Chapter 09 Chapter 09 (page 398): 5, 7, 8
5. We have seen that we can fit an SVM with a non-linear kernel in order to perform classification using a non-linear decision boundary. We will now see that we can also obtain a non-linear decision boundary by performing logistic regression using non-linear transformations of the features.
set.seed(421)
x1 = runif(500) - 0.5
x2 = runif(500) - 0.5
y=1*(x1^2-x2^2>0)
plot(x1[y == 0], x2[y == 0], col = "red", xlab = "X1", ylab = "X2", pch = "+")
points(x1[y == 1], x2[y == 1], col = "blue", pch = 4)
lm.fit = glm(y ~ x1 + x2, family = binomial)
summary(lm.fit)
##
## Call:
## glm(formula = y ~ x1 + x2, family = binomial)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.11999 0.08971 1.338 0.181
## x1 -0.16881 0.30854 -0.547 0.584
## x2 -0.08198 0.31476 -0.260 0.795
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 691.35 on 499 degrees of freedom
## Residual deviance: 690.99 on 497 degrees of freedom
## AIC: 696.99
##
## Number of Fisher Scoring iterations: 3
data = data.frame(x1 = x1, x2 = x2, y = y)
lm.prob = predict(lm.fit, data, type = "response")
lm.pred = ifelse(lm.prob > 0.52, 1, 0)
data.pos = data[lm.pred == 1, ]
data.neg = data[lm.pred == 0, ]
plot(data.pos$x1, data.pos$x2, col = "blue", xlab = "X1", ylab = "X2", pch = "+")
points(data.neg$x1, data.neg$x2, col = "red", pch = 4)
lm.fit = glm(y ~ poly(x1, 2) + poly(x2, 2) + I(x1 * x2), data = data, family = binomial)
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
lm.prob = predict(lm.fit, data, type = "response")
lm.pred = ifelse(lm.prob > 0.5, 1, 0)
data.pos = data[lm.pred == 1, ]
data.neg = data[lm.pred == 0, ]
plot(data.pos$x1, data.pos$x2, col = "blue", xlab = "X1", ylab = "X2", pch = "+")
points(data.neg$x1, data.neg$x2, col = "red", pch = 4)
library(e1071)
## Warning: package 'e1071' was built under R version 4.3.3
svm.fit = svm(as.factor(y) ~ x1 + x2, data, kernel = "linear", cost = 0.1)
svm.pred = predict(svm.fit, data)
data.pos = data[svm.pred == 1, ]
data.neg = data[svm.pred == 0, ]
plot(data.pos$x1, data.pos$x2, col = "blue", xlab = "X1", ylab = "X2", pch = "+")
points(data.neg$x1, data.neg$x2, col = "red", pch = 4)
svm.fit = svm(as.factor(y) ~ x1 + x2, data, gamma = 1)
svm.pred = predict(svm.fit, data)
data.pos = data[svm.pred == 1, ]
data.neg = data[svm.pred == 0, ]
plot(data.pos$x1, data.pos$x2, col = "blue", xlab = "X1", ylab = "X2", pch = "+")
points(data.neg$x1, data.neg$x2, col = "red", pch = 4)
The experiment perfromed covers the idea of SVMS are important to use for finding non linear models using cross validation would be easier with the parameter of gamma.
7. In this problem, you will use support vector approaches in order to predict whether a given car gets high or low gas mileage based on the Auto data set.
library(ISLR2)
gas.med = median(Auto$mpg)
new.var = ifelse(Auto$mpg > gas.med, 1, 0)
Auto$mpglevel = as.factor(new.var)
library(e1071)
set.seed(3255)
tune.out = tune(svm, mpglevel ~ ., data = Auto, kernel = "linear", ranges = list(cost = c(0.01,
0.1, 1, 5, 10, 100)))
summary(tune.out)
##
## Parameter tuning of 'svm':
##
## - sampling method: 10-fold cross validation
##
## - best parameters:
## cost
## 1
##
## - best performance: 0.01269231
##
## - Detailed performance results:
## cost error dispersion
## 1 1e-02 0.07397436 0.06863413
## 2 1e-01 0.05102564 0.06923024
## 3 1e+00 0.01269231 0.02154160
## 4 5e+00 0.01519231 0.01760469
## 5 1e+01 0.02025641 0.02303772
## 6 1e+02 0.03294872 0.02898463
set.seed(21)
