Lapin
Lapin - Sanglier
bdd_reg <- tab_glm(Donnees,
espece_interet = 61714,
espece_benchmark = 60981)
liste <- choisi_forme_year(bdd = bdd_reg)
## $choice
## [1] "quantitative"
##
## $min_bic
## [1] -743.5494
regfit <- liste[1]$regfit
bdd <- liste[2]$bdd
reg.summary <- summary(regfit); plot_regsubsets(reg.summary)
plot of chunk unnamed-chunk-7
par(mfrow=c(1 ,1)) ; plot(regfit, scale ="bic")
plot of chunk unnamed-chunk-8
reg <- glm(data = bdd,
formula = proportion_interet ~ year + X_10km + Ind_Diversite + Dist_Ecotone + Dist_Littoral + prop_tmoins1 +prop_tmoins2 + year2)
summary(reg); autoplot(reg)
##
## Call:
## glm(formula = proportion_interet ~ year + X_10km + Ind_Diversite +
## Dist_Ecotone + Dist_Littoral + prop_tmoins1 + prop_tmoins2 +
## year2, data = bdd)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.747e+03 1.547e+03 3.716 0.000206 ***
## year -5.664e+00 1.533e+00 -3.694 0.000224 ***
## X_10km -6.005e-02 8.333e-03 -7.206 7.16e-13 ***
## Ind_Diversite 1.728e-01 3.715e-02 4.651 3.44e-06 ***
## Dist_Ecotone 1.098e-03 2.044e-04 5.371 8.39e-08 ***
## Dist_Littoral 1.157e-03 4.844e-04 2.388 0.017000 *
## prop_tmoins1 1.463e-01 1.648e-02 8.878 < 2e-16 ***
## prop_tmoins2 1.035e-01 1.656e-02 6.248 4.71e-10 ***
## year2 1.396e-03 3.799e-04 3.673 0.000244 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.1135187)
##
## Null deviance: 464.30 on 3170 degrees of freedom
## Residual deviance: 358.95 on 3162 degrees of freedom
## AIC: 2110.5
##
## Number of Fisher Scoring iterations: 2
plot of chunk unnamed-chunk-10
bgtest(reg); bptest(reg); car::vif(reg)
##
## Breusch-Godfrey test for serial correlation of order up to 1
##
## data: reg
## LM test = 17.071, df = 1, p-value = 3.601e-05
##
## studentized Breusch-Pagan test
##
## data: reg
## BP = 195.94, df = 8, p-value < 2.2e-16
## year X_10km Ind_Diversite Dist_Ecotone Dist_Littoral prop_tmoins1 prop_tmoins2 year2
## 1.246718e+06 1.831949e+00 1.459723e+00 1.104345e+00 2.130879e+00 1.279166e+00 1.439067e+00 1.246503e+06
Lapin - Renard
bdd_reg <- tab_glm(Donnees,
espece_interet = 61714,
espece_benchmark = 60585)
liste <- choisi_forme_year(bdd = bdd_reg)
## $choice
## [1] "qualitative"
##
## $min_bic
## [1] -601.6783
regfit <- liste[1]$regfit
bdd <- liste[2]$bdd
reg.summary <- summary(regfit); plot_regsubsets(reg.summary)
plot of chunk unnamed-chunk-12
par(mfrow=c(1 ,1)) ; plot(regfit, scale ="bic")
plot of chunk unnamed-chunk-13
reg <- glm(data = bdd,
formula = proportion_interet ~ year + X_10km + Ind_Diversite + Dist_Ecotone + prop_tmoins1 + prop_tmoins2)
summary(reg); autoplot(reg)
##
## Call:
## glm(formula = proportion_interet ~ year + X_10km + Ind_Diversite +
## Dist_Ecotone + prop_tmoins1 + prop_tmoins2, data = bdd)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0171122 0.0685189 0.250 0.802798
## year2011 -0.0244455 0.0348141 -0.702 0.482613
## year2012 -0.0794562 0.0342263 -2.321 0.020312 *
## year2013 -0.1046885 0.0347554 -3.012 0.002611 **
## year2014 -0.0544444 0.0344658 -1.580 0.114266
## year2015 -0.0375647 0.0356003 -1.055 0.291410
## year2016 -0.0536979 0.0356180 -1.508 0.131738
## year2017 -0.0288498 0.0356623 -0.809 0.418582
## year2018 -0.0309540 0.0353737 -0.875 0.381599
## year2019 -0.0115817 0.0357058 -0.324 0.745679
## year2020 0.0311562 0.0358755 0.868 0.385201
## year2021 0.0056987 0.0358614 0.159 0.873749
## year2022 -0.0407533 0.0359964 -1.132 0.257642
## year2023 -0.0804731 0.0362052 -2.223 0.026294 *
## year2024 -0.1384131 0.0358190 -3.864 0.000113 ***
## year2025 -0.1995851 0.0372586 -5.357 8.97e-08 ***
## X_10km 0.0265825 0.0065022 4.088 4.44e-05 ***
## Ind_Diversite 0.1443108 0.0320952 4.496 7.12e-06 ***
## Dist_Ecotone 0.0015613 0.0002046 7.630 2.95e-14 ***
## prop_tmoins1 0.2220871 0.0164981 13.461 < 2e-16 ***
## prop_tmoins2 0.1789714 0.0171396 10.442 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.1218676)
##
## Null deviance: 560.79 on 3857 degrees of freedom
## Residual deviance: 467.61 on 3837 degrees of freedom
## AIC: 2851.1
##
## Number of Fisher Scoring iterations: 2
plot of chunk unnamed-chunk-15
bgtest(reg); bptest(reg); car::vif(reg)
##
## Breusch-Godfrey test for serial correlation of order up to 1
##
## data: reg
## LM test = 6.21, df = 1, p-value = 0.0127
##
## studentized Breusch-Pagan test
##
## data: reg
## BP = 71.234, df = 20, p-value = 1.144e-07
## GVIF Df GVIF^(1/(2*Df))
## year -0.03454361 15 NaN
## X_10km 1.19701423 1 1.0940815
## Ind_Diversite 1.14460939 1 1.0698642
## Dist_Ecotone 1.10369757 1 1.0505701
## prop_tmoins1 0.89688164 1 0.9470384
## prop_tmoins2 0.88818235 1 0.9424343
Lapin - Chevreuil
