Figure 12.1 Orthogonal Factor Model of Alcohol Expectations

Load Simulated Alcohol Expectation Data

Simulated Alcohol Expectation Data

Path Diagram

Orthogonal Factor Model
Orthogonal Factor Model

R Program

require(lavaan)
## Loading required package: lavaan
## This is lavaan 0.6-19
## lavaan is FREE software! Please report any bugs.
AlcExpect <- read.table("RFDSim.txt", header = TRUE) ;
head(AlcExpect)
##    rridaw0  rridbw0  rridcw0  rriddw0  rridew0   rridfw0   rridgw0   rridhw0
## 1 2.687040 2.105432 2.955291 2.820890 3.011609 1.3377554 0.5349941 0.4296285
## 2 2.415095 2.479291 2.404402 2.340840 2.564941 0.3607768 1.2527989 1.4869882
## 3 2.570646 3.143387 3.389949 2.972546 1.771171 4.6113733 4.0045561 3.5789757
## 4 2.078310 2.449843 1.911547 2.170200 3.104838 2.5728633 2.3151849 2.3457529
## 5 3.097760 2.887276 3.472790 3.071860 3.420305 2.2009355 1.5155192 3.0457780
## 6 4.277197 2.907983 3.549188 3.439084 2.629298 3.3831835 2.7476027 2.9028434
##     rridiw0   rridjw0  rridkw0  rridlw0  rridmw0  rridnw0  rridow0   rridpw0
## 1 0.7943853 1.5222660 2.095139 2.355999 1.589406 1.784467 2.351270 1.0202452
## 2 1.2002544 0.9543229 2.650829 4.349754 1.303579 2.632062 2.787251 1.6073625
## 3 3.7166902 3.8827689 2.990634 2.715253 1.740789 1.804472 2.447188 3.0422424
## 4 0.7744396 2.0349575 1.867178 3.199668 1.734972 1.908805 2.693824 2.8287871
## 5 2.1533348 1.5777493 2.516460 2.515727 1.488641 1.918064 2.540850 0.8392062
## 6 3.1489301 2.7458411 2.286619 2.328228 2.020846 1.668394 4.285813 2.8689959
##    rridqw0  rridrw0   rridsw0  rridtw0  rriduw0   rridvw0   rridww0
## 1 2.510164 2.971957 1.8797322 1.449552 1.476912 1.6832636 1.1923636
## 2 3.123877 3.128297 0.6928955 1.208093 1.399289 1.2096589 1.3229972
## 3 2.398190 3.197675 1.8309651 1.707260 2.016092 1.9380034 1.8090042
## 4 2.254861 2.735416 0.9300000 1.440608 1.652199 1.7063254 1.1159016
## 5 2.888308 3.513411 2.3369828 1.389949 1.055930 0.8787579 0.3784458
## 6 2.071705 3.520809 1.1979326 1.376556 1.625872 1.3022140 1.3423324
Fig12.1Model<-"
! regressions 
   F1=~L1*rridaw0
   F1=~L2*rridbw0
   F1=~L3*rridcw0
   F1=~L4*rriddw0
   F1=~L5*rridew0
   F2=~L6*rriduw0
   F2=~L7*rridvw0
   F2=~L8*rridtw0
   F2=~L9*rridsw0
   F2=~L10*rridww0
   F3=~L11*rridqw0
   F3=~L12*rridkw0
   F3=~L13*rridpw0
   F3=~L14*rridrw0
   F3=~L15*rridow0
! residuals, variances and covariances
   rridaw0 ~~ Ea*rridaw0
   rridbw0 ~~ Eb*rridbw0
   rridcw0 ~~ Ec*rridcw0
   rriddw0 ~~ Ed*rriddw0
   rridew0 ~~ Ee*rridew0
   rriduw0 ~~ Eu*rriduw0
   rridvw0 ~~ Ev*rridvw0
   rridtw0 ~~ Et*rridtw0
   rridsw0 ~~ Es*rridsw0
   rridww0 ~~ Ew*rridww0
   rridqw0 ~~ Eq*rridqw0
   rridkw0 ~~ Ek*rridkw0
   rridpw0 ~~ Ep*rridpw0
   rridrw0 ~~ Er*rridrw0
   rridow0 ~~ Eo*rridow0
   F1 ~~ 1.0*F1
   F2 ~~ 1.0*F2
   F3 ~~ 1.0*F3
   F1 ~~ 0.0*F2
   F1 ~~ 0.0*F3
   F2 ~~ 0.0*F3
! observed means
   rridaw0~1;
   rridbw0~1;
   rridcw0~1;
   rriddw0~1;
   rridew0~1;
   rriduw0~1;
   rridvw0~1;
   rridtw0~1;
   rridsw0~1;
   rridww0~1;
   rridqw0~1;
   rridkw0~1;
   rridpw0~1;
   rridrw0~1;
   rridow0~1;
"