tune.out = tune(svm, mpglevel ~ ., data = Auto, kernel = "polynomial", ranges = list(cost = c(0.1,
1, 5, 10), degree = c(2, 3, 4)))
summary(tune.out)
##
## Parameter tuning of 'svm':
##
## - sampling method: 10-fold cross validation
##
## - best parameters:
## cost degree
## 10 2
##
## - best performance: 0.5435897
##
## - Detailed performance results:
## cost degree error dispersion
## 1 0.1 2 0.5587821 0.04538579
## 2 1.0 2 0.5587821 0.04538579
## 3 5.0 2 0.5587821 0.04538579
## 4 10.0 2 0.5435897 0.05611162
## 5 0.1 3 0.5587821 0.04538579
## 6 1.0 3 0.5587821 0.04538579
## 7 5.0 3 0.5587821 0.04538579
## 8 10.0 3 0.5587821 0.04538579
## 9 0.1 4 0.5587821 0.04538579
## 10 1.0 4 0.5587821 0.04538579
## 11 5.0 4 0.5587821 0.04538579
## 12 10.0 4 0.5587821 0.04538579
set.seed(463)
tune.out = tune(svm, mpglevel ~ ., data = Auto, kernel = "radial", ranges = list(cost = c(0.1,
1, 5, 10), gamma = c(0.01, 0.1, 1, 5, 10, 100)))
summary(tune.out)
##
## Parameter tuning of 'svm':
##
## - sampling method: 10-fold cross validation
##
## - best parameters:
## cost gamma
## 10 0.01
##
## - best performance: 0.02551282
##
## - Detailed performance results:
## cost gamma error dispersion
## 1 0.1 1e-02 0.09429487 0.04814900
## 2 1.0 1e-02 0.07897436 0.03875105
## 3 5.0 1e-02 0.05352564 0.02532795
## 4 10.0 1e-02 0.02551282 0.02417610
## 5 0.1 1e-01 0.07891026 0.03847631
## 6 1.0 1e-01 0.05602564 0.02881876
## 7 5.0 1e-01 0.03826923 0.03252085
## 8 10.0 1e-01 0.03320513 0.02964746
## 9 0.1 1e+00 0.57660256 0.05479863
## 10 1.0 1e+00 0.06628205 0.02996211
## 11 5.0 1e+00 0.06115385 0.02733573
## 12 10.0 1e+00 0.06115385 0.02733573
## 13 0.1 5e+00 0.57660256 0.05479863
## 14 1.0 5e+00 0.51538462 0.06642516
## 15 5.0 5e+00 0.50775641 0.07152757
## 16 10.0 5e+00 0.50775641 0.07152757
## 17 0.1 1e+01 0.57660256 0.05479863
## 18 1.0 1e+01 0.53833333 0.05640443
## 19 5.0 1e+01 0.53070513 0.05708644
## 20 10.0 1e+01 0.53070513 0.05708644
## 21 0.1 1e+02 0.57660256 0.05479863
## 22 1.0 1e+02 0.57660256 0.05479863
## 23 5.0 1e+02 0.57660256 0.05479863
## 24 10.0 1e+02 0.57660256 0.05479863
svm.linear = svm(mpglevel ~ ., data = Auto, kernel = "linear", cost = 1)
svm.poly = svm(mpglevel ~ ., data = Auto, kernel = "polynomial", cost = 10,
degree = 2)
svm.radial = svm(mpglevel ~ ., data = Auto, kernel = "radial", cost = 10, gamma = 0.01)
plotpairs = function(fit) {
for (name in names(Auto)[!(names(Auto) %in% c("mpg", "mpglevel", "name"))]) {
plot(fit, Auto, as.formula(paste("mpg~", name, sep = "")))
}
}
plotpairs(svm.linear)
plotpairs(svm.poly)
plotpairs(svm.radial)
8. This problem involves the OJ data set which is part of the ISLR package.
set.seed(1)
train = sample(1:nrow(OJ), 800)
OJtrain = OJ[train, ]
OJtest = OJ[-train, ]
svmlinOJ = svm(Purchase ~ ., data = OJtrain, kernel = "linear", cost = 0.01)
summary(svmlinOJ)
##
## Call:
## svm(formula = Purchase ~ ., data = OJtrain, kernel = "linear", cost = 0.01)
##
##
## Parameters:
## SVM-Type: C-classification
## SVM-Kernel: linear
## cost: 0.01
##
## Number of Support Vectors: 435
##
## ( 219 216 )
##
##
## Number of Classes: 2
##
## Levels:
## CH MM
The svm created 435 support vectors, with two classes (CH and MM). 219 are CH and 216 are MM.