bdd_reg <- tab_glm(Donnees,
espece_interet = 61714,
espece_benchmark = 61057)
liste <- choisi_forme_year(bdd = bdd_reg)
## $choice
## [1] "quantitative"
##
## $min_bic
## [1] -1244.16
regfit <- liste[1]$regfit
bdd <- liste[2]$bdd
reg.summary <- summary(regfit); plot_regsubsets(reg.summary)
plot of chunk unnamed-chunk-17
par(mfrow=c(1 ,1)) ; plot(regfit, scale ="bic")
plot of chunk unnamed-chunk-18
reg <- glm(data = bdd,
formula = proportion_interet ~ year + Dist_Ecotone + Dist_Littoral + prop_tmoins1 + prop_tmoins2 + year2)
summary(reg); autoplot(reg)
##
## Call:
## glm(formula = proportion_interet ~ year + Dist_Ecotone + Dist_Littoral +
## prop_tmoins1 + prop_tmoins2 + year2, data = bdd)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.397e+03 1.035e+03 6.178 7.10e-10 ***
## year -6.324e+00 1.026e+00 -6.162 7.86e-10 ***
## Dist_Ecotone 1.526e-03 1.541e-04 9.901 < 2e-16 ***
## Dist_Littoral -1.971e-03 2.522e-04 -7.813 7.02e-15 ***
## prop_tmoins1 2.655e-01 1.511e-02 17.564 < 2e-16 ***
## prop_tmoins2 1.847e-01 1.538e-02 12.005 < 2e-16 ***
## year2 1.563e-03 2.543e-04 6.146 8.70e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.08318124)
##
## Null deviance: 474.89 on 4190 degrees of freedom
## Residual deviance: 348.03 on 4184 degrees of freedom
## AIC: 1480.6
##
## Number of Fisher Scoring iterations: 2
plot of chunk unnamed-chunk-20
bgtest(reg); bptest(reg); car::vif(reg)
##
## Breusch-Godfrey test for serial correlation of order up to 1
##
## data: reg
## LM test = 28.312, df = 1, p-value = 1.033e-07
##
## studentized Breusch-Pagan test
##
## data: reg
## BP = 434.34, df = 6, p-value < 2.2e-16
## year Dist_Ecotone Dist_Littoral prop_tmoins1 prop_tmoins2 year2
## 1.061125e+06 1.101060e+00 1.072313e+00 1.278979e+00 1.307111e+00 1.061105e+06
Lapin - Blaireau
bdd_reg <- tab_glm(Donnees,
espece_interet = 61714,
espece_benchmark = 60636)
liste <- choisi_forme_year(bdd = bdd_reg)
## $choice
## [1] "quantitative"
##
## $min_bic
## [1] -821.1633
regfit <- liste[1]$regfit
bdd <- liste[2]$bdd
reg.summary <- summary(regfit); plot_regsubsets(reg.summary)
plot of chunk unnamed-chunk-22
par(mfrow=c(1 ,1)) ; plot(regfit, scale ="bic")
plot of chunk unnamed-chunk-23
reg <- glm(data = bdd,
formula = proportion_interet ~ year + Dnst_Cultures + Dist_Ecotone + prop_tmoins1 + prop_tmoins2+ year2)
summary(reg); autoplot(reg)
##
## Call:
## glm(formula = proportion_interet ~ year + Dnst_Cultures + Dist_Ecotone +
## prop_tmoins1 + prop_tmoins2 + year2, data = bdd)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.165e+03 1.343e+03 3.101 0.00194 **
## year -4.106e+00 1.331e+00 -3.084 0.00206 **
## Dnst_Cultures -4.399e-01 5.557e-02 -7.917 3.18e-15 ***
## Dist_Ecotone 1.787e-03 1.997e-04 8.949 < 2e-16 ***
## prop_tmoins1 2.237e-01 1.597e-02 14.010 < 2e-16 ***
## prop_tmoins2 1.431e-01 1.629e-02 8.784 < 2e-16 ***
## year2 1.012e-03 3.299e-04 3.068 0.00217 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.1184905)
##
## Null deviance: 557.06 on 3718 degrees of freedom
## Residual deviance: 439.84 on 3712 degrees of freedom
## AIC: 2630.7
##
## Number of Fisher Scoring iterations: 2
plot of chunk unnamed-chunk-25
bgtest(reg); bptest(reg); car::vif(reg)
##
## Breusch-Godfrey test for serial correlation of order up to 1
##
## data: reg
## LM test = 17.028, df = 1, p-value = 3.683e-05
##
## studentized Breusch-Pagan test
##
## data: reg
## BP = 105.34, df = 6, p-value < 2.2e-16
## year Dnst_Cultures Dist_Ecotone prop_tmoins1 prop_tmoins2 year2
## 1.095669e+06 1.066227e+00 1.064761e+00 1.225961e+00 1.300987e+00 1.095565e+06
Herisson
Herisson - Sanglier
bdd_reg <- tab_glm(Donnees,
espece_interet = 60015,
espece_benchmark = 60981)
liste <- choisi_forme_year(bdd = bdd_reg)
## $choice
## [1] "quantitative"
##
## $min_bic
## [1] -436.291
regfit <- liste[1]$regfit
bdd <- liste[2]$bdd
reg.summary <- summary(regfit); plot_regsubsets(reg.summary)
plot of chunk unnamed-chunk-27
par(mfrow=c(1 ,1)) ; plot(regfit, scale ="bic")
plot of chunk unnamed-chunk-28
reg <- glm(data = bdd,
formula = proportion_interet ~ year + X_10km + Y_10km + Dist_Littoral + Dist_Eau + prop_tmoins1 + prop_tmoins2 + year2)
summary(reg); autoplot(reg)