Fig12.1Result<-lavaan(Fig12.1Model, data=AlcExpect, fixed.x=FALSE, missing="FIML")
summary(Fig12.1Result, fit.measures=TRUE,standardized=TRUE);
## lavaan 0.6-19 ended normally after 33 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        45
## 
##   Number of observations                          2422
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                                       
##   Test statistic                              3345.089
##   Degrees of freedom                                90
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                             27821.072
##   Degrees of freedom                               105
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.883
##   Tucker-Lewis Index (TLI)                       0.863
##                                                       
##   Robust Comparative Fit Index (CFI)             0.883
##   Robust Tucker-Lewis Index (TLI)                0.863
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -34225.575
##   Loglikelihood unrestricted model (H1)     -32553.030
##                                                       
##   Akaike (AIC)                               68541.150
##   Bayesian (BIC)                             68801.805
##   Sample-size adjusted Bayesian (SABIC)      68658.830
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.122
##   90 Percent confidence interval - lower         0.119
##   90 Percent confidence interval - upper         0.126
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    1.000
##                                                       
##   Robust RMSEA                                   0.122
##   90 Percent confidence interval - lower         0.119
##   90 Percent confidence interval - upper         0.126
##   P-value H_0: Robust RMSEA <= 0.050             0.000
##   P-value H_0: Robust RMSEA >= 0.080             1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.244
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   F1 =~                                                                 
##     rridaw0   (L1)    0.769    0.015   49.660    0.000    0.769    0.832
##     rridbw0   (L2)    0.636    0.017   38.166    0.000    0.636    0.693
##     rridcw0   (L3)    0.870    0.014   60.602    0.000    0.870    0.938
##     rriddw0   (L4)    0.884    0.015   58.666    0.000    0.884    0.921
##     rridew0   (L5)    0.580    0.016   35.726    0.000    0.580    0.658
##   F2 =~                                                                 
##     rriduw0   (L6)    0.576    0.010   56.468    0.000    0.576    0.902
##     rridvw0   (L7)    0.604    0.010   58.100    0.000    0.604    0.918
##     rridtw0   (L8)    0.524    0.011   46.538    0.000    0.524    0.802
##     rridsw0   (L9)    0.543    0.014   40.092    0.000    0.543    0.723
##     rridww0  (L10)    0.624    0.014   45.705    0.000    0.624    0.790
##   F3 =~                                                                 
##     rridqw0  (L11)    0.892    0.017   53.624    0.000    0.892    0.882
##     rridkw0  (L12)    0.870    0.017   50.151    0.000    0.870    0.844
##     rridpw0  (L13)    0.791    0.020   38.710    0.000    0.791    0.707
##     rridrw0  (L14)    0.776    0.016   48.407    0.000    0.776    0.826
##     rridow0  (L15)    0.791    0.018   43.243    0.000    0.791    0.766
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   F1 ~~                                                                 
##     F2                0.000                               0.000    0.000
##     F3                0.000                               0.000    0.000
##   F2 ~~                                                                 
##     F3                0.000                               0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .rridaw0           3.023    0.019  160.998    0.000    3.023    3.271
##    .rridbw0           2.935    0.019  157.441    0.000    2.935    3.199
##    .rridcw0           3.067    0.019  162.812    0.000    3.067    3.308
##    .rriddw0           2.995    0.020  153.421    0.000    2.995    3.117
##    .rridew0           3.122    0.018  174.332    0.000    3.122    3.542
##    .rriduw0           1.296    0.013   99.917    0.000    1.296    2.030
##    .rridvw0           1.310    0.013   98.102    0.000    1.310    1.993
##    .rridtw0           1.320    0.013   99.373    0.000    1.320    2.019
##    .rridsw0           1.441    0.015   94.438    0.000    1.441    1.919
##    .rridww0           1.469    0.016   91.442    0.000    1.469    1.858
##    .rridqw0           2.767    0.021  134.527    0.000    2.767    2.734
##    .rridkw0           2.881    0.021  137.706    0.000    2.881    2.798
##    .rridpw0           2.187    0.023   96.154    0.000    2.187    1.954
##    .rridrw0           3.098    0.019  162.275    0.000    3.098    3.297
##    .rridow0           2.566    0.021  122.358    0.000    2.566    2.486
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .rridaw0   (Ea)    0.263    0.009   29.658    0.000    0.263    0.308
##    .rridbw0   (Eb)    0.438    0.013   32.646    0.000    0.438    0.520
##    .rridcw0   (Ec)    0.103    0.006   18.525    0.000    0.103    0.120
##    .rriddw0   (Ed)    0.141    0.006   22.063    0.000    0.141    0.152
##    .rridew0   (Ee)    0.440    0.013   33.084    0.000    0.440    0.567
##    .rriduw0   (Eu)    0.076    0.003   23.693    0.000    0.076    0.186
##    .rridvw0   (Ev)    0.068    0.003   20.561    0.000    0.068    0.156
##    .rridtw0   (Et)    0.152    0.005   29.223    0.000    0.152    0.357
##    .rridsw0   (Es)    0.269    0.009   31.396    0.000    0.269    0.477
##    .rridww0   (Ew)    0.235    0.008   30.341    0.000    0.235    0.376
##    .rridqw0   (Eq)    0.228    0.010   22.726    0.000    0.228    0.223
##    .rridkw0   (Ek)    0.304    0.012   26.295    0.000    0.304    0.287
##    .rridpw0   (Ep)    0.626    0.020   31.352    0.000    0.626    0.500
##    .rridrw0   (Er)    0.281    0.010   27.304    0.000    0.281    0.318
##    .rridow0   (Eo)    0.440    0.015   29.734    0.000    0.440    0.413
##     F1                1.000                               1.000    1.000
##     F2                1.000                               1.000    1.000
##     F3                1.000                               1.000    1.000
require(lavaangui)
## Loading required package: lavaangui
## Warning: package 'lavaangui' was built under R version 4.5.1
## This is lavaangui 0.2.5
## lavaangui is BETA software! Please report any bugs at https://github.com/karchjd/lavaangui/issues
#plot_lavaan(Fig12.1Result)

Figure 12.2 Correlated (a.k.a. Oblique) Factor Model of Alcohol Expectations

Path Diagram

Correlated (Oblique) Factor Model
Correlated (Oblique) Factor Model

R Program

require(lavaan)

Fig12.2Model<-"
! regressions 
   F1=~L1*rridaw0
   F1=~L2*rridbw0
   F1=~L3*rridcw0
   F1=~L4*rriddw0
   F1=~L5*rridew0
   F2=~L6*rriduw0
   F2=~L7*rridvw0
   F2=~L8*rridtw0
   F2=~L9*rridsw0
   F2=~L10*rridww0
   F3=~L11*rridqw0
   F3=~L12*rridkw0
   F3=~L13*rridpw0
   F3=~L14*rridrw0
   F3=~L15*rridow0
! residuals, variances and covariances
   rridaw0 ~~ Ea*rridaw0
   rridbw0 ~~ Eb*rridbw0
   rridcw0 ~~ Ec*rridcw0
   rriddw0 ~~ Ed*rriddw0
   rridew0 ~~ Ee*rridew0
   rriduw0 ~~ Eu*rriduw0
   rridvw0 ~~ Ev*rridvw0
   rridtw0 ~~ Et*rridtw0
   rridsw0 ~~ Es*rridsw0
   rridww0 ~~ Ew*rridww0
   rridqw0 ~~ Eq*rridqw0
   rridkw0 ~~ Ek*rridkw0
   rridpw0 ~~ Ep*rridpw0
   rridrw0 ~~ Er*rridrw0
   rridow0 ~~ Eo*rridow0
   F1 ~~ 1.0*F1
   F2 ~~ 1.0*F2
   F3 ~~ 1.0*F3
   F1 ~~ r12*F2
   F2 ~~ r23*F3
   F1 ~~ r13*F3
! observed means
   rridaw0~1;
   rridbw0~1;
   rridcw0~1;
   rriddw0~1;
   rridew0~1;
   rriduw0~1;
   rridvw0~1;
   rridtw0~1;
   rridsw0~1;
   rridww0~1;
   rridqw0~1;
   rridkw0~1;
   rridpw0~1;
   rridrw0~1;
   rridow0~1;
"


