDQpzdW1tYXJ5KGFjdHVhbG1pcnQpDQptaXJ0YW5zd2Vyc2YgPC0gZnNjb3JlcyhtaXJ0YW5zd2VycywgZnVsbC5zY29yZXMgPSBUUlVFKQ0KbWlydGRpc3RyYWN0b3JzZiA8LSBmc2NvcmVzKG1pcnRkaXN0cmFjdG9ycywgZnVsbC5zY29yZXMgPSBUUlVFKQ0KbWlydGFuc3dlcnMyZiA8LSBmc2NvcmVzKG1pcnRhbnN3ZXJzMiwgZnVsbC5zY29yZXMgPSBUUlVFKQ0KbWlydGRpc3RyYWN0b3JzMmYgPC0gZnNjb3JlcyhtaXJ0ZGlzdHJhY3RvcnMyLCBmdWxsLnNjb3JlcyA9IFRSVUUpDQptaXJ0czNmIDwtIGZzY29yZXMoYWN0dWFsbWlydCwgZnVsbC5zY29yZXMgPSBUUlVFKQ0KbWlydGRpc3RyYWN0b3Jzc2YgPC0gZnNjb3JlcyhhY3R1YWxtaXJ0LCBmdWxsLnNjb3JlcyA9IFRSVUUpDQplMm8kZ2tkc3VtID0gbWlydGFuc3dlcnNmICsgbWlydGRpc3RyYWN0b3JzZg0KZTJvJG1pcnRkaXN0ID0gbWlydGRpc3RyYWN0b3JzMmYNCmUybyRtaXJ0YW5zID0gbWlydGFuc3dlcnMyZg0KZTJvJGdrZHN1bTIgPSBtaXJ0YW5zd2VyczJmICsgbWlydGRpc3RyYWN0b3JzMmYNCmUybyRna2RzdW1zID0gbWlydGFuc3dlcnNmICsgbWlydGRpc3RyYWN0b3Jzc2YNCmBgYA0KDQpQcmUtY29kZSBmb3IgY2FsY3VsYXRpbmcgZGlmZmVyZW5jZXMgaW4gc3BlY2lmaWMgYWJpbGl0eSBieSBjb3VudHJ5LiANCk5hbWVzIHdlcmUgY2hhbmdlZCBtaWR3YXkgdGhyb3VnaCBzdHVkeSwgc28gdGhlIHZhbHVlcyBkb24ndCBjb3JyZXNwb25kIHRvIA0KdGhlIG9uZXMgaW4gdGhlIHBhcGVyLg0KYGBge3J9DQojIyMjIyMjIyMjIyMjIyMjIyMjIyMjcmF3IGRpZmZlcmVuY2UgdnMgc2NpZW50aWZpYy90ZWNoIGRpZmZlcmVuY2UNCg0KdGVjaHZlYyA8LSBjKDQ3MCwgNDcxLCA0NzIsIDQ3MywgNDc5LCA0ODcsIDQ3OCwgNDgzKQ0KaXZlYyA8LSBjKDQ2NiwgNDY3LCA0NjgsIDQ2OSwgNDgwKQ0KYmlvdmVjIDwtIGMoNDYwLCA0NjIsIDQ2MywgNDY0LCA0NjUsIDQ4MSwgNDg4KQ0KYWV2ZWMgPC0gYyg0NjEsIDQ3NCwgNDc2LCA0ODQsIDQ4OSkNCmN2ZWMgPC0gYyg0NTgsIDQ1OSwgNDgyKQ0KcHZlYyA8LSBjKDQ3NSwgNDc4LCA0ODMsIDQ4NikNCmUybyR0ayA9IDANCmUybyRpayA9IDANCmUybyRiayA9IDANCmUybyRhayA9IDANCmUybyRjayA9IDANCmUybyRwayA9IDANCg0KZm9yKGkgaW4gdGVjaHZlYykgew0KICBlMm8kdGsgPSBlMm9bLCBpXSArIGUybyR0aw0KfQ0KDQpmb3IoaSBpbiBpdmVjKSB7DQogIGUybyRpayA9IGUyb1ssIGldICsgZTJvJGlrDQp9DQoNCmZvcihpIGluIGJpb3ZlYykgew0KICBlMm8kYmsgPSBlMm9bLCBpXSArIGUybyRiaw0KfQ0KDQpmb3IoaSBpbiBhZXZlYykgew0KICBlMm8kYWsgPSBlMm9bLCBpXSArIGUybyRhaw0KfQ0KDQpmb3IoaSBpbiBjdmVjKSB7DQogIGUybyRjayA9IGUyb1ssIGldICsgZTJvJGNrDQp9DQoNCmZvcihpIGluIHB2ZWMpIHsNCiAgZTJvJHBrID0gZTJvWywgaV0gKyBlMm8kcGsNCn0NCg0KZ2V0ZGlmZnMgPC0gZnVuY3Rpb24ocmVmcywgYmlhc2csIHNjb2wpIHsNCiAgZnVsbGN1bnQgPC1jKHJlZnMsIGJpYXNnKQ0KICBlMm9nIDwtIGUybyAlPiUgDQogICAgZmlsdGVyKGNvdW50cnkgJWluJSBmdWxsY3VudCkgJT4lDQogICAgc2VsZWN0KHNjb2wpDQogIGUyb2ckYmlhc2MgPSAwDQogIGUyb2ckYmlhc2NbZTJvZyRjb3VudHJ5ICVpbiUgYmlhc2ddIDwtIDEgIA0KICBwcmludChtZWFuKGUyb2ckYmlhc2MpKm5yb3coZTJvZykpDQogIHByaW50KCJDb21wdXRhdGlvbmFsIGRpZmZlcmVuY2U6IikNCiAgcHJpbnQoY29oZW4uZChkYXRhPWUyb2csIHRrIH4gYmlhc2MpKQ0KICBwcmludChjb2hlbi5kKGRhdGE9ZTJvZywgdGsgfiBiaWFzYykkcCkNCiAgcHJpbnQoIlRlY2huaWNhbCBkaWZmZXJlbmNlOiIpDQogIHByaW50KGNvaGVuLmQoZGF0YT1lMm9nLCBwayB+IGJpYXNjKSkNCiAgcHJpbnQoY29oZW4uZChkYXRhPWUyb2csIHBrIH4gYmlhc2MpJHApDQogIHByaW50KCJJbnRlcm5hdGlvbmFsIGRpZmZlcmVuY2U6IikNCiAgcHJpbnQoY29oZW4uZChkYXRhPWUyb2csIGlrIH4gYmlhc2MpKQ0KICBwcmludChjb2hlbi5kKGRhdGE9ZTJvZywgaWsgfiBiaWFzYykkcCkNCiAgcHJpbnQoIkFlc3RoZXRpYyBkaWZmZXJlbmNlOiIpDQogIHByaW50KGNvaGVuLmQoZGF0YT1lMm9nLCBhayB+IGJpYXNjKSkNCiAgcHJpbnQoY29oZW4uZChkYXRhPWUyb2csIGFrIH4gYmlhc2MpJHApDQogIHByaW50KCJMaXRlcmFyeSBkaWZmZXJlbmNlOiIpDQogIHByaW50KGNvaGVuLmQoZGF0YT1lMm9nLCBjayB+IGJpYXNjKSkNCiAgcHJpbnQoY29oZW4uZChkYXRhPWUyb2csIGNrIH4gYmlhc2MpJHApDQogIHByaW50KCJDdWx0dXJhbCBkaWZmZXJlbmNlOiIpDQogIHByaW50KGNvaGVuLmQoZGF0YT1lMm9nLCBiayB+IGJpYXNjKSkNCiAgcHJpbnQoY29oZW4uZChkYXRhPWUyb2csIGJrIH4gYmlhc2MpJHApDQogIHByaW50KCJUb3RhbCBkaWZmZXJlbmNlOiIpDQogIHByaW50KGNvaGVuLmQoZGF0YT1lMm9nLCBna3N1bSB+IGJpYXNjKSkNCiAgcHJpbnQoY29oZW4uZChkYXRhPWUyb2csIGdrc3VtIH4gYmlhc2MpJHApDQp9DQpgYGANCg0KRGlmZmVyZW5jZXMgYmV0d2VlbiBHZXJtYW5zIGFuZCBBbmdsb3M6DQpgYGB7cn0NCnJlZiA9IGMoIlVTIiwgIkdCIiwgIkFVIiwgIk5aIiwgIlpBIiwgIkNBIiwgIklFIikNCmIgPSBjKCJERSIsICJDSCIsICJBVCIpDQpnZXRkaWZmcyhyZWYsIGIsIGNvbG5hbWVzKGUybykpDQpgYGANCg0KRGlmZmVyZW5jZXMgYmV0d2VlbiBMYXRpbiBBbWVyaWNhbnMgYW5kIEFuZ2xvczoNCmBgYHtyfQ0KYiA9IGMoIk1YIiwgIk5JIiwgIlBBIiwgIlBFIiwgJ1BIJywgJ1BSJywgJ1BZJywgJ1NWJywgJ1VZJywgJ0FSJywgJ0JPJywgJ0JSJywgJ0JaJywgJ0NMJywgJ0NPJywgJ0NSJywgJ0NVJywgJ0VDJywgJ0dUJywgJ0hOJywgJ0dZJykNCmdldGRpZmZzKHJlZiwgYiwgY29sbmFtZXMoZTJvKSkNCmBgYA0KDQpEaWZmZXJlbmNlcyBiZXR3ZWVuIE5vcnRoZXJuIEV1cm9wZWFucyBhbmQgQW5nbG9zOg0KYGBge3J9DQpiID0gYygnTk8nLCAnU0UnLCAnRkknLCAnREsnLCAnSVMnLCAnTFUnLCAnTkwnLCAnQkUnKQ0KZ2V0ZGlmZnMocmVmLCBiLCBjb2xuYW1lcyhlMm8pKQ0KYGBgDQoNCkRpZmZlcmVuY2VzIGJldHdlZW4gU291dGhlcm4gRXVyb3BlYW5zIGFuZCBBbmdsb3M6DQpgYGB7cn0NCmIgPSBjKCdQVCcsICdFUycsICdGUicsICdJVCcsICdHUicsICdBRCcsICdNVCcpDQpnZXRkaWZmcyhyZWYsIGIsIGNvbG5hbWVzKGUybykpDQpgYGANCg0KRGlmZmVyZW5jZXMgYmV0d2VlbiBFYXN0ZXJuIEV1cm9wZWFucyBhbmQgQW5nbG9zOg0KYGBge3J9DQpiID0gYygnRUUnLCAnTFQnLCAnTFYnLCAnQlknLCAnVUEnLCAnUk8nLCAnQkcnLCAnUEwnLCAnQ1onLCAnSFUnLCAnTUQnLCAnUlUnLCAnU0knLCAnU0snKQ0KZ2V0ZGlmZnMocmVmLCBiLCBjb2xuYW1lcyhlMm8pKQ0KYGBgDQpEaWZmZXJlbmNlIGJldHdlZW4gQmFsa2FucyBhbmQgQW5nbG9zDQpgYGB7cn0NCmIgPSBjKCdIUicsICdCQScsICdGTScsICdSUycsICdIUicsICdBTCcsICdNSycpDQpnZXRkaWZmcyhyZWYsIGIsIGNvbG5hbWVzKGUybykpDQpgYGANCkRpZmZlcmVuY2UgYmV0d2VlbiBDYXVjYXNpYW5zL1R1cmtpY3MgYW5kIEFuZ2xvcw0KYGBge3J9DQpiID0gYygnVFInLCAnQU0nLCAnR0UnLCAnQVonLCAnQ1knKQ0KZ2V0ZGlmZnMocmVmLCBiLCBjb2xuYW1lcyhlMm8pKQ0KYGBgDQpEaWZmZXJlbmNlIGJldHdlZW4gTWlkZGxlIEVhc3Rlcm5lcnMgYW5kIEFuZ2xvcw0KYGBge3J9DQpiID0gYygnTUEnLCAnRFonLCAnTFknLCAnRUcnLCAnSUwnLCAnQUYnLCAnSVInLCAnSVEnLCAnSk8nLCAnS1cnLCAnTEInLCAnT00nLCAnUEsnLCAnUUEnLCAnU0EnLCAnVE4nKQ0KZ2V0ZGlmZnMocmVmLCBiLCBjb2xuYW1lcyhlMm8pKQ0KYGBgDQoNCkRpZmZlcmVuY2UgYmV0d2VlbiBTdWItU2FoYXJhbiBBZnJpY2FucyBhbmQgQW5nbG9zDQpgYGB7cn0NCmIgPSBjKCdOQScsICdCVycsICdaVycsICdNWicsICdNRycsICdaTScsICdBTycsICdDRCcsICdUWicsICdVRycsICdLRScsICdDRycsICdHQScsICdTTycsICdFVCcsICdTUycsICdDRicsICdDTScsICdORycsICdHSCcsICdDSScsICdHTicsICdTTicsICdTRCcsICdURCcsICdORScsICdNTCcsICdNUicsICdFSCcsICdMSycsICdSVycsICdUWicsICdTQycsICdNVicsICdNVScsICdNVycpDQpnZXRkaWZmcyhyZWYsIGIsIGNvbG5hbWVzKGUybykpDQpgYGANCg0KRGlmZmVyZW5jZSBiZXR3ZWVuIEVhc3Rlcm4gQXNpYW5zIGFuZCBBbmdsb3MNCmBgYHtyfQ0KYiA9IGMoJ0hLJywgJ1NHJywgJ0NIJywgJ0tSJywgJ0pQJywgJ0tQJywgJ1RXJywgJ01OJykNCmdldGRpZmZzKHJlZiwgYiwgY29sbmFtZXMoZTJvKSkNCmBgYA0KDQpEaWZmZXJlbmNlIGJldHdlZW4gU291dGhlcm4gQXNpYW5zIGFuZCBBbmdsb3MNCmBgYHtyfQ0KYiA9IGMoJ0lOJywgJ01WJywgJ0JEJywgJ05QJywgJ0JIJykNCmdldGRpZmZzKHJlZiwgYiwgY29sbmFtZXMoZTJvKSkNCmBgYA0KDQpEaWZmZXJlbmNlIGJldHdlZW4gU291dGggRWFzdCBBc2lhbnMgYW5kIEFuZ2xvcw0KYGBge3J9DQpiID0gYygnVEgnLCAnS0gnLCAnTEEnLCAnVk4nLCAnTVknLCAnUEgnKQ0KZ2V0ZGlmZnMocmVmLCBiLCBjb2xuYW1lcyhlMm8pKQ0KDQpgYGANCg0KUHJlLWNvZGUgZm9yIGNvcnJlbGF0aW9ucyBiZXR3ZWVuIGZhY2V0cyBvZiBrbm93bGVkZ2UgYW5kIElRIGJ5IGNvdW50cnkuIA0KYGBge3J9DQojIyMjIyMjIyMjYmVmb3JlIGFkanVzdG1lbnQNCmUybyR0a24gPC0gKGUybyR0ayAtIG1lYW4oZTJvJHRrKSkvc2QoZTJvJHRrKQ0KZTJvJGJrbiA8LSAoZTJvJGJrIC0gbWVhbihlMm8kYmspKS9zZChlMm8kYmspDQplMm8kY2tuIDwtIChlMm8kY2sgLSBtZWFuKGUybyRjaykpL3NkKGUybyRjaykNCmUybyRha24gPC0gKGUybyRhayAtIG1lYW4oZTJvJGFrKSkvc2QoZTJvJGFrKQ0KZTJvJGlrbiA8LSAoZTJvJGlrIC0gbWVhbihlMm8kaWspKS9zZChlMm8kaWspDQplMm8kcGtuIDwtIChlMm8kcGsgLSBtZWFuKGUybyRwaykpL3NkKGUybyRwaykNCg0KDQplMm8kZ2tub3JtZWQgPSAoZTJvJGdrc3Vtc3RhbmQgLSBtZWFuKG11cmljYSRna3N1bXN0YW5kKSkvc2QoZTJvJGdrc3Vtc3RhbmQpDQpna3MgPC0gYWdncmVnYXRlKGUybyRna25vcm1lZCoxNSsxMDAsIGxpc3QoZTJvJGNvdW50cnkpLCBtZWFuKQ0KdGtzIDwtIGFnZ3JlZ2F0ZShlMm8kdGtuKjE1KzEwMCwgbGlzdChlMm8kY291bnRyeSksIG1lYW4pDQpia3MgPC0gYWdncmVnYXRlKGUybyRia24qMTUrMTAwLCBsaXN0KGUybyRjb3VudHJ5KSwgbWVhbikNCmNrcyA8LSBhZ2dyZWdhdGUoZTJvJGNrbioxNSsxMDAsIGxpc3QoZTJvJGNvdW50cnkpLCBtZWFuKQ0KYWtzIDwtIGFnZ3JlZ2F0ZShlMm8kYWtuKjE1KzEwMCwgbGlzdChlMm8kY291bnRyeSksIG1lYW4pDQppa3MgPC0gYWdncmVnYXRlKGUybyRpa24qMTUrMTAwLCBsaXN0KGUybyRjb3VudHJ5KSwgbWVhbikNCnBrcyA8LSBhZ2dyZWdhdGUoZTJvJHBrbioxNSsxMDAsIGxpc3QoZTJvJGNvdW50cnkpLCBtZWFuKQ0KY3QgPC0gZTJvICU+JSBjb3VudChjb3VudHJ5KQ0KbmF0cyA8LSBkYXRhLmZyYW1lKGdrcywgY3QpDQpuYXRzJGdrcyA8LSBna3MNCm5hdHMkdGtzIDwtIHRrcw0KbmF0cyRia3MgPC0gYmtzDQpuYXRzJGNrcyA8LSBja3MNCm5hdHMkYWtzIDwtIGFrcw0KbmF0cyRpa3MgPC0gaWtzDQpuYXRzJHBrcyA8LSBwa3MNCm5hdHMkaW8zIDwtIGNvdW50cnljb2RlKG5hdHMkY291bnRyeSwgb3JpZ2luID0gImlzbzJjIiwgZGVzdGluYXRpb24gPSAiaXNvM2MiKQ0KbmlxJElkZW50aWZpY2F0aW9uIDwtIG5pcSRhbHBoYTMNCml0YTAgPC0gZnVsbF9qb2luKG5hdHMsIG5pcSwgYnkgPSBqb2luX2J5KGlvMyA9PSBJZGVudGlmaWNhdGlvbikpDQppdGEwIDwtIGl0YTBbIWR1cGxpY2F0ZWQoaXRhMCRjb3VudHJ5KSwgXQ0KaXRhMCA8LSBzdWJzZXQoaXRhMCwgaXRhMCRuPjQ5KQ0KYGBgDQoNCkNvcnJlbGF0aW9ucyBiZXR3ZWVuIGFiaWxpdGllcyBhbmQgbmF0aW9uYWwgSVFzDQpgYGB7cn0NCiNUZWNobmljYWwNCmNvci50ZXN0KGl0YTAkdGtzJHgsIGl0YTAkUikNCiNDdWx0dXJhbA0KY29yLnRlc3QoaXRhMCRia3MkeCwgaXRhMCRSKQ0KI0xpdGVyYXJ5DQpjb3IudGVzdChpdGEwJGNrcyR4LCBpdGEwJFIpDQojQWVzdGhldGljDQpjb3IudGVzdChpdGEwJGFrcyR4LCBpdGEwJFIpDQojSW50ZXJuYXRpb25hbA0KY29yLnRlc3QoaXRhMCRpa3MkeCwgaXRhMCRSKQ0KI1RlY2huaWNhbA0KY29yLnRlc3QoaXRhMCRwa3MkeCwgaXRhMCRSKQ0KI0dlbmVyYWwNCmNvci50ZXN0KGl0YTAkZ2tzJHgsIGl0YTAkUikNCg0Kd3JpdGVfY3N2KGRhdGEuZnJhbWUoaXRhMCAlPiUgdW5saXN0KCkpLCAiZGF0YS9oZWxsby5jc3YiKQ0KYGBgDQoNCkJpYXMgdGVzdGluZyBpbiBkaXN0cmFjdG9ycyBmb3IgR2VybWFuLXNwZWFraW5nIGNvdW50cmllcyB2cyBBbmdsb3NoZXJlLiANCmBgYHtyfQ0KIyMjIyMjIyMjIyMjIyMjIyMjQklBUyBURVNUSU5HIEdFUk1BTlMNCnJlZnMgPSBjKCJVUyIsICJHQiIsICJBVSIsICJOWiIsICJaQSIsICJDQSIsICJJRSIpDQpiID0gYygiREUiLCAiQ0giLCAiQVQiKQ0KDQpyZWZlcmVuY2UgPSBjKCJVUyIsICJHQiIsICJBVSIsICJOWiIsICJaQSIsICJDQSIsICJJRSIpDQpiaWFzZyA9IGMoIkRFIiwgIkNIIiwgIkFUIikNCnNjb2wgPSBjb2xuYW1lcyhlMm8pDQpmdWxsY3VudCA8LWMocmVmcywgYmlhc2cpDQplMm9nIDwtIGUybyAlPiUgDQogIGZpbHRlcihjb3VudHJ5ICVpbiUgZnVsbGN1bnQpICU+JQ0KICBzZWxlY3Qoc2NvbCkNCmUyb2ckYmlhc2MgPSAwDQplMm9nJGJpYXNjW2Uyb2ckY291bnRyeSAlaW4lIGJpYXNnXSA8LSAxIA0KDQpnZXJtYW5iaWFzID0gRElGX3Rlc3QoDQogIGl0ZW1zID0gZTJvZ1ssIDI5ODo0NTddLA0KICBtb2RlbCA9IDEsDQogIGdyb3VwID0gZTJvZyRiaWFzYywNCiAgaXRlbXR5cGUgPSAnMlBMJw0KKQ0KDQpgYGANCg0KU2l6ZSBvZiB0aGUgYmlhcyBpbiBkaXN0cmFjdG9ycyBhY2NvcmRpbmcgdG8gRElGLiANCmBgYHtyfQ0KZ2VybWFuYmlhcyRlZmZlY3Rfc2l6ZV90ZXN0DQpnZXJtYW5iaWFzJGVmZmVjdF9zaXplX2l0ZW1zDQpnZXJtYW5iaWFzJGZpdHMkYW5jaG9yX2NvbnNlcnZhdGl2ZSAlPiUgcGxvdCh0eXBlID0gInRyYWNlIikNCmUyb2ckZGlzdGFkaiA9IGNhc2Vfd2hlbigNCiAgZTJvZyRiaWFzYyA9PSAxIH4gZTJvZyRtaXJ0ZGlzdCAtIGdlcm1hbmJpYXMkZWZmZWN0X3NpemVfdGVzdCRjb25zZXJ2YXRpdmUkVmFsdWVbNF0sDQogIFRSVUUgfiBlMm9nJG1pcnRkaXN0DQopDQpwcmludCgiZGlmZmVyZW5jZSBpbiBkaXN0cmFjdG9ycyBhZGp1c3RlZDoiKQ0KY29oZW4uZChkYXRhPWUyb2csIGRpc3RhZGogfiBiaWFzYykNCnByaW50KCJkaWZmZXJlbmNlIGluIGRpc3RyYWN0b3JzIHVuYWRqdXN0ZWQ6IikNCmNvaGVuLmQoZGF0YT1lMm9nLCBtaXJ0ZGlzdCB+IGJpYXNjKQ0KYGBgDQoNCkJpYXMgdGVzdGluZyBpbiBhbnN3ZXJzIGZvciBHZXJtYW4tc3BlYWtpbmcgY291bnRyaWVzIHZzIEFuZ2xvc2hlcmUuIA0KYGBge3J9DQpnZXJtYW5iaWFzMiA9IERJRl90ZXN0KA0KICBpdGVtcyA9IGUyb2dbLCAxMzg6Mjk3XSwNCiAgbW9kZWwgPSAxLA0KICBncm91cCA9IGUyb2ckYmlhc2MsDQogIGl0ZW10eXBlID0gJzJQTCcNCikNCmBgYA0KDQpTaXplIG9mIHRoZSBiaWFzIGluIGFuc3dlcnMgYWNjb3JkaW5nIHRvIERJRi4gDQpgYGB7cn0NCmdlcm1hbmJpYXMyJGVmZmVjdF9zaXplX3Rlc3QNCmdlcm1hbmJpYXMyJGVmZmVjdF9zaXplX2l0ZW1zDQpnZXJtYW5iaWFzMiRmaXRzJGFuY2hvcl9jb25zZXJ2YXRpdmUgJT4lIHBsb3QodHlwZSA9ICJ0cmFjZSIpDQplMm9nJGFuc2FkaiA9IGNhc2Vfd2hlbigNCiAgZTJvZyRiaWFzYyA9PSAxIH4gZTJvZyRtaXJ0YW5zIC0gZ2VybWFuYmlhczIkZWZmZWN0X3NpemVfdGVzdCRjb25zZXJ2YXRpdmUkVmFsdWVbNF0sDQogIFRSVUUgfiBlMm9nJG1pcnRhbnMNCikNCnByaW50KCJkaWZmZXJlbmNlIGluIGFuc3dlcnMgYWRqdXN0ZWQ6IikNCmNvaGVuLmQoZGF0YT1lMm9nLCBhbnNhZGogfiBiaWFzYykNCnByaW50KCJkaWZmZXJlbmNlIGluIGFuc3dlcnMgdW5hZGp1c3RlZDoiKQ0KY29oZW4uZChkYXRhPWUyb2csIG1pcnRhbnMgfiBiaWFzYykNCmBgYA0KDQpTaXplIG9mIHRoZSBiaWFzIGluIHNjb3JlIGFjY29yZGluZyB0byBESUYuIA0KYGBge3J9DQplMm9nJGFkanNjb3JlID0gZTJvZyRhbnNhZGogKyBlMm9nJGRpc3RhZGoNCnByaW50KCJkaWZmZXJlbmNlIGluIHNjb3JlIGFkanVzdGVkOiIpDQpjb2hlbi5kKGRhdGE9ZTJvZywgYWRqc2NvcmUgfiBiaWFzYykNCnByaW50KCJkaWZmZXJlbmNlIGluIHNjb3JlIHVuYWRqdXN0ZWQ6IikNCmNvaGVuLmQoZGF0YT1lMm9nLCBna2RzdW0yIH4gYmlhc2MpDQpgYGANCg0KUGxvdHRpbmcgYW5kIHNhdmluZyBkaXN0cmFjdG9yIGJpYXMgY2hhcnQNCmBgYHtyfQ0Kc2V4YmlhczIkZml0cyRhbmNob3JfY29uc2VydmF0aXZlICU+JSBwbG90KHR5cGUgPSAidHJhY2UiKQ0KZ2dzYXZlKGZpbGVuYW1lPSJna3RyYWN0b3JiaWFzLmpwZyIsIGRldmljZSA9ImpwZWciLCBwYXRoPSJwbG90cyIsIHdpZHRoPTksIGhlaWdodD01LCBkcGk9MzIwKQ0KYGBgDQoNCg0KQmlhcyB0ZXN0aW5nIGZvciBtZW4gdnMgd29tZW4gZm9yIGRpc3RyYWN0b3JzLiANCmBgYHtyfQ0KIyMjIyMjIyMjIyMjIyMjIyMjIw0KZTJvJHNleCA8LSBlMm8kZ2VuZGVyDQplMm8kc2V4W2UybyRzZXg9PTNdIDwtIE5BDQplMm8kc2V4W2UybyRzZXg9PTBdIDwtIE5BDQoNCmUybyRkaXN0YWRqID0gY2FzZV93aGVuKA0KICBlMm8kc2V4ID09IDIgfiBlMm8kbWlydGRpc3QgLSBzZXhiaWFzMiRlZmZlY3Rfc2l6ZV90ZXN0JGNvbnNlcnZhdGl2ZSRWYWx1ZVs0XSwNCiAgVFJVRSB+IGUybyRtaXJ0ZGlzdA0KKQ0KDQpzZXhiaWFzMiA9IERJRl90ZXN0KA0KICBpdGVtcyA9IGUyb1ssIDI5ODo0NTddLA0KICBtb2RlbCA9IDEsDQogIGdyb3VwID0gZTJvJHNleCwNCiAgaXRlbXR5cGUgPSAnMlBMJw0KKQ0KYGBgDQoNCkNoZWNraW5nIHRoZSBzdGF0cyBpbiB0aGUgRElGIGRhdGFmcmFtZQ0KYGBge3J9DQpvcHRpb25zKG1heC5wcmludD0xMDAwKQ0KcHJpbnQoc2V4YmlhczIkRElGX3N0YXRzLCBuPTEwMDApDQpzZXhiaWFzMiRlZmZlY3Rfc2l6ZV9pdGVtc1syXQ0Kc2V4YmlhczIkZWZmZWN0X3NpemVfaXRlbXMNCnNleGJpYXMyJERJRl9zdGF0cw0Kc2V4YmlhczIkZWZmZWN0X3NpemVfdGVzdA0Kc2V4YmlhczIkZWZmZWN0X3NpemVfaXRlbXMNCmBgYA0KDQpESUYgdGVzdGluZyBmb3IgYW5zd2Vycy4NCmBgYHtyfQ0KZTJvJGRpc3RhZGogPSBjYXNlX3doZW4oDQogIGUybyRzZXggPT0gMiB+IGUybyRtaXJ0ZGlzdCAtIHNleGJpYXMyJGVmZmVjdF9zaXplX3Rlc3QkY29uc2VydmF0aXZlJFZhbHVlWzRdLA0KICBUUlVFIH4gZTJvJG1pcnRkaXN0DQopDQoNCnNleGJpYXMgPSBESUZfdGVzdCgNCiAgaXRlbXMgPSBlMm9bLCAxMzg6Mjk3XSwNCiAgbW9kZWwgPSAxLA0KICBncm91cCA9IGUybyRzZXgsDQogIGl0ZW10eXBlID0gJzJQTCcNCikNCg0KYGBgDQoNCkNoZWNraW5nIHRoaW5ncyBpbiB0aGUgZGF0YWZyYW1lDQpgYGB7cn0NCnNleGJpYXMkZWZmZWN0X3NpemVfdGVzdA0Kc2V4YmlhcyRlZmZlY3Rfc2l6ZV9pdGVtcw0KYGBgDQoNClBsb3R0aW5nIGJpYXMgaW4gYW5zd2Vycw0KYGBge3J9DQpzZXhiaWFzJGZpdHMkYW5jaG9yX2NvbnNlcnZhdGl2ZSAlPiUgcGxvdCh0eXBlID0gInRyYWNlIikNCmdnc2F2ZShmaWxlbmFtZT0iZ2thbnNiaWFzLmpwZyIsIGRldmljZSA9ImpwZWciLCBwYXRoPSJwbG90cyIsIHdpZHRoPTksIGhlaWdodD01LCBkcGk9MzIwKQ0KYGBgDQoNCkNhbGN1bGF0aW5nIHRoZSBhZGp1c3RlZCBkaWZmZXJlbmNlDQpgYGB7cn0NCmUybyRhbnNhZGogPSBjYXNlX3doZW4oDQogIGUybyRzZXggPT0gMiB+IGUybyRtaXJ0YW5zIC0gc2V4YmlhczIkZWZmZWN0X3NpemVfdGVzdCRjb25zZXJ2YXRpdmUkVmFsdWVbNF0sDQogIFRSVUUgfiBlMm8kbWlydGFucw0KKQ0KDQplMm8kZ2tkYWRqID0gZTJvJGFuc2FkaiArIGUybyRkaXN0YWRqDQpTTURfbWF0cml4KGUybyRna3N1bXN0YW5kLCBlMm8kc2V4LCByZWxpYWJpbGl0eSA9IDAuOTMpDQpTTURfbWF0cml4KGUybyRna2RhZGosIGUybyRzZXgsIHJlbGlhYmlsaXR5ID0gMC45MykNClNNRF9tYXRyaXgoYXMudmVjdG9yKGUybyRna2RzdW0yKSwgZTJvJHNleCwgcmVsaWFiaWxpdHkgPSAwLjkzKQ0KYGBgDQoNCg0K