##
## Call:
## glm(formula = proportion_interet ~ year + X_10km + Y_10km + Dist_Littoral +
## Dist_Eau + prop_tmoins1 + prop_tmoins2 + year2, data = bdd)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.003e+04 1.275e+03 7.861 5.00e-15 ***
## year -9.912e+00 1.264e+00 -7.841 5.84e-15 ***
## X_10km -3.554e-02 7.106e-03 -5.001 5.98e-07 ***
## Y_10km -7.305e-02 1.692e-02 -4.317 1.63e-05 ***
## Dist_Littoral 1.059e-03 3.661e-04 2.894 0.003828 **
## Dist_Eau 3.492e-04 9.886e-05 3.532 0.000417 ***
## prop_tmoins1 1.508e-01 1.496e-02 10.080 < 2e-16 ***
## prop_tmoins2 9.843e-02 1.487e-02 6.619 4.16e-11 ***
## year2 2.451e-03 3.132e-04 7.825 6.63e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.09318855)
##
## Null deviance: 385.20 on 3595 degrees of freedom
## Residual deviance: 334.27 on 3587 degrees of freedom
## AIC: 1682.2
##
## Number of Fisher Scoring iterations: 2
plot of chunk unnamed-chunk-30
bgtest(reg); bptest(reg); car::vif(reg)
##
## Breusch-Godfrey test for serial correlation of order up to 1
##
## data: reg
## LM test = 9.4064, df = 1, p-value = 0.002162
##
## studentized Breusch-Pagan test
##
## data: reg
## BP = 168.21, df = 8, p-value < 2.2e-16
## year X_10km Y_10km Dist_Littoral Dist_Eau prop_tmoins1 prop_tmoins2 year2
## 1.244858e+06 1.771759e+00 1.240587e+00 1.772384e+00 1.224418e+00 1.236623e+00 1.478759e+00 1.244533e+06
Herisson - Renard
bdd_reg <- tab_glm(Donnees,
espece_interet = 60015,
espece_benchmark = 60585)
liste <- choisi_forme_year(bdd = bdd_reg)
## $choice
## [1] "qualitative"
##
## $min_bic
## [1] -467.9491
regfit <- liste[1]$regfit
bdd <- liste[2]$bdd
reg.summary <- summary(regfit); plot_regsubsets(reg.summary)
plot of chunk unnamed-chunk-32
par(mfrow=c(1 ,1)) ; plot(regfit, scale ="bic")
plot of chunk unnamed-chunk-33
reg <- glm(data = bdd,
formula = proportion_interet ~ year + X_10km + prop_tmoins1 + prop_tmoins2 )
summary(reg); autoplot(reg)
##
## Call:
## glm(formula = proportion_interet ~ year + X_10km + prop_tmoins1 +
## prop_tmoins2, data = bdd)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.602057 0.030128 19.983 < 2e-16 ***
## year2011 0.008948 0.032667 0.274 0.784161
## year2012 -0.111268 0.033075 -3.364 0.000775 ***
## year2013 -0.129581 0.033495 -3.869 0.000111 ***
## year2014 -0.139686 0.032980 -4.235 2.33e-05 ***
## year2015 -0.138144 0.034133 -4.047 5.28e-05 ***
## year2016 -0.173815 0.034010 -5.111 3.36e-07 ***
## year2017 -0.085986 0.033881 -2.538 0.011190 *
## year2018 -0.033811 0.033486 -1.010 0.312696
## year2019 0.048701 0.033564 1.451 0.146854
## year2020 0.057860 0.034451 1.679 0.093141 .
## year2021 0.030946 0.034321 0.902 0.367287
## year2022 0.003236 0.034688 0.093 0.925679
## year2023 -0.054635 0.034771 -1.571 0.116200
## year2024 -0.063821 0.034367 -1.857 0.063375 .
## year2025 -0.113211 0.035541 -3.185 0.001457 **
## X_10km 0.052655 0.005682 9.266 < 2e-16 ***
## prop_tmoins1 0.156880 0.015957 9.831 < 2e-16 ***
## prop_tmoins2 0.136176 0.016415 8.296 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.1163944)
##
## Null deviance: 548.38 on 4089 degrees of freedom
## Residual deviance: 473.84 on 4071 degrees of freedom
## AIC: 2831.2
##
## Number of Fisher Scoring iterations: 2
plot of chunk unnamed-chunk-35
bgtest(reg); bptest(reg); car::vif(reg)
##
## Breusch-Godfrey test for serial correlation of order up to 1
##
## data: reg
## LM test = 11.463, df = 1, p-value = 0.0007098
##
## studentized Breusch-Pagan test
##
## data: reg
## BP = 82.443, df = 18, p-value = 3.191e-10
## GVIF Df GVIF^(1/(2*Df))
## year 0.2027652 15 0.9481996
## X_10km 0.5201392 1 0.7212067
## prop_tmoins1 0.5596394 1 0.7480905
## prop_tmoins2 0.5590414 1 0.7476907
Herisson - Chevreuil
bdd_reg <- tab_glm(Donnees,
espece_interet = 60015,
espece_benchmark = 61057)
liste <- choisi_forme_year(bdd = bdd_reg)
## $choice
## [1] "quantitative"
##
## $min_bic
## [1] -603.0621
regfit <- liste[1]$regfit
bdd <- liste[2]$bdd
reg.summary <- summary(regfit); plot_regsubsets(reg.summary)
plot of chunk unnamed-chunk-37
par(mfrow=c(1 ,1)) ; plot(regfit, scale ="bic")
plot of chunk unnamed-chunk-38
reg <- glm(data = bdd,
formula = proportion_interet ~ year + Dist_Eau + prop_tmoins1 + prop_tmoins2 + year2)
summary(reg); autoplot(reg)
##
## Call:
## glm(formula = proportion_interet ~ year + Dist_Eau + prop_tmoins1 +
## prop_tmoins2 + year2, data = bdd)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.119e+04 1.102e+03 10.153 < 2e-16 ***
## year -1.108e+01 1.092e+00 -10.140 < 2e-16 ***
## Dist_Eau 3.365e-04 8.018e-05 4.197 2.75e-05 ***
## prop_tmoins1 2.348e-01 1.490e-02 15.760 < 2e-16 ***
## prop_tmoins2 1.219e-01 1.516e-02 8.044 1.12e-15 ***
## year2 2.741e-03 2.707e-04 10.126 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.1006969)
##
## Null deviance: 509.01 on 4356 degrees of freedom
## Residual deviance: 438.13 on 4351 degrees of freedom
## AIC: 2370.5
##
## Number of Fisher Scoring iterations: 2
plot of chunk unnamed-chunk-40