Fig12.2Result<-lavaan(Fig12.2Model, data=AlcExpect, fixed.x=FALSE, missing="FIML")
summary(Fig12.2Result, fit.measures=TRUE,standardized=TRUE);
## lavaan 0.6-19 ended normally after 41 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        48
## 
##   Number of observations                          2422
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                                       
##   Test statistic                              1453.821
##   Degrees of freedom                                87
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                             27821.072
##   Degrees of freedom                               105
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.951
##   Tucker-Lewis Index (TLI)                       0.940
##                                                       
##   Robust Comparative Fit Index (CFI)             0.951
##   Robust Tucker-Lewis Index (TLI)                0.940
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -33279.941
##   Loglikelihood unrestricted model (H1)     -32553.030
##                                                       
##   Akaike (AIC)                               66655.882
##   Bayesian (BIC)                             66933.915
##   Sample-size adjusted Bayesian (SABIC)      66781.408
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.081
##   90 Percent confidence interval - lower         0.077
##   90 Percent confidence interval - upper         0.084
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    0.601
##                                                       
##   Robust RMSEA                                   0.081
##   90 Percent confidence interval - lower         0.077
##   90 Percent confidence interval - upper         0.084
##   P-value H_0: Robust RMSEA <= 0.050             0.000
##   P-value H_0: Robust RMSEA >= 0.080             0.601
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.040
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   F1 =~                                                                 
##     rridaw0   (L1)    0.773    0.015   50.199    0.000    0.773    0.837
##     rridbw0   (L2)    0.637    0.017   38.289    0.000    0.637    0.694
##     rridcw0   (L3)    0.866    0.014   60.316    0.000    0.866    0.934
##     rriddw0   (L4)    0.884    0.015   58.792    0.000    0.884    0.920
##     rridew0   (L5)    0.585    0.016   36.193    0.000    0.585    0.664
##   F2 =~                                                                 
##     rriduw0   (L6)    0.576    0.010   56.468    0.000    0.576    0.902
##     rridvw0   (L7)    0.604    0.010   58.158    0.000    0.604    0.919
##     rridtw0   (L8)    0.524    0.011   46.454    0.000    0.524    0.801
##     rridsw0   (L9)    0.543    0.014   40.105    0.000    0.543    0.723
##     rridww0  (L10)    0.625    0.014   45.752    0.000    0.625    0.790
##   F3 =~                                                                 
##     rridqw0  (L11)    0.876    0.017   52.388    0.000    0.876    0.866
##     rridkw0  (L12)    0.866    0.017   50.060    0.000    0.866    0.841
##     rridpw0  (L13)    0.781    0.020   38.182    0.000    0.781    0.698
##     rridrw0  (L14)    0.795    0.016   50.517    0.000    0.795    0.847
##     rridow0  (L15)    0.798    0.018   44.030    0.000    0.798    0.773
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   F1 ~~                                                                 
##     F2       (r12)    0.197    0.021    9.444    0.000    0.197    0.197
##   F2 ~~                                                                 
##     F3       (r23)    0.194    0.021    9.094    0.000    0.194    0.194
##   F1 ~~                                                                 
##     F3       (r13)    0.783    0.010   81.027    0.000    0.783    0.783
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .rridaw0           3.023    0.019  160.998    0.000    3.023    3.271
##    .rridbw0           2.935    0.019  157.441    0.000    2.935    3.199
##    .rridcw0           3.067    0.019  162.812    0.000    3.067    3.308
##    .rriddw0           2.995    0.020  153.421    0.000    2.995    3.117
##    .rridew0           3.122    0.018  174.332    0.000    3.122    3.542
##    .rriduw0           1.296    0.013   99.917    0.000    1.296    2.030
##    .rridvw0           1.310    0.013   98.102    0.000    1.310    1.993
##    .rridtw0           1.320    0.013   99.373    0.000    1.320    2.019
##    .rridsw0           1.441    0.015   94.437    0.000    1.441    1.919
##    .rridww0           1.469    0.016   91.442    0.000    1.469    1.858
##    .rridqw0           2.767    0.021  134.527    0.000    2.767    2.734
##    .rridkw0           2.881    0.021  137.706    0.000    2.881    2.798
##    .rridpw0           2.187    0.023   96.154    0.000    2.187    1.954
##    .rridrw0           3.098    0.019  162.275    0.000    3.098    3.297
##    .rridow0           2.566    0.021  122.359    0.000    2.566    2.486
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .rridaw0   (Ea)    0.256    0.009   29.730    0.000    0.256    0.299
##    .rridbw0   (Eb)    0.437    0.013   32.755    0.000    0.437    0.519
##    .rridcw0   (Ec)    0.110    0.005   20.825    0.000    0.110    0.128
##    .rriddw0   (Ed)    0.141    0.006   23.325    0.000    0.141    0.153
##    .rridew0   (Ee)    0.434    0.013   33.154    0.000    0.434    0.559
##    .rriduw0   (Eu)    0.076    0.003   23.752    0.000    0.076    0.187
##    .rridvw0   (Ev)    0.067    0.003   20.562    0.000    0.067    0.156
##    .rridtw0   (Et)    0.153    0.005   29.317    0.000    0.153    0.358
##    .rridsw0   (Es)    0.269    0.009   31.409    0.000    0.269    0.477
##    .rridww0   (Ew)    0.234    0.008   30.347    0.000    0.234    0.375
##    .rridqw0   (Eq)    0.256    0.010   25.433    0.000    0.256    0.250
##    .rridkw0   (Ek)    0.310    0.011   27.409    0.000    0.310    0.293
##    .rridpw0   (Ep)    0.642    0.020   31.807    0.000    0.642    0.513
##    .rridrw0   (Er)    0.250    0.009   26.783    0.000    0.250    0.283
##    .rridow0   (Eo)    0.429    0.014   30.197    0.000    0.429    0.403
##     F1                1.000                               1.000    1.000
##     F2                1.000                               1.000    1.000
##     F3                1.000                               1.000    1.000
require(lavaangui)
#plot_lavaan(Fig12.2Result)

Figure 12.3 BiFactor Model of Alcohol Expectations

Path Diagram

Bifactor Model
Bifactor Model

R Program

require(lavaan)

Fig12.3Model<-"
! regressions 
   F1=~L1*rridaw0
   F1=~L2*rridbw0
   F1=~L3*rridcw0
   F1=~L4*rriddw0
   F1=~L5*rridew0
   F2=~L6*rriduw0
   F2=~L7*rridvw0
   F2=~L8*rridtw0
   F2=~L9*rridsw0
   F2=~L10*rridww0
   F3=~L11*rridqw0
   F3=~L12*rridkw0
   F3=~L13*rridpw0
   F3=~L14*rridrw0
   F3=~L15*rridow0
   General=~G1*rridcw0
   General=~G2*rriddw0
   General=~G3*rridaw0
   General=~G4*rridbw0
   General=~G5*rridew0
   General=~G6*rriduw0
   General=~G7*rridvw0
   General=~G8*rridtw0
   General=~G9*rridsw0
   General=~G10*rridww0
   General=~G11*rridqw0
   General=~G12*rridkw0
   General=~G13*rridpw0
   General=~G14*rridrw0
   General=~G15*rridow0
! residuals, variances and covariances
   rridaw0 ~~ Ea*rridaw0
   rridbw0 ~~ Eb*rridbw0
   rridcw0 ~~ Ec*rridcw0
   rriddw0 ~~ Ed*rriddw0
   rridew0 ~~ Ee*rridew0
   rriduw0 ~~ Eu*rriduw0
   rridvw0 ~~ Ev*rridvw0
   rridtw0 ~~ Et*rridtw0
   rridsw0 ~~ Es*rridsw0
   rridww0 ~~ Ew*rridww0
   rridqw0 ~~ Eq*rridqw0
   rridkw0 ~~ Ek*rridkw0
   rridpw0 ~~ Ep*rridpw0
   rridrw0 ~~ Er*rridrw0
   rridow0 ~~ Eo*rridow0
   F1 ~~ 1.0*F1
   F2 ~~ 1.0*F2
   F3 ~~ 1.0*F3
   General ~~ 1.0*General
   F1 ~~ 0.0*F2
   F1 ~~ 0.0*F3
   F1 ~~ 0.0*General
   F2 ~~ 0.0*F3
   F2 ~~ 0.0*General
   F3 ~~ 0.0*General
! observed means
   rridaw0~1;
   rridbw0~1;
   rridcw0~1;
   rriddw0~1;
   rridew0~1;
   rriduw0~1;
   rridvw0~1;
   rridtw0~1;
   rridsw0~1;
   rridww0~1;
   rridqw0~1;
   rridkw0~1;
   rridpw0~1;
   rridrw0~1;
   rridow0~1;
"

Fig12.3Result<-lavaan(Fig12.3Model, data=AlcExpect, fixed.x=FALSE, missing="FIML")
summary(Fig12.3Result, fit.measures=TRUE,standardized=TRUE);
## lavaan 0.6-19 ended normally after 76 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        60
## 
##   Number of observations                          2422
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                                       
##   Test statistic                              1216.891
##   Degrees of freedom                                75
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                             27821.072
##   Degrees of freedom                               105
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.959
##   Tucker-Lewis Index (TLI)                       0.942
##                                                       
##   Robust Comparative Fit Index (CFI)             0.959
##   Robust Tucker-Lewis Index (TLI)                0.942
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -33161.476
##   Loglikelihood unrestricted model (H1)     -32553.030
##                                                       
##   Akaike (AIC)                               66442.952
##   Bayesian (BIC)                             66790.493
##   Sample-size adjusted Bayesian (SABIC)      66599.859
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.079
##   90 Percent confidence interval - lower         0.075
##   90 Percent confidence interval - upper         0.083
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    0.388
##                                                       
##   Robust RMSEA                                   0.079
##   90 Percent confidence interval - lower         0.075
##   90 Percent confidence interval - upper         0.083
##   P-value H_0: Robust RMSEA <= 0.050             0.000
##   P-value H_0: Robust RMSEA >= 0.080             0.388
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.036
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   F1 =~                                                                 
##     rridaw0   (L1)    0.348    0.045    7.784    0.000    0.348    0.377
##     rridbw0   (L2)    0.311    0.046    6.823    0.000    0.311    0.339
##     rridcw0   (L3)    0.481    0.032   14.799    0.000    0.481    0.518
##     rriddw0   (L4)    0.471    0.038   12.449    0.000    0.471    0.491
##     rridew0   (L5)    0.221    0.038    5.814    0.000    0.221    0.250
##   F2 =~                                                                 
##     rriduw0   (L6)    0.563    0.010   55.429    0.000    0.563    0.883
##     rridvw0   (L7)    0.589    0.010   56.903    0.000    0.589    0.896
##     rridtw0   (L8)    0.521    0.011   46.151    0.000    0.521    0.796
##     rridsw0   (L9)    0.528    0.014   39.030    0.000    0.528    0.703
##     rridww0  (L10)    0.607    0.014   44.419    0.000    0.607    0.768
##   F3 =~                                                                 
##     rridqw0  (L11)    0.496    0.050    9.870    0.000    0.496    0.490
##     rridkw0  (L12)    0.376    0.054    6.974    0.000    0.376    0.365
##     rridpw0  (L13)    0.444    0.037   11.900    0.000    0.444    0.397
##     rridrw0  (L14)    0.154    0.074    2.078    0.038    0.154    0.164
##     rridow0  (L15)    0.257    0.052    4.931    0.000    0.257    0.249
##   General =~                                                            
##     rridcw0   (G1)    0.729    0.026   27.744    0.000    0.729    0.786
##     rriddw0   (G2)    0.747    0.028   26.918    0.000    0.747    0.777
##     rridaw0   (G3)    0.688    0.028   25.006    0.000    0.688    0.744
##     rridbw0   (G4)    0.552    0.030   18.686    0.000    0.552    0.602
##     rridew0   (G5)    0.545    0.023   24.002    0.000    0.545    0.619
##     rriduw0   (G6)    0.118    0.015    8.143    0.000    0.118    0.186
##     rridvw0   (G7)    0.130    0.015    8.678    0.000    0.130    0.198
##     rridtw0   (G8)    0.075    0.015    5.019    0.000    0.075    0.115
##     rridsw0   (G9)    0.132    0.017    7.959    0.000    0.132    0.176
##     rridww0  (G10)    0.147    0.018    8.058    0.000    0.147    0.186
##     rridqw0  (G11)    0.762    0.034   22.453    0.000    0.762    0.753
##     rridkw0  (G12)    0.778    0.030   25.733    0.000    0.778    0.756
##     rridpw0  (G13)    0.665    0.029   22.732    0.000    0.665    0.594
##     rridrw0  (G14)    0.797    0.029   27.621    0.000    0.797    0.848
##     rridow0  (G15)    0.750    0.026   29.099    0.000    0.750    0.726
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   F1 ~~                                                                 
##     F2                0.000                               0.000    0.000
##     F3                0.000                               0.000    0.000
##     General           0.000                               0.000    0.000
##   F2 ~~                                                                 
##     F3                0.000                               0.000    0.000
##     General           0.000                               0.000    0.000
##   F3 ~~                                                                 
##     General           0.000                               0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .rridaw0           3.023    0.019  160.998    0.000    3.023    3.271
##    .rridbw0           2.935    0.019  157.441    0.000    2.935    3.199
##    .rridcw0           3.067    0.019  162.812    0.000    3.067    3.308
##    .rriddw0           2.995    0.020  153.421    0.000    2.995    3.117
##    .rridew0           3.122    0.018  174.332    0.000    3.122    3.542
##    .rriduw0           1.296    0.013   99.917    0.000    1.296    2.030
##    .rridvw0           1.310    0.013   98.102    0.000    1.310    1.993
##    .rridtw0           1.320    0.013   99.373    0.000    1.320    2.019
##    .rridsw0           1.441    0.015   94.437    0.000    1.441    1.919
##    .rridww0           1.469    0.016   91.442    0.000    1.469    1.858
##    .rridqw0           2.767    0.021  134.527    0.000    2.767    2.734
##    .rridkw0           2.881    0.021  137.706    0.000    2.881    2.798
##    .rridpw0           2.187    0.023   96.154    0.000    2.187    1.954
##    .rridrw0           3.098    0.019  162.275    0.000    3.098    3.297
##    .rridow0           2.566    0.021  122.358    0.000    2.566    2.486
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .rridaw0   (Ea)    0.259    0.009   30.391    0.000    0.259    0.304
##    .rridbw0   (Eb)    0.440    0.013   32.915    0.000    0.440    0.522
##    .rridcw0   (Ec)    0.097    0.007   14.813    0.000    0.097    0.113
##    .rriddw0   (Ed)    0.143    0.007   20.707    0.000    0.143    0.155
##    .rridew0   (Ee)    0.431    0.013   33.033    0.000    0.431    0.554
##    .rriduw0   (Eu)    0.076    0.003   23.686    0.000    0.076    0.187
##    .rridvw0   (Ev)    0.068    0.003   20.652    0.000    0.068    0.157
##    .rridtw0   (Et)    0.151    0.005   28.912    0.000    0.151    0.353
##    .rridsw0   (Es)    0.268    0.009   31.387    0.000    0.268    0.475
##    .rridww0   (Ew)    0.234    0.008   30.378    0.000    0.234    0.375
##    .rridqw0   (Eq)    0.198    0.016   12.574    0.000    0.198    0.193
##    .rridkw0   (Ek)    0.313    0.012   26.847    0.000    0.313    0.295
##    .rridpw0   (Ep)    0.613    0.024   26.048    0.000    0.613    0.489
##    .rridrw0   (Er)    0.225    0.018   12.251    0.000    0.225    0.254
##    .rridow0   (Eo)    0.437    0.014   30.745    0.000    0.437    0.411
##     F1                1.000                               1.000    1.000
##     F2                1.000                               1.000    1.000
##     F3                1.000                               1.000    1.000
##     General           1.000                               1.000    1.000
require(lavaangui)
#plot_lavaan(Fig12.3Result)

Figure 12.4 Hierarchical Factor Model

Path Diagram

Hierarchical Factor Model
Hierarchical Factor Model

R Program

require(lavaan)


Fig12.4Model<-"
! regressions 
   F1=~L1*rridaw0
   F1=~L2*rridbw0
   F1=~1.0*rridcw0
   F1=~L4*rriddw0
   F1=~L5*rridew0
   F2=~1.0*rriduw0
   F2=~L7*rridvw0
   F2=~L8*rridtw0
   F2=~L9*rridsw0
   F2=~L10*rridww0
   F3=~1.0*rridqw0
   F3=~L12*rridkw0
   F3=~L13*rridpw0
   F3=~L14*rridrw0
   F3=~L15*rridow0
   G=~G1*F1
   G=~G2*F2
   G=~G3*F3
! residuals, variances and covariances
   rridaw0 ~~ Ea*rridaw0
   rridbw0 ~~ Eb*rridbw0
   rridcw0 ~~ Ec*rridcw0
   rriddw0 ~~ Ed*rriddw0
   rridew0 ~~ Ee*rridew0
   rriduw0 ~~ Eu*rriduw0
   rridvw0 ~~ Ev*rridvw0
   rridtw0 ~~ Et*rridtw0
   rridsw0 ~~ Es*rridsw0
   rridww0 ~~ Ew*rridww0
   rridqw0 ~~ Eq*rridqw0
   rridkw0 ~~ Ek*rridkw0
   rridpw0 ~~ Ep*rridpw0
   rridrw0 ~~ Er*rridrw0
   rridow0 ~~ Eo*rridow0
   F1 ~~ VF1*F1
   F2 ~~ VF2*F2
   F3 ~~ VF3*F3
   G ~~ 1.0*G
   F1 ~~ 0.0*F2
   F1 ~~ 0.0*F3
   F2 ~~ 0.0*F3
! observed means
   rridaw0~1;
   rridbw0~1;
   rridcw0~1;
   rriddw0~1;
   rridew0~1;
   rriduw0~1;
   rridvw0~1;
   rridtw0~1;
   rridsw0~1;
   rridww0~1;
   rridqw0~1;
   rridkw0~1;
   rridpw0~1;
   rridrw0~1;
   rridow0~1;
"