train.pred = predict(svmlinOJ, OJtrain)
table(OJtrain$Purchase, train.pred)
## train.pred
## CH MM
## CH 420 65
## MM 75 240
1 - (420 + 240) / (420 + 240 + 65 + 75)
## [1] 0.175
test.pred = predict(svmlinOJ, OJtest)
table(OJtest$Purchase, test.pred)
## test.pred
## CH MM
## CH 153 15
## MM 33 69
1 - (153 + 69) / (153 + 69 + 15 + 33)
## [1] 0.1777778
The Train error is 17.50%, and the Test error is 17.78%
set.seed(1)
tunesvm = tune(svm, Purchase ~ ., data = OJtrain, kernel = "linear", ranges = list(cost = c(0.01, 1, 10)))
summary(tunesvm)
##
## Parameter tuning of 'svm':
##
## - sampling method: 10-fold cross validation
##
## - best parameters:
## cost
## 10
##
## - best performance: 0.17375
##
## - Detailed performance results:
## cost error dispersion
## 1 0.01 0.17625 0.02853482
## 2 1.00 0.17500 0.02946278
## 3 10.00 0.17375 0.03197764
svm10OJ = svm(Purchase ~ ., data = OJtrain, kernel = "linear", cost = 10)
train10pred = predict(svm10OJ, OJtrain)
table(OJtrain$Purchase, train10pred)
## train10pred
## CH MM
## CH 423 62
## MM 69 246
1 - (423 + 246) / 800
## [1] 0.16375
svm10OJ = svm(Purchase ~ ., data = OJtest, kernel = "linear", cost = 10)
test10pred = predict(svm10OJ, OJtest)
table(OJtest$Purchase, test10pred)
## test10pred
## CH MM
## CH 154 14
## MM 31 71
1 - (154 + 71) / 270
## [1] 0.1666667
The training error for the SVM with a cost of 10 is 16.375%. The test error for the SVM with a cost of 10 is 16.667%
svmradOJ = svm(Purchase ~ ., data = OJtrain, kernel = "radial")
trainpred = predict(svmradOJ, OJtrain)
table(OJtrain$Purchase, trainpred)
## trainpred
## CH MM
## CH 441 44
## MM 77 238
1 - (441 + 238) / 800
## [1] 0.15125
testpred = predict(svmradOJ, OJtest)
table(OJtest$Purchase, testpred)
## testpred
## CH MM
## CH 151 17
## MM 33 69
1 - (151 + 69) / 270
## [1] 0.1851852
set.seed(1)
tunesvm = tune(svm, Purchase ~ ., data = OJtrain, kernal = "radial", ranges = list(cost = c(0.01, 1, 10)))
summary(tunesvm)
##
## Parameter tuning of 'svm':
##
## - sampling method: 10-fold cross validation
##
## - best parameters:
## cost
## 1
##
## - best performance: 0.17125
##
## - Detailed performance results:
## cost error dispersion
## 1 0.01 0.39375 0.04007372
## 2 1.00 0.17125 0.02128673
## 3 10.00 0.18625 0.02853482
svmradOJ = svm(Purchase ~ ., data = OJtrain, kernel = "radial", cost = 1)
trainpred = predict(svmradOJ, OJtrain)
table(OJtrain$Purchase, trainpred)
## trainpred
## CH MM
## CH 441 44
## MM 77 238
1 - (441 + 238) / 800
## [1] 0.15125
testpred = predict(svmradOJ, OJtest)
table(OJtest$Purchase, testpred)
## testpred
## CH MM
## CH 151 17
## MM 33 69
1 - (151 + 69) / 270
## [1] 0.1851852
Train error for default radial svm is 15.125%. Test error for default radial svm is 18.519%
Tuned training error for radial svm is 15.125%. Tuned test error for radial svm is 18.519%
svmpolyOJ = svm(Purchase ~ ., data = OJtrain, kernel = "polynomial", degree = 2)
trainpred = predict(svmpolyOJ, OJtrain)
table(OJtrain$Purchase, trainpred)
## trainpred
## CH MM
## CH 449 36
## MM 110 205
1 - (449 + 205) / 800
## [1] 0.1825
testpred = predict(svmpolyOJ, OJtest)
table(OJtest$Purchase, testpred)
## testpred
## CH MM
## CH 153 15
## MM 45 57
1 - (154 + 65) / 270
## [1] 0.1888889
set.seed(1)
tunesvm = tune(svm, Purchase ~ ., data = OJtrain, kernel = "polynomial", degree = 2, ranges = list(cost = c(0.01, 1, 10)))
summary(tunesvm)
##
## Parameter tuning of 'svm':
##
## - sampling method: 10-fold cross validation
##
## - best parameters:
## cost
## 10
##
## - best performance: 0.18125
##
## - Detailed performance results:
## cost error dispersion
## 1 0.01 0.39125 0.04210189
## 2 1.00 0.20250 0.04116363
## 3 10.00 0.18125 0.02779513
svmpolyOJ = svm(Purchase ~ ., data = OJtrain, kernel = "polynomial", degree = 2, cost = 10)
trainpred = predict(svmpolyOJ, OJtrain)
table(OJtrain$Purchase, trainpred)
## trainpred
## CH MM
## CH 447 38
## MM 82 233
1 - (447 + 233) / 800
## [1] 0.15
Train error for tuned polynomial ia 15.00%
testpred = predict(svmpolyOJ, OJtest)
table(OJtest$Purchase, testpred)
## testpred
## CH MM
## CH 154 14
## MM 37 65
1 - (154 + 65) / 270
## [1] 0.1888889
Test error for tuned polynomial 18.89%