bgtest(reg); bptest(reg); car::vif(reg)
##
## Breusch-Godfrey test for serial correlation of order up to 1
##
## data: reg
## LM test = 64.234, df = 1, p-value = 1.105e-15
##
## studentized Breusch-Pagan test
##
## data: reg
## BP = 181.37, df = 5, p-value < 2.2e-16
## year Dist_Eau prop_tmoins1 prop_tmoins2 year2
## 1.052513e+06 1.011555e+00 1.131104e+00 1.188056e+00 1.052466e+06
Herisson - Blaireau
bdd_reg <- tab_glm(Donnees,
espece_interet = 60015,
espece_benchmark = 60636)
liste <- choisi_forme_year(bdd = bdd_reg)
## $choice
## [1] "quantitative"
##
## $min_bic
## [1] -303.0281
regfit <- liste[1]$regfit
bdd <- liste[2]$bdd
reg.summary <- summary(regfit); plot_regsubsets(reg.summary)
plot of chunk unnamed-chunk-42
par(mfrow=c(1 ,1)) ; plot(regfit, scale ="bic")
plot of chunk unnamed-chunk-43
reg <- glm(data = bdd,
formula = proportion_interet ~ year + X_10km + Dnst_Cultures + Dist_Ecotone + prop_tmoins1 + prop_tmoins2 + year2)
summary(reg); autoplot(reg)
##
## Call:
## glm(formula = proportion_interet ~ year + X_10km + Dnst_Cultures +
## Dist_Ecotone + prop_tmoins1 + prop_tmoins2 + year2, data = bdd)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.308e+03 1.262e+03 5.790 7.60e-09 ***
## year -7.228e+00 1.251e+00 -5.777 8.20e-09 ***
## X_10km 4.991e-02 6.468e-03 7.716 1.51e-14 ***
## Dnst_Cultures -4.780e-01 5.986e-02 -7.985 1.84e-15 ***
## Dist_Ecotone 1.553e-03 3.083e-04 5.038 4.92e-07 ***
## prop_tmoins1 1.413e-01 1.540e-02 9.178 < 2e-16 ***
## prop_tmoins2 7.296e-02 1.549e-02 4.710 2.57e-06 ***
## year2 1.787e-03 3.100e-04 5.764 8.82e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.1162438)
##
## Null deviance: 500.59 on 3927 degrees of freedom
## Residual deviance: 455.68 on 3920 degrees of freedom
## AIC: 2703.9
##
## Number of Fisher Scoring iterations: 2
plot of chunk unnamed-chunk-45
bgtest(reg); bptest(reg); car::vif(reg)
##
## Breusch-Godfrey test for serial correlation of order up to 1
##
## data: reg
## LM test = 20.398, df = 1, p-value = 6.288e-06
##
## studentized Breusch-Pagan test
##
## data: reg
## BP = 87.911, df = 7, p-value = 3.32e-16
## year X_10km Dnst_Cultures Dist_Ecotone prop_tmoins1 prop_tmoins2 year2
## 1.080346e+06 1.276208e+00 1.184822e+00 1.111552e+00 1.118288e+00 1.227811e+00 1.080200e+06
Putois
Putois - Sanglier
bdd_reg <- tab_glm(Donnees,
espece_interet = 60731,
espece_benchmark = 60981)
liste <- choisi_forme_year(bdd = bdd_reg)
## $choice
## [1] "quantitative"
##
## $min_bic
## [1] -224.9018
regfit <- liste[1]$regfit
bdd <- liste[2]$bdd
reg.summary <- summary(regfit); plot_regsubsets(reg.summary)
plot of chunk unnamed-chunk-47
par(mfrow=c(1 ,1)) ; plot(regfit, scale ="bic")
plot of chunk unnamed-chunk-48
reg <- glm(data = bdd,
formula = proportion_interet ~ year + X_10km + prop_tmoins1 + prop_tmoins2 + year2)
summary(reg); autoplot(reg)
##
## Call:
## glm(formula = proportion_interet ~ year + X_10km + prop_tmoins1 +
## prop_tmoins2 + year2, data = bdd)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.631e+03 1.975e+03 4.876 1.18e-06 ***
## year -9.521e+00 1.958e+00 -4.863 1.25e-06 ***
## X_10km -4.900e-02 8.833e-03 -5.548 3.30e-08 ***
## prop_tmoins1 1.494e-01 2.335e-02 6.400 1.95e-10 ***
## prop_tmoins2 7.974e-02 2.478e-02 3.218 0.00131 **
## year2 2.353e-03 4.850e-04 4.851 1.33e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.1216938)
##
## Null deviance: 264.26 on 1887 degrees of freedom
## Residual deviance: 229.03 on 1882 degrees of freedom
## AIC: 1389.3
##
## Number of Fisher Scoring iterations: 2
plot of chunk unnamed-chunk-50
bgtest(reg); bptest(reg); car::vif(reg)
##
## Breusch-Godfrey test for serial correlation of order up to 1
##
## data: reg
## LM test = 1.4402, df = 1, p-value = 0.2301
##
## studentized Breusch-Pagan test
##
## data: reg
## BP = 127.5, df = 5, p-value < 2.2e-16
## year X_10km prop_tmoins1 prop_tmoins2 year2
## 1.023307e+06 1.059777e+00 1.079791e+00 1.084215e+00 1.023297e+06
Putois - Renard
bdd_reg <- tab_glm(Donnees,
espece_interet = 60731,
espece_benchmark = 60585)
liste <- choisi_forme_year(bdd = bdd_reg)
## $choice
## [1] "qualitative"
##
## $min_bic
## [1] -63.24613
regfit <- liste[1]$regfit
bdd <- liste[2]$bdd
reg.summary <- summary(regfit); plot_regsubsets(reg.summary)
plot of chunk unnamed-chunk-52
par(mfrow=c(1 ,1)) ; plot(regfit, scale ="bic")
plot of chunk unnamed-chunk-53
reg <- glm(data = bdd,
formula = proportion_interet ~ year + Ind_Diversite + prop_tmoins1 + prop_tmoins2)
summary(reg); autoplot(reg)