Fig12.4Result<-lavaan(Fig12.4Model, data=AlcExpect, fixed.x=FALSE, missing="FIML")
summary(Fig12.4Result, fit.measures=TRUE,standardized=TRUE);
## lavaan 0.6-19 ended normally after 46 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        48
## 
##   Number of observations                          2422
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                                       
##   Test statistic                              1453.821
##   Degrees of freedom                                87
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                             27821.072
##   Degrees of freedom                               105
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.951
##   Tucker-Lewis Index (TLI)                       0.940
##                                                       
##   Robust Comparative Fit Index (CFI)             0.951
##   Robust Tucker-Lewis Index (TLI)                0.940
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -33279.941
##   Loglikelihood unrestricted model (H1)     -32553.030
##                                                       
##   Akaike (AIC)                               66655.882
##   Bayesian (BIC)                             66933.915
##   Sample-size adjusted Bayesian (SABIC)      66781.408
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.081
##   90 Percent confidence interval - lower         0.077
##   90 Percent confidence interval - upper         0.084
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    0.601
##                                                       
##   Robust RMSEA                                   0.081
##   90 Percent confidence interval - lower         0.077
##   90 Percent confidence interval - upper         0.084
##   P-value H_0: Robust RMSEA <= 0.050             0.000
##   P-value H_0: Robust RMSEA >= 0.080             0.601
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.040
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   F1 =~                                                                 
##     rridaw0   (L1)    0.893    0.015   61.458    0.000    0.773    0.837
##     rridbw0   (L2)    0.735    0.017   42.803    0.000    0.637    0.694
##     rridcw0           1.000                               0.866    0.934
##     rriddw0   (L4)    1.021    0.013   80.264    0.000    0.884    0.920
##     rridew0   (L5)    0.676    0.017   39.701    0.000    0.585    0.664
##   F2 =~                                                                 
##     rriduw0           1.000                               0.576    0.902
##     rridvw0   (L7)    1.049    0.015   70.884    0.000    0.604    0.919
##     rridtw0   (L8)    0.910    0.017   52.068    0.000    0.524    0.801
##     rridsw0   (L9)    0.943    0.022   43.422    0.000    0.543    0.723
##     rridww0  (L10)    1.086    0.022   50.399    0.000    0.625    0.790
##   F3 =~                                                                 
##     rridqw0           1.000                               0.876    0.866
##     rridkw0  (L12)    0.988    0.018   53.495    0.000    0.866    0.841
##     rridpw0  (L13)    0.891    0.022   39.800    0.000    0.781    0.698
##     rridrw0  (L14)    0.908    0.017   52.984    0.000    0.795    0.847
##     rridow0  (L15)    0.910    0.020   45.740    0.000    0.798    0.773
##   G =~                                                                  
##     F1        (G1)    0.773    0.035   22.152    0.000    0.893    0.893
##     F2        (G2)    0.127    0.013    9.712    0.000    0.221    0.221
##     F3        (G3)    0.769    0.036   21.594    0.000    0.877    0.877
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .F1 ~~                                                                 
##    .F2                0.000                               0.000    0.000
##    .F3                0.000                               0.000    0.000
##  .F2 ~~                                                                 
##    .F3                0.000                               0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .rridaw0           3.023    0.019  160.998    0.000    3.023    3.271
##    .rridbw0           2.935    0.019  157.442    0.000    2.935    3.199
##    .rridcw0           3.067    0.019  162.812    0.000    3.067    3.308
##    .rriddw0           2.995    0.020  153.421    0.000    2.995    3.117
##    .rridew0           3.122    0.018  174.332    0.000    3.122    3.542
##    .rriduw0           1.296    0.013   99.917    0.000    1.296    2.030
##    .rridvw0           1.310    0.013   98.102    0.000    1.310    1.993
##    .rridtw0           1.320    0.013   99.373    0.000    1.320    2.019
##    .rridsw0           1.441    0.015   94.438    0.000    1.441    1.919
##    .rridww0           1.469    0.016   91.443    0.000    1.469    1.858
##    .rridqw0           2.767    0.021  134.527    0.000    2.767    2.734
##    .rridkw0           2.881    0.021  137.706    0.000    2.881    2.798
##    .rridpw0           2.187    0.023   96.154    0.000    2.187    1.954
##    .rridrw0           3.098    0.019  162.275    0.000    3.098    3.297
##    .rridow0           2.566    0.021  122.358    0.000    2.566    2.486
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .rridaw0   (Ea)    0.256    0.009   29.730    0.000    0.256    0.299
##    .rridbw0   (Eb)    0.437    0.013   32.755    0.000    0.437    0.519
##    .rridcw0   (Ec)    0.110    0.005   20.825    0.000    0.110    0.128
##    .rriddw0   (Ed)    0.141    0.006   23.325    0.000    0.141    0.153
##    .rridew0   (Ee)    0.434    0.013   33.154    0.000    0.434    0.559
##    .rriduw0   (Eu)    0.076    0.003   23.752    0.000    0.076    0.187
##    .rridvw0   (Ev)    0.067    0.003   20.562    0.000    0.067    0.156
##    .rridtw0   (Et)    0.153    0.005   29.317    0.000    0.153    0.358
##    .rridsw0   (Es)    0.269    0.009   31.409    0.000    0.269    0.477
##    .rridww0   (Ew)    0.234    0.008   30.347    0.000    0.234    0.375
##    .rridqw0   (Eq)    0.256    0.010   25.433    0.000    0.256    0.250
##    .rridkw0   (Ek)    0.310    0.011   27.409    0.000    0.310    0.293
##    .rridpw0   (Ep)    0.642    0.020   31.807    0.000    0.642    0.513
##    .rridrw0   (Er)    0.250    0.009   26.783    0.000    0.250    0.283
##    .rridow0   (Eo)    0.429    0.014   30.197    0.000    0.429    0.403
##    .F1       (VF1)    0.152    0.049    3.082    0.002    0.202    0.202
##    .F2       (VF2)    0.315    0.011   27.962    0.000    0.951    0.951
##    .F3       (VF3)    0.177    0.049    3.629    0.000    0.231    0.231
##     G                 1.000                               1.000    1.000
require(lavaangui)
#plot_lavaan(Fig12.4Result)

Figure 12.5 Multi-Trait Multi-Method Model

Load MTMM Data

Simulated MTMM Data

Path Diagram

Multi-Trait Multi-Method Model
Multi-Trait Multi-Method Model

R Program

require(lavaan)
MTMMData <- read.table("langermtmmsimulated.txt", header = TRUE) ;
head(MTMMData)
##         DSoc        DGAD       DSAD         DPD     ChSoc     PaSoc    ChGAD
## 1  0.6073740 -0.04574160  0.5724619  0.01820963  5.331529 16.285153 20.15238
## 2  0.2851913 -0.48379796  0.3141246  0.11417307 10.204388  9.967807 20.00466
## 3 -0.2550704  0.29333843  0.3291670 -0.26024833 15.677911  6.073015 17.81669
## 4  0.8230464  0.87144394  0.2126094  0.47227593 18.115698 13.964879 18.24485
## 5  1.1310499  0.06439362  0.2333899  0.33410893 16.408778 20.720852 14.93142
## 6  0.6128086  0.26980741 -0.1025633  0.11637706 15.234263 11.908552 10.11583
##      PaGAD     ChSAD     PaSAD      ChPD     PaPD
## 1 16.29639 11.864066 13.754786  8.812848 12.82312
## 2 16.65290 11.294614 14.655742 12.923502 19.41736
## 3 15.74022 11.688042  7.216525 17.724105 12.87487
## 4 12.13322  2.229849  4.000555 16.011022 10.06640
## 5 18.12546  9.113720  8.096138 25.153023 15.16869
## 6 19.42117  5.402864 12.623651 16.751766 27.43542
Fig12.5Model<-"
! regressions 
   SA=~T1*DSAD
   SA=~T2*PaSAD
   SA=~T3*ChSAD
   PD=~T4*DPD
   PD=~T5*PaPD
   PD=~T6*ChPD
   SP=~T7*DSoc
   SP=~T8*PaSoc
   SP=~T9*ChSoc
   GA=~T10*DGAD
   GA=~T11*PaGAD
   GA=~T12*ChGAD
   D=~M1*DSAD
   D=~M2*DPD
   D=~M3*DSoc
   D=~M4*DGAD
   P=~M5*PaSAD
   P=~M6*PaPD
   P=~M7*PaSoc
   P=~M8*PaGAD
   S=~M9*ChSAD
   S=~M10*ChPD
   S=~M11*ChSoc
   S=~M12*ChGAD
! residuals, variances and covariances
   DSAD ~~ E_DSAD*DSAD
   PaSAD ~~ E_PaSAD*PaSAD
   ChSAD ~~ E_ChSAD*ChSAD
   DPD ~~ E_DPD*DPD
   PaPD ~~ E_PaPD*PaPD
   ChPD ~~ E_ChPD*ChPD
   DSoc ~~ E_DSoc*DSoc
   PaSoc ~~ E_PaSoc*PaSoc
   ChSoc ~~ E_ChSoc*ChSoc
   DGAD ~~ E_DGAD*DGAD
   PaGAD ~~ E_PaGAD*PaGAD
   ChGAD ~~ E_ChGAD*ChGAD
   SA ~~ 1.0*SA
   PD ~~ 1.0*PD
   SP ~~ 1.0*SP
   GA ~~ 1.0*GA
   SA ~~ r12*PD
   PD ~~ r23*SP
   SP ~~ r34*GA
   SA ~~ r13*SP
   PD ~~ r24*GA
   SA ~~ r14*GA
   D ~~ 1.0*D
   P ~~ 1.0*P
   S ~~ 1.0*S
   D ~~ RM12*P
   P ~~ RM23*S
   D ~~ RM13*S
   SA ~~ 0.0*D
   SA ~~ 0.0*P
   SA ~~ 0.0*S
   PD ~~ 0.0*D
   PD ~~ 0.0*P
   PD ~~ 0.0*S
   SP ~~ 0.0*D
   SP ~~ 0.0*P
   SP ~~ 0.0*S
   GA ~~ 0.0*D
   GA ~~ 0.0*P
   GA ~~ 0.0*S
! observed means
   DSAD~1;
   PaSAD~1;
   ChSAD~1;
   DPD~1;
   PaPD~1;
   ChPD~1;
   DSoc~1;
   PaSoc~1;
   ChSoc~1;
   DGAD~1;
   PaGAD~1;
   ChGAD~1;
"

Fig12.5Result<-lavaan(Fig12.5Model, data=MTMMData, fixed.x=FALSE, missing="FIML")
summary(Fig12.5Result, fit.measures=TRUE,standardized=TRUE);
## lavaan 0.6-19 ended normally after 84 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        57
## 
##   Number of observations                           174
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                                       
##   Test statistic                                33.674
##   Degrees of freedom                                33
##   P-value (Chi-square)                           0.435
## 
## Model Test Baseline Model:
## 
##   Test statistic                               568.394
##   Degrees of freedom                                66
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.999
##   Tucker-Lewis Index (TLI)                       0.997
##                                                       
##   Robust Comparative Fit Index (CFI)             0.999
##   Robust Tucker-Lewis Index (TLI)                0.997
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -4290.217
##   Loglikelihood unrestricted model (H1)      -4273.380
##                                                       
##   Akaike (AIC)                                8694.433
##   Bayesian (BIC)                              8874.500
##   Sample-size adjusted Bayesian (SABIC)       8694.002
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.011
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.057
##   P-value H_0: RMSEA <= 0.050                    0.901
##   P-value H_0: RMSEA >= 0.080                    0.002
##                                                       
##   Robust RMSEA                                   0.011
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.057
##   P-value H_0: Robust RMSEA <= 0.050             0.901
##   P-value H_0: Robust RMSEA >= 0.080             0.002
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.035
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   SA =~                                                                 
##     DSAD      (T1)    0.162    0.029    5.669    0.000    0.162    0.464
##     PaSAD     (T2)    3.435    0.403    8.518    0.000    3.435    0.648
##     ChSAD     (T3)    4.198    0.395   10.617    0.000    4.198    0.841
##   PD =~                                                                 
##     DPD       (T4)    0.067    0.030    2.241    0.025    0.067    0.320
##     PaPD      (T5)    2.744    0.879    3.122    0.002    2.744    0.426
##     ChPD      (T6)    3.315    1.120    2.960    0.003    3.315    0.502
##   SP =~                                                                 
##     DSoc      (T7)    0.183    0.044    4.186    0.000    0.183    0.483
##     PaSoc     (T8)    2.837    0.827    3.430    0.001    2.837    0.489
##     ChSoc     (T9)    1.864    0.781    2.388    0.017    1.864    0.309
##   GA =~                                                                 
##     DGAD     (T10)   -0.018    0.039   -0.446    0.656   -0.018   -0.039
##     PaGAD    (T11)    1.859    0.385    4.823    0.000    1.859    0.424
##     ChGAD    (T12)    2.435    0.448    5.430    0.000    2.435    0.541
##   D =~                                                                  
##     DSAD      (M1)    0.068    0.037    1.845    0.065    0.068    0.195
##     DPD       (M2)    0.067    0.025    2.659    0.008    0.067    0.319
##     DSoc      (M3)    0.145    0.053    2.727    0.006    0.145    0.381
##     DGAD      (M4)    0.197    0.061    3.249    0.001    0.197    0.438
##   P =~                                                                  
##     PaSAD     (M5)    3.199    0.355    8.999    0.000    3.199    0.603
##     PaPD      (M6)    3.920    0.588    6.671    0.000    3.920    0.608
##     PaSoc     (M7)    2.637    0.651    4.050    0.000    2.637    0.454
##     PaGAD     (M8)    2.991    0.362    8.271    0.000    2.991    0.682
##   S =~                                                                  
##     ChSAD     (M9)    2.048    0.497    4.123    0.000    2.048    0.411
##     ChPD     (M10)    4.684    0.754    6.216    0.000    4.684    0.709
##     ChSoc    (M11)    4.388    0.586    7.489    0.000    4.388    0.728
##     ChGAD    (M12)    1.735    0.445    3.896    0.000    1.735    0.386
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   SA ~~                                                                 
##     PD       (r12)    0.150    0.180    0.836    0.403    0.150    0.150
##   PD ~~                                                                 
##     SP       (r23)   -0.127    0.390   -0.326    0.745   -0.127   -0.127
##   SP ~~                                                                 
##     GA       (r34)   -0.416    0.315   -1.323    0.186   -0.416   -0.416
##   SA ~~                                                                 
##     SP       (r13)   -0.125    0.194   -0.645    0.519   -0.125   -0.125
##   PD ~~                                                                 
##     GA       (r24)    0.085    0.255    0.333    0.739    0.085    0.085
##   SA ~~                                                                 
##     GA       (r14)    0.911    0.093    9.794    0.000    0.911    0.911
##   D ~~                                                                  
##     P       (RM12)    0.590    0.140    4.205    0.000    0.590    0.590
##   P ~~                                                                  
##     S       (RM23)    0.088    0.163    0.544    0.587    0.088    0.088
##   D ~~                                                                  
##     S       (RM13)    0.306    0.148    2.071    0.038    0.306    0.306
##   SA ~~                                                                 
##     D                 0.000                               0.000    0.000
##     P                 0.000                               0.000    0.000
##     S                 0.000                               0.000    0.000
##   PD ~~                                                                 
##     D                 0.000                               0.000    0.000
##     P                 0.000                               0.000    0.000
##     S                 0.000                               0.000    0.000
##   SP ~~                                                                 
##     D                 0.000                               0.000    0.000
##     P                 0.000                               0.000    0.000
##     S                 0.000                               0.000    0.000
##   GA ~~                                                                 
##     D                 0.000                               0.000    0.000
##     P                 0.000                               0.000    0.000
##     S                 0.000                               0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .DSAD              0.140    0.026    5.290    0.000    0.140    0.401
##    .PaSAD            10.510    0.402   26.149    0.000   10.510    1.982
##    .ChSAD             9.560    0.378   25.272    0.000    9.560    1.916
##    .DPD               0.050    0.016    3.150    0.002    0.050    0.239
##    .PaPD             12.290    0.489   25.156    0.000   12.290    1.907
##    .ChPD             13.520    0.501   26.994    0.000   13.520    2.046
##    .DSoc              0.180    0.029    6.256    0.000    0.180    0.474
##    .PaSoc            14.980    0.440   34.042    0.000   14.980    2.581
##    .ChSoc            12.490    0.457   27.347    0.000   12.490    2.073
##    .DGAD              0.290    0.034    8.526    0.000    0.290    0.646
##    .PaGAD            15.770    0.332   47.448    0.000   15.770    3.597
##    .ChGAD            16.260    0.341   47.702    0.000   16.260    3.616
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .DSAD   (E_DSA)    0.091    0.011    8.490    0.000    0.091    0.747
##    .PaSAD  (E_PSA)    6.078    1.507    4.032    0.000    6.078    0.216
##    .ChSAD  (E_CSA)    3.080    1.828    1.685    0.092    3.080    0.124
##    .DPD     (E_DP)    0.035    0.005    6.843    0.000    0.035    0.796
##    .PaPD    (E_PP)   18.634    4.293    4.341    0.000   18.634    0.449
##    .ChPD    (E_CP)   10.718    5.743    1.866    0.062   10.718    0.246
##    .DSoc   (E_DSc)    0.090    0.020    4.582    0.000    0.090    0.622
##    .PaSoc  (E_PSc)   18.688    3.942    4.741    0.000   18.688    0.555
##    .ChSoc  (E_ChS)   13.565    4.662    2.910    0.004   13.565    0.374
##    .DGAD    (E_DG)    0.162    0.027    6.083    0.000    0.162    0.806
##    .PaGAD   (E_PG)    6.818    1.541    4.423    0.000    6.818    0.355
##    .ChGAD   (E_CG)   11.279    1.771    6.369    0.000   11.279    0.558
##     SA                1.000                               1.000    1.000
##     PD                1.000                               1.000    1.000
##     SP                1.000                               1.000    1.000
##     GA                1.000                               1.000    1.000
##     D                 1.000                               1.000    1.000
##     P                 1.000                               1.000    1.000
##     S                 1.000                               1.000    1.000
require(lavaangui)
#plot_lavaan(Fig12.5Result)