##
## Call:
## glm(formula = proportion_interet ~ year + Ind_Diversite + prop_tmoins1 +
## prop_tmoins2, data = bdd)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.245413 0.049445 4.963 7.28e-07 ***
## year2011 -0.043189 0.023720 -1.821 0.06873 .
## year2012 -0.058204 0.023287 -2.499 0.01249 *
## year2013 -0.063564 0.023630 -2.690 0.00718 **
## year2014 -0.026877 0.023166 -1.160 0.24606
## year2015 -0.028231 0.024243 -1.165 0.24430
## year2016 -0.029289 0.023949 -1.223 0.22143
## year2017 -0.048956 0.024362 -2.010 0.04456 *
## year2018 -0.003397 0.023883 -0.142 0.88690
## year2019 -0.017128 0.024064 -0.712 0.47666
## year2020 0.016361 0.024656 0.664 0.50703
## year2021 0.013147 0.024488 0.537 0.59140
## year2022 0.075133 0.023966 3.135 0.00173 **
## year2023 -0.003520 0.024053 -0.146 0.88367
## year2024 -0.023325 0.023852 -0.978 0.32818
## year2025 -0.076328 0.025221 -3.026 0.00249 **
## Ind_Diversite -0.071876 0.022142 -3.246 0.00118 **
## prop_tmoins1 0.096763 0.018542 5.219 1.92e-07 ***
## prop_tmoins2 0.064268 0.020261 3.172 0.00153 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.05077256)
##
## Null deviance: 172.21 on 3263 degrees of freedom
## Residual deviance: 164.76 on 3245 degrees of freedom
## AIC: -444.25
##
## Number of Fisher Scoring iterations: 2
plot of chunk unnamed-chunk-55
bgtest(reg); bptest(reg); car::vif(reg)
##
## Breusch-Godfrey test for serial correlation of order up to 1
##
## data: reg
## LM test = 1.7473, df = 1, p-value = 0.1862
##
## studentized Breusch-Pagan test
##
## data: reg
## BP = 113.45, df = 18, p-value = 7.149e-16
## GVIF Df GVIF^(1/(2*Df))
## year 0.09592267 15 0.9248345
## Ind_Diversite -0.47835009 1 NaN
## prop_tmoins1 -0.43682056 1 NaN
## prop_tmoins2 -0.44012813 1 NaN
Putois - Chevreuil
bdd_reg <- tab_glm(Donnees,
espece_interet = 60731,
espece_benchmark = 61057)
liste <- choisi_forme_year(bdd = bdd_reg)
## $choice
## [1] "quantitative"
##
## $min_bic
## [1] -145.8882
regfit <- liste[1]$regfit
bdd <- liste[2]$bdd
reg.summary <- summary(regfit); plot_regsubsets(reg.summary)
plot of chunk unnamed-chunk-57
par(mfrow=c(1 ,1)) ; plot(regfit, scale ="bic")
plot of chunk unnamed-chunk-58
reg <- glm(data = bdd,
formula = proportion_interet ~ year + X_10km + Y_10km + prop_tmoins1 + prop_tmoins2 + year2)
summary(reg); autoplot(reg)
##
## Call:
## glm(formula = proportion_interet ~ year + X_10km + Y_10km + prop_tmoins1 +
## prop_tmoins2 + year2, data = bdd)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.496e+03 6.188e+02 4.034 5.59e-05 ***
## year -2.472e+00 6.133e-01 -4.030 5.69e-05 ***
## X_10km -1.028e-02 2.870e-03 -3.582 0.000345 ***
## Y_10km 3.749e-02 8.375e-03 4.476 7.82e-06 ***
## prop_tmoins1 1.368e-01 1.638e-02 8.353 < 2e-16 ***
## prop_tmoins2 3.470e-02 1.684e-02 2.060 0.039429 *
## year2 6.114e-04 1.520e-04 4.023 5.87e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.02842325)
##
## Null deviance: 115.22 on 3851 degrees of freedom
## Residual deviance: 109.29 on 3845 degrees of freedom
## AIC: -2774.7
##
## Number of Fisher Scoring iterations: 2
plot of chunk unnamed-chunk-60
bgtest(reg); bptest(reg); car::vif(reg)
##
## Breusch-Godfrey test for serial correlation of order up to 1
##
## data: reg
## LM test = 3.0738, df = 1, p-value = 0.07956
##
## studentized Breusch-Pagan test
##
## data: reg
## BP = 157.71, df = 6, p-value < 2.2e-16
## year X_10km Y_10km prop_tmoins1 prop_tmoins2 year2
## 9.980618e+05 1.031976e+00 1.037128e+00 1.034300e+00 1.034319e+00 9.980623e+05
Putois - Blaireau
bdd_reg <- tab_glm(Donnees,
espece_interet = 60731,
espece_benchmark = 60636)
liste <- choisi_forme_year(bdd = bdd_reg)
## $choice
## [1] "quantitative"
##
## $min_bic
## [1] -18.83158
regfit <- liste[1]$regfit
bdd <- liste[2]$bdd
reg.summary <- summary(regfit); plot_regsubsets(reg.summary)
plot of chunk unnamed-chunk-62
par(mfrow=c(1 ,1)) ; plot(regfit, scale ="bic")
plot of chunk unnamed-chunk-63
reg <- glm(data = bdd,
formula = proportion_interet ~ year + prop_tmoins1 )
summary(reg); autoplot(reg)
##
## Call:
## glm(formula = proportion_interet ~ year + prop_tmoins1, data = bdd)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.5408204 1.9499244 5.406 6.96e-08 ***
## year -0.0051795 0.0009661 -5.361 8.90e-08 ***
## prop_tmoins1 0.0716851 0.0187672 3.820 0.000136 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.05406844)
##
## Null deviance: 164.86 on 3008 degrees of freedom
## Residual deviance: 162.53 on 3006 degrees of freedom
## AIC: -234.6
##
## Number of Fisher Scoring iterations: 2
plot of chunk unnamed-chunk-65
bgtest(reg); bptest(reg); car::vif(reg)
##
## Breusch-Godfrey test for serial correlation of order up to 1
##
## data: reg
## LM test = 8.1403, df = 1, p-value = 0.004329
##
## studentized Breusch-Pagan test
##
## data: reg
## BP = 31.377, df = 2, p-value = 1.537e-07
## year prop_tmoins1
## 1.000026 1.000026
Hermine
Hermine - Sanglier
bdd_reg <- tab_glm(Donnees,
espece_interet = 60686,
espece_benchmark = 60981)
liste <- choisi_forme_year(bdd = bdd_reg)
## $choice
## [1] "quantitative"
##
## $min_bic
## [1] -147.9292
regfit <- liste[1]$regfit
bdd <- liste[2]$bdd
reg.summary <- summary(regfit); plot_regsubsets(reg.summary)
plot of chunk unnamed-chunk-67
par(mfrow=c(1 ,1)) ; plot(regfit, scale ="bic")
plot of chunk unnamed-chunk-68
reg <- glm(data = bdd,