State-Trait Model

Path Diagrams

Unstandardized Solution

Unstandardized State-Trait Model
Unstandardized State-Trait Model

Standardized Solution

Standardized State-Trait Model
Standardized State-Trait Model

R Program

BSISimData <- read.table("BSISim.txt", header = TRUE) ;
Fig12.6Model<-"
! regressions 
   Trait=~L1*BSIW1
   Trait=~L2*BSIW2
   Trait=~L3*BSIW3
   Trait=~L4*BSIW4
   Trait=~L5*BSIW5
   Trait=~L6*BSIW6
   Trait=~L7*BSIW7
   Trait=~L8*BSIW8
   BSIW2 ~ g1*BSIW1
   BSIW3 ~ g2*BSIW2
   BSIW4 ~ g3*BSIW3
   BSIW5 ~ g4*BSIW4
   BSIW6 ~ g5*BSIW5
   BSIW7 ~ g6*BSIW6
   BSIW8 ~ g7*BSIW7
! residuals, variances and covariances
   BSIW1 ~~ E1*BSIW1
   BSIW2 ~~ E2*BSIW2
   BSIW3 ~~ E3*BSIW3
   BSIW4 ~~ E4*BSIW4
   BSIW5 ~~ E5*BSIW5
   BSIW6 ~~ E6*BSIW6
   BSIW7 ~~ E7*BSIW7
   BSIW8 ~~ E8*BSIW8
   Trait ~~ 1.0*Trait
! observed means
   BSIW1~1;
   BSIW2~1;
   BSIW3~1;
   BSIW4~1;
   BSIW5~1;
   BSIW6~1;
   BSIW7~1;
   BSIW8~1;
"
Fig12.6Result<-lavaan(Fig12.6Model, data=BSISimData, fixed.x=FALSE, missing="FIML")
summary(Fig12.6Result, fit.measures=TRUE,standardized=TRUE);
## lavaan 0.6-19 ended normally after 50 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        31
## 
##   Number of observations                          1191
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                                       
##   Test statistic                                39.105
##   Degrees of freedom                                13
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              4328.000
##   Degrees of freedom                                28
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.994
##   Tucker-Lewis Index (TLI)                       0.987
##                                                       
##   Robust Comparative Fit Index (CFI)             0.994
##   Robust Tucker-Lewis Index (TLI)                0.987
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -5729.907
##   Loglikelihood unrestricted model (H1)      -5710.355
##                                                       
##   Akaike (AIC)                               11521.814
##   Bayesian (BIC)                             11679.373
##   Sample-size adjusted Bayesian (SABIC)      11580.906
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.041
##   90 Percent confidence interval - lower         0.027
##   90 Percent confidence interval - upper         0.056
##   P-value H_0: RMSEA <= 0.050                    0.825
##   P-value H_0: RMSEA >= 0.080                    0.000
##                                                       
##   Robust RMSEA                                   0.041
##   90 Percent confidence interval - lower         0.027
##   90 Percent confidence interval - upper         0.056
##   P-value H_0: Robust RMSEA <= 0.050             0.825
##   P-value H_0: Robust RMSEA >= 0.080             0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.013
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Trait =~                                                              
##     BSIW1     (L1)    0.353    0.017   20.508    0.000    0.353    0.587
##     BSIW2     (L2)    0.283    0.018   15.415    0.000    0.283    0.519
##     BSIW3     (L3)    0.364    0.022   16.429    0.000    0.364    0.651
##     BSIW4     (L4)    0.402    0.028   14.380    0.000    0.402    0.735
##     BSIW5     (L5)    0.413    0.028   14.805    0.000    0.413    0.760
##     BSIW6     (L6)    0.309    0.024   12.875    0.000    0.309    0.595
##     BSIW7     (L7)    0.304    0.025   12.101    0.000    0.304    0.531
##     BSIW8     (L8)    0.302    0.020   15.062    0.000    0.302    0.558
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   BSIW2 ~                                                               
##     BSIW1     (g1)    0.220    0.027    8.162    0.000    0.220    0.243
##   BSIW3 ~                                                               
##     BSIW2     (g2)    0.142    0.036    3.987    0.000    0.142    0.139
##   BSIW4 ~                                                               
##     BSIW3     (g3)    0.045    0.045    1.001    0.317    0.045    0.046
##   BSIW5 ~                                                               
##     BSIW4     (g4)   -0.026    0.047   -0.559    0.576   -0.026   -0.027
##   BSIW6 ~                                                               
##     BSIW5     (g5)    0.148    0.040    3.676    0.000    0.148    0.155
##   BSIW7 ~                                                               
##     BSIW6     (g6)    0.206    0.044    4.667    0.000    0.206    0.187
##   BSIW8 ~                                                               
##     BSIW7     (g7)    0.188    0.032    5.856    0.000    0.188    0.199
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .BSIW1             0.547    0.017   31.390    0.000    0.547    0.910
##    .BSIW2             0.384    0.020   18.819    0.000    0.384    0.704
##    .BSIW3             0.424    0.023   18.128    0.000    0.424    0.760
##    .BSIW4             0.462    0.027   16.946    0.000    0.462    0.845
##    .BSIW5             0.474    0.028   16.992    0.000    0.474    0.872
##    .BSIW6             0.394    0.023   16.985    0.000    0.394    0.757
##    .BSIW7             0.364    0.025   14.388    0.000    0.364    0.637
##    .BSIW8             0.355    0.020   17.371    0.000    0.355    0.656
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .BSIW1     (E1)    0.237    0.011   21.943    0.000    0.237    0.656
##    .BSIW2     (E2)    0.155    0.007   21.497    0.000    0.155    0.523
##    .BSIW3     (E3)    0.136    0.008   17.854    0.000    0.136    0.437
##    .BSIW4     (E4)    0.122    0.008   15.137    0.000    0.122    0.407
##    .BSIW5     (E5)    0.134    0.008   16.430    0.000    0.134    0.453
##    .BSIW6     (E6)    0.131    0.007   19.565    0.000    0.131    0.486
##    .BSIW7     (E7)    0.177    0.008   21.022    0.000    0.177    0.542
##    .BSIW8     (E8)    0.147    0.007   21.310    0.000    0.147    0.501
##     Trait             1.000                               1.000    1.000
require(lavaangui)
#plot_lavaan(Fig12.6Result)

Random Intercept Model

Path Diagram

Random Intercept Model
Random Intercept Model

R Code

Fig12.7Model<-"
! regressions 
   Trait=~L1*BSIW1
   Trait=~L2*BSIW2
   Trait=~L3*BSIW3
   Trait=~L4*BSIW4
   Trait=~L5*BSIW5
   Trait=~L6*BSIW6
   Trait=~L7*BSIW7
   Trait=~L8*BSIW8
   RI=~1.0*BSIW1
   RI=~1.0*BSIW2
   RI=~1.0*BSIW3
   RI=~1.0*BSIW4
   RI=~1.0*BSIW5
   RI=~1.0*BSIW6
   RI=~1.0*BSIW7
   RI=~1.0*BSIW8
! residuals, variances and covariances
   BSIW1 ~~ E1*BSIW1
   BSIW2 ~~ E2*BSIW2
   BSIW3 ~~ E3*BSIW3
   BSIW4 ~~ E4*BSIW4
   BSIW5 ~~ E5*BSIW5
   BSIW6 ~~ E6*BSIW6
   BSIW7 ~~ E7*BSIW7
   BSIW8 ~~ E8*BSIW8
   Trait ~~ 1.0*Trait
   RI ~~ V_RI*RI
   Trait ~~ 0.0*RI
! observed means
   BSIW1~1;
   BSIW2~1;
   BSIW3~1;
   BSIW4~1;
   BSIW5~1;
   BSIW6~1;
   BSIW7~1;
   BSIW8~1;
"
Fig12.7Result<-lavaan(Fig12.7Model, data=BSISimData, fixed.x=FALSE, missing="FIML")
summary(Fig12.7Result, fit.measures=TRUE,standardized=TRUE);
## lavaan 0.6-19 ended normally after 72 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        25
## 
##   Number of observations                          1191
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                                       
##   Test statistic                                56.786
##   Degrees of freedom                                19
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              4328.000
##   Degrees of freedom                                28
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.991
##   Tucker-Lewis Index (TLI)                       0.987
##                                                       
##   Robust Comparative Fit Index (CFI)             0.991
##   Robust Tucker-Lewis Index (TLI)                0.987
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -5738.748
##   Loglikelihood unrestricted model (H1)      -5710.355
##                                                       
##   Akaike (AIC)                               11527.496
##   Bayesian (BIC)                             11654.559
##   Sample-size adjusted Bayesian (SABIC)      11575.150
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.041
##   90 Percent confidence interval - lower         0.029
##   90 Percent confidence interval - upper         0.053
##   P-value H_0: RMSEA <= 0.050                    0.882
##   P-value H_0: RMSEA >= 0.080                    0.000
##                                                       
##   Robust RMSEA                                   0.041
##   90 Percent confidence interval - lower         0.029
##   90 Percent confidence interval - upper         0.053
##   P-value H_0: Robust RMSEA <= 0.050             0.882
##   P-value H_0: Robust RMSEA >= 0.080             0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.027
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Trait =~                                                              
##     BSIW1     (L1)   -0.167    0.027   -6.076    0.000   -0.167   -0.272
##     BSIW2     (L2)   -0.176    0.027   -6.410    0.000   -0.176   -0.321
##     BSIW3     (L3)   -0.055    0.025   -2.192    0.028   -0.055   -0.101
##     BSIW4     (L4)   -0.025    0.024   -1.015    0.310   -0.025   -0.046
##     BSIW5     (L5)    0.079    0.024    3.246    0.001    0.079    0.146
##     BSIW6     (L6)    0.108    0.023    4.642    0.000    0.108    0.205
##     BSIW7     (L7)    0.151    0.026    5.707    0.000    0.151    0.265
##     BSIW8     (L8)    0.090    0.024    3.745    0.000    0.090    0.163
##   RI =~                                                                 
##     BSIW1             1.000                               0.395    0.645
##     BSIW2             1.000                               0.395    0.722
##     BSIW3             1.000                               0.395    0.727
##     BSIW4             1.000                               0.395    0.734
##     BSIW5             1.000                               0.395    0.731
##     BSIW6             1.000                               0.395    0.748
##     BSIW7             1.000                               0.395    0.695
##     BSIW8             1.000                               0.395    0.717
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Trait ~~                                                              
##     RI                0.000                               0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .BSIW1             0.547    0.018   30.785    0.000    0.547    0.892
##    .BSIW2             0.504    0.016   31.777    0.000    0.504    0.921
##    .BSIW3             0.496    0.016   31.480    0.000    0.496    0.912
##    .BSIW4             0.484    0.016   31.049    0.000    0.484    0.900
##    .BSIW5             0.461    0.016   29.484    0.000    0.461    0.854
##    .BSIW6             0.462    0.015   30.198    0.000    0.462    0.875
##    .BSIW7             0.459    0.016   27.887    0.000    0.459    0.808
##    .BSIW8             0.442    0.016   27.656    0.000    0.442    0.801
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .BSIW1     (E1)    0.192    0.011   17.021    0.000    0.192    0.511
##    .BSIW2     (E2)    0.113    0.010   11.720    0.000    0.113    0.376
##    .BSIW3     (E3)    0.136    0.007   20.709    0.000    0.136    0.462
##    .BSIW4     (E4)    0.133    0.006   21.305    0.000    0.133    0.459
##    .BSIW5     (E5)    0.129    0.006   19.965    0.000    0.129    0.444
##    .BSIW6     (E6)    0.111    0.006   17.629    0.000    0.111    0.398
##    .BSIW7     (E7)    0.144    0.009   16.754    0.000    0.144    0.446
##    .BSIW8     (E8)    0.140    0.007   19.825    0.000    0.140    0.460
##     Trait             1.000                               1.000    1.000
##     RI      (V_RI)    0.156    0.007   22.009    0.000    1.000    1.000
require(lavaangui)
#plot_lavaan(Fig12.7Result)