formula = proportion_interet ~ year + X_10km + Dist_Ecotone + prop_tmoins1 + year2)
summary(reg); autoplot(reg)
##
## Call:
## glm(formula = proportion_interet ~ year + X_10km + Dist_Ecotone +
## prop_tmoins1 + year2, data = bdd)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.139e+03 1.325e+03 3.878 0.000110 ***
## year -5.078e+00 1.313e+00 -3.867 0.000115 ***
## X_10km -2.741e-02 5.756e-03 -4.763 2.07e-06 ***
## Dist_Ecotone 1.141e-03 3.545e-04 3.218 0.001317 **
## prop_tmoins1 9.312e-02 2.470e-02 3.769 0.000169 ***
## year2 1.254e-03 3.254e-04 3.855 0.000120 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.04623204)
##
## Null deviance: 86.004 on 1662 degrees of freedom
## Residual deviance: 76.606 on 1657 degrees of freedom
## AIC: -384.82
##
## Number of Fisher Scoring iterations: 2
plot of chunk unnamed-chunk-70
bgtest(reg); bptest(reg); car::vif(reg)
##
## Breusch-Godfrey test for serial correlation of order up to 1
##
## data: reg
## LM test = 1.6129, df = 1, p-value = 0.2041
##
## studentized Breusch-Pagan test
##
## data: reg
## BP = 181.8, df = 5, p-value < 2.2e-16
## year X_10km Dist_Ecotone prop_tmoins1 year2
## 1.016150e+06 1.068050e+00 1.064323e+00 1.036538e+00 1.016177e+06
Hermine - Renard
bdd_reg <- tab_glm(Donnees,
espece_interet = 60686,
espece_benchmark = 60585)
liste <- choisi_forme_year(bdd = bdd_reg)
## $choice
## [1] "quantitative"
##
## $min_bic
## [1] -0.1333714
regfit <- liste[1]$regfit
bdd <- liste[2]$bdd
reg.summary <- summary(regfit); plot_regsubsets(reg.summary)
plot of chunk unnamed-chunk-72
par(mfrow=c(1 ,1)) ; plot(regfit, scale ="bic")
plot of chunk unnamed-chunk-73
reg <- glm(data = bdd,
formula = proportion_interet ~ Y_10km + prop_tmoins1)
summary(reg); autoplot(reg)
##
## Call:
## glm(formula = proportion_interet ~ Y_10km + prop_tmoins1, data = bdd)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.047669 0.328398 -3.190 0.001435 **
## Y_10km 0.022192 0.006816 3.256 0.001142 **
## prop_tmoins1 0.064325 0.018253 3.524 0.000431 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.01650682)
##
## Null deviance: 52.564 on 3162 degrees of freedom
## Residual deviance: 52.162 on 3160 degrees of freedom
## AIC: -3999.7
##
## Number of Fisher Scoring iterations: 2
plot of chunk unnamed-chunk-75
bgtest(reg); bptest(reg); car::vif(reg)
##
## Breusch-Godfrey test for serial correlation of order up to 1
##
## data: reg
## LM test = 8.9455, df = 1, p-value = 0.002782
##
## studentized Breusch-Pagan test
##
## data: reg
## BP = 18.298, df = 2, p-value = 0.0001063
## Y_10km prop_tmoins1
## 1.003149 1.003149
Hermine - Chevreuil
bdd_reg <- tab_glm(Donnees,
espece_interet = 60686,
espece_benchmark = 61057)
liste <- choisi_forme_year(bdd = bdd_reg)
## $choice
## [1] "quantitative"
##
## $min_bic
## [1] -36.28959
regfit <- liste[1]$regfit
bdd <- liste[2]$bdd
reg.summary <- summary(regfit); plot_regsubsets(reg.summary)
plot of chunk unnamed-chunk-77
par(mfrow=c(1 ,1)) ; plot(regfit, scale ="bic")
plot of chunk unnamed-chunk-78
reg <- glm(data = bdd,
formula = proportion_interet ~ year + Y_10km + Dist_Ecotone + prop_tmoins2)
summary(reg); autoplot(reg)
##
## Call:
## glm(formula = proportion_interet ~ year + Y_10km + Dist_Ecotone +
## prop_tmoins2, data = bdd)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.264e+00 6.881e-01 4.744 2.18e-06 ***
## year -2.012e-03 3.234e-04 -6.220 5.52e-10 ***
## Y_10km 1.658e-02 4.319e-03 3.838 0.000126 ***
## Dist_Ecotone 1.824e-04 5.836e-05 3.125 0.001791 **
## prop_tmoins2 5.548e-02 1.749e-02 3.172 0.001528 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.007649725)
##
## Null deviance: 29.537 on 3787 degrees of freedom
## Residual deviance: 28.939 on 3783 degrees of freedom
## AIC: -7702.4
##
## Number of Fisher Scoring iterations: 2
plot of chunk unnamed-chunk-80
bgtest(reg); bptest(reg); car::vif(reg)
##
## Breusch-Godfrey test for serial correlation of order up to 1
##
## data: reg
## LM test = 2.6017, df = 1, p-value = 0.1067
##
## studentized Breusch-Pagan test
##
## data: reg
## BP = 55.712, df = 4, p-value = 2.304e-11
## year Y_10km Dist_Ecotone prop_tmoins2
## 1.002631 1.007793 1.006126 1.004367
Hermine - Blaireau
bdd_reg <- tab_glm(Donnees,
espece_interet = 60686,
espece_benchmark = 60636)
liste <- choisi_forme_year(bdd = bdd_reg)
## $choice
## [1] "quantitative"
##
## $min_bic
## [1] -62.40324
regfit <- liste[1]$regfit
bdd <- liste[2]$bdd
reg.summary <- summary(regfit); plot_regsubsets(reg.summary)
plot of chunk unnamed-chunk-82
par(mfrow=c(1 ,1)) ; plot(regfit, scale ="bic")
plot of chunk unnamed-chunk-83
reg <- glm(data = bdd,
formula = proportion_interet ~ year + Y_10km + Dist_Ecotone + Dist_Eau + prop_tmoins1)
summary(reg); autoplot(reg)
##
## Call:
## glm(formula = proportion_interet ~ year + Y_10km + Dist_Ecotone +
## Dist_Eau + prop_tmoins1, data = bdd)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.672e+00 1.236e+00 4.589 4.65e-06 ***
## year -3.512e-03 5.691e-04 -6.171 7.71e-10 ***
## Y_10km 2.947e-02 9.082e-03 3.244 0.00119 **
## Dist_Ecotone 6.375e-04 1.457e-04 4.375 1.26e-05 ***
## Dist_Eau -5.758e-05 5.557e-05 -1.036 0.30020
## prop_tmoins1 9.313e-02 1.908e-02 4.881 1.11e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.01790358)
##
## Null deviance: 54.105 on 2922 degrees of freedom
## Residual deviance: 52.225 on 2917 degrees of freedom
## AIC: -3455.4
##
## Number of Fisher Scoring iterations: 2
plot of chunk unnamed-chunk-85
bgtest(reg); bptest(reg); car::vif(reg)
##
## Breusch-Godfrey test for serial correlation of order up to 1
##
## data: reg
## LM test = 10.922, df = 1, p-value = 0.0009501
##
## studentized Breusch-Pagan test
##
## data: reg
## BP = 79.096, df = 5, p-value = 1.297e-15
## year Y_10km Dist_Ecotone Dist_Eau prop_tmoins1
## 1.007292 1.417800 1.036648 1.429147 1.015068
Belette
Belette - Sanglier
bdd_reg <- tab_glm(Donnees,
espece_interet = 60716,
espece_benchmark = 60981)
liste <- choisi_forme_year(bdd = bdd_reg)
## $choice
## [1] "quantitative"
##
## $min_bic
## [1] -512.5662
regfit <- liste[1]$regfit
bdd <- liste[2]$bdd
reg.summary <- summary(regfit); plot_regsubsets(reg.summary)
plot of chunk unnamed-chunk-87
par(mfrow=c(1 ,1)) ; plot(regfit, scale ="bic")
plot of chunk unnamed-chunk-88
reg <- glm(data = bdd,
formula = proportion_interet ~ year + X_10km + Dnst_Cultures + Dist_Ecotone + Dist_Eau + prop_tmoins1 + prop_tmoins2 + year2)
summary(reg); autoplot(reg)
##
## Call:
## glm(formula = proportion_interet ~ year + X_10km + Dnst_Cultures +
## Dist_Ecotone + Dist_Eau + prop_tmoins1 + prop_tmoins2 + year2,
## data = bdd)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.725e+03 2.029e+03 2.822 0.004818 **
## year -5.641e+00 2.011e+00 -2.805 0.005070 **
## X_10km -7.088e-02 9.542e-03 -7.428 1.53e-13 ***
## Dnst_Cultures -2.854e-01 8.257e-02 -3.456 0.000557 ***
## Dist_Ecotone 1.157e-03 3.330e-04 3.474 0.000522 ***
## Dist_Eau 4.569e-04 1.319e-04 3.464 0.000542 ***
## prop_tmoins1 1.086e-01 2.012e-02 5.399 7.36e-08 ***
## prop_tmoins2 9.087e-02 2.078e-02 4.373 1.28e-05 ***
## year2 1.389e-03 4.982e-04 2.789 0.005333 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.1538018)
##
## Null deviance: 463.26 on 2362 degrees of freedom
## Residual deviance: 362.05 on 2354 degrees of freedom
## AIC: 2293.1
##
## Number of Fisher Scoring iterations: 2
plot of chunk unnamed-chunk-90
bgtest(reg); bptest(reg); car::vif(reg)
##
## Breusch-Godfrey test for serial correlation of order up to 1
##
## data: reg
## LM test = 0.74516, df = 1, p-value = 0.388
##
## studentized Breusch-Pagan test
##
## data: reg
## BP = 36.808, df = 8, p-value = 1.248e-05
## year X_10km Dnst_Cultures Dist_Ecotone Dist_Eau prop_tmoins1 prop_tmoins2 year2
## 1.106392e+06 1.311119e+00 1.168134e+00 1.379918e+00 1.304437e+00 1.196033e+00 1.230421e+00 1.106315e+06
Belette - Renard
bdd_reg <- tab_glm(Donnees,
espece_interet = 60716,
espece_benchmark = 60585)
liste <- choisi_forme_year(bdd = bdd_reg)
## $choice
## [1] "qualitative"
##
## $min_bic
## [1] -193.7704
regfit <- liste[1]$regfit
bdd <- liste[2]$bdd
reg.summary <- summary(regfit); plot_regsubsets(reg.summary)
plot of chunk unnamed-chunk-92
par(mfrow=c(1 ,1)) ; plot(regfit, scale ="bic")
plot of chunk unnamed-chunk-93
reg <- glm(data = bdd,
formula = proportion_interet ~ year + Ind_Diversite + Dist_Ecotone + Dist_Eau + prop_tmoins1 + prop_tmoins2)
summary(reg); autoplot(reg)
##
## Call:
## glm(formula = proportion_interet ~ year + Ind_Diversite + Dist_Ecotone +
## Dist_Eau + prop_tmoins1 + prop_tmoins2, data = bdd)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.594e-01 6.673e-02 -3.888 0.000103 ***
## year2011 -1.982e-02 3.201e-02 -0.619 0.535916
## year2012 -4.985e-03 3.136e-02 -0.159 0.873705
## year2013 -5.566e-02 3.215e-02 -1.731 0.083500 .
## year2014 1.719e-02 3.131e-02 0.549 0.583052
## year2015 3.796e-02 3.271e-02 1.160 0.245971
## year2016 4.805e-02 3.221e-02 1.492 0.135775
## year2017 1.865e-02 3.276e-02 0.569 0.569244
## year2018 6.515e-02 3.245e-02 2.008 0.044771 *
## year2019 5.790e-02 3.255e-02 1.778 0.075411 .
## year2020 7.647e-02 3.332e-02 2.295 0.021806 *
## year2021 1.085e-01 3.289e-02 3.297 0.000985 ***
## year2022 7.683e-02 3.285e-02 2.339 0.019411 *
## year2023 6.256e-03 3.273e-02 0.191 0.848427
## year2024 1.246e-02 3.240e-02 0.385 0.700630
## year2025 -4.985e-02 3.412e-02 -1.461 0.144065
## Ind_Diversite 1.144e-01 2.860e-02 4.000 6.48e-05 ***
## Dist_Ecotone 1.252e-03 2.133e-04 5.870 4.76e-09 ***
## Dist_Eau 3.546e-04 8.688e-05 4.081 4.59e-05 ***
## prop_tmoins1 9.607e-02 1.789e-02 5.371 8.36e-08 ***
## prop_tmoins2 7.416e-02 1.915e-02 3.873 0.000110 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.09470619)
##
## Null deviance: 355.12 on 3464 degrees of freedom
## Residual deviance: 326.17 on 3444 degrees of freedom
## AIC: 1689.3
##
## Number of Fisher Scoring iterations: 2
plot of chunk unnamed-chunk-95
bgtest(reg); bptest(reg); car::vif(reg)
##
## Breusch-Godfrey test for serial correlation of order up to 1
##
## data: reg
## LM test = 3.1558, df = 1, p-value = 0.07566
##
## studentized Breusch-Pagan test
##
## data: reg
## BP = 138.88, df = 20, p-value < 2.2e-16
## GVIF Df GVIF^(1/(2*Df))
## year 0.1179141 15 0.9312198
## Ind_Diversite 1.2255199 1 1.1070320
## Dist_Ecotone 1.4257256 1 1.1940375
## Dist_Eau 1.4537208 1 1.2057035
## prop_tmoins1 1.1172699 1 1.0570099
## prop_tmoins2 1.1269285 1 1.0615689
Belette - Chevreuil
bdd_reg <- tab_glm(Donnees,
espece_interet = 60716,
espece_benchmark = 61057)
liste <- choisi_forme_year(bdd = bdd_reg)
## $choice
## [1] "quantitative"
##
## $min_bic
## [1] -560.5691
regfit <- liste[1]$regfit
bdd <- liste[2]$bdd
reg.summary <- summary(regfit); plot_regsubsets(reg.summary)
plot of chunk unnamed-chunk-97
par(mfrow=c(1 ,1)) ; plot(regfit, scale ="bic")
plot of chunk unnamed-chunk-98
reg <- glm(data = bdd,
formula = proportion_interet ~ year + X_10km + Dist_Ecotone + Dist_Littoral + Dist_Eau + prop_tmoins1 + prop_tmoins2 + year2)
summary(reg); autoplot(reg)
##
## Call:
## glm(formula = proportion_interet ~ year + X_10km + Dist_Ecotone +
## Dist_Littoral + Dist_Eau + prop_tmoins1 + prop_tmoins2 +
## year2, data = bdd)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.893e+03 8.823e+02 2.146 0.0320 *
## year -1.868e+00 8.746e-01 -2.136 0.0327 *
## X_10km -1.454e-02 5.234e-03 -2.778 0.0055 **
## Dist_Ecotone 1.193e-03 1.588e-04 7.514 7.03e-14 ***
## Dist_Littoral -1.075e-03 2.732e-04 -3.935 8.46e-05 ***
## Dist_Eau 3.652e-04 6.698e-05 5.452 5.28e-08 ***
## prop_tmoins1 1.352e-01 1.602e-02 8.435 < 2e-16 ***
## prop_tmoins2 9.887e-02 1.672e-02 5.914 3.62e-09 ***
## year2 4.609e-04 2.167e-04 2.127 0.0335 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.05821119)
##
## Null deviance: 272.31 on 3999 degrees of freedom
## Residual deviance: 232.32 on 3991 degrees of freedom
## AIC: -12.212
##
## Number of Fisher Scoring iterations: 2
plot of chunk unnamed-chunk-100
bgtest(reg); bptest(reg); car::vif(reg)
##
## Breusch-Godfrey test for serial correlation of order up to 1
##
## data: reg
## LM test = 7.4458, df = 1, p-value = 0.006358
##
## studentized Breusch-Pagan test
##
## data: reg
## BP = 423.07, df = 8, p-value < 2.2e-16
## year X_10km Dist_Ecotone Dist_Littoral Dist_Eau prop_tmoins1 prop_tmoins2 year2
## 1.026222e+06 1.778911e+00 1.383801e+00 1.725693e+00 1.331250e+00 1.133587e+00 1.141304e+00 1.026214e+06
Belette - Blaireau
bdd_reg <- tab_glm(Donnees,
espece_interet = 60716,
espece_benchmark = 60636)
liste <- choisi_forme_year(bdd = bdd_reg)
## $choice
## [1] "quantitative"
##
## $min_bic
## [1] -468.4456
regfit <- liste[1]$regfit
bdd <- liste[2]$bdd
reg.summary <- summary(regfit); plot_regsubsets(reg.summary)
plot of chunk unnamed-chunk-102
par(mfrow=c(1 ,1)) ; plot(regfit, scale ="bic")
plot of chunk unnamed-chunk-103
reg <- glm(data = bdd,
formula = proportion_interet ~ year + Dnst_Cultures + Dist_Ecotone + Dist_Eau +
prop_tmoins1 + prop_tmoins2)
summary(reg); autoplot(reg)
##
## Call:
## glm(formula = proportion_interet ~ year + Dnst_Cultures + Dist_Ecotone +
## Dist_Eau + prop_tmoins1 + prop_tmoins2, data = bdd)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.551e+01 2.599e+00 9.813 < 2e-16 ***
## year -1.256e-02 1.287e-03 -9.753 < 2e-16 ***
## Dnst_Cultures -5.395e-01 5.724e-02 -9.426 < 2e-16 ***
## Dist_Ecotone 2.045e-03 2.428e-04 8.422 < 2e-16 ***
## Dist_Eau 4.308e-04 9.569e-05 4.502 6.96e-06 ***
## prop_tmoins1 1.357e-01 1.751e-02 7.751 1.20e-14 ***
## prop_tmoins2 6.408e-02 1.801e-02 3.557 0.00038 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.1032856)
##
## Null deviance: 398.79 on 3299 degrees of freedom
## Residual deviance: 340.12 on 3293 degrees of freedom
## AIC: 1882.1
##
## Number of Fisher Scoring iterations: 2
plot of chunk unnamed-chunk-105
bgtest(reg); bptest(reg); car::vif(reg)
##
## Breusch-Godfrey test for serial correlation of order up to 1
##
## data: reg
## LM test = 4.0919, df = 1, p-value = 0.04309
##
## studentized Breusch-Pagan test
##
## data: reg
## BP = 178.53, df = 6, p-value < 2.2e-16
## year Dnst_Cultures Dist_Ecotone Dist_Eau prop_tmoins1 prop_tmoins2
## 1.019597 1.059909 1.240535 1.215041 1.126190 1.124207
Fouine
Fouine - Sanglier
bdd_reg <- tab_glm(Donnees,
espece_interet = 60674,
espece_benchmark = 60981)
liste <- choisi_forme_year(bdd = bdd_reg)
## $choice
## [1] "quantitative"
##
## $min_bic
## [1] -335.2041
regfit <- liste[1]$regfit
bdd <- liste[2]$bdd
reg.summary <- summary(regfit); plot_regsubsets(reg.summary)
plot of chunk unnamed-chunk-107
par(mfrow=c(1 ,1)) ; plot(regfit, scale ="bic")
plot of chunk unnamed-chunk-108
reg <- glm(data = bdd,
formula = proportion_interet ~ year +
Ind_Diversite + Dnst_Cultures +
prop_tmoins1 + prop_tmoins2)
summary(reg); autoplot(reg)
##
## Call:
## glm(formula = proportion_interet ~ year + Ind_Diversite + Dnst_Cultures +
## prop_tmoins1 + prop_tmoins2, data = bdd)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 68.731109 4.070639 16.885 < 2e-16 ***
## year -0.034341 0.002018 -17.017 < 2e-16 ***
## Ind_Diversite 0.300777 0.070731 4.252 2.21e-05 ***
## Dnst_Cultures 0.616502 0.132299 4.660 3.37e-06 ***
## prop_tmoins1 0.127784 0.021391 5.974 2.73e-09 ***
## prop_tmoins2 0.126371 0.021961 5.754 1.00e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.1415281)
##
## Null deviance: 347.25 on 2041 degrees of freedom
## Residual deviance: 288.15 on 2036 degrees of freedom
## AIC: 1810.3
##
## Number of Fisher Scoring iterations: 2
plot of chunk unnamed-chunk-110
bgtest(reg); bptest(reg); car::vif(reg)
##
## Breusch-Godfrey test for serial correlation of order up to 1
##
## data: reg
## LM test = 2.7392, df = 1, p-value = 0.09791
##
## studentized Breusch-Pagan test
##
## data: reg
## BP = 143.27, df = 5, p-value < 2.2e-16
## year Ind_Diversite Dnst_Cultures prop_tmoins1 prop_tmoins2
## 1.026072 2.352944 2.367143 1.086315 1.090865
Fouine - Renard
bdd_reg <- tab_glm(Donnees,
espece_interet = 60674,
espece_benchmark = 60585)
liste <- choisi_forme_year(bdd = bdd_reg)
## $choice
## [1] "qualitative"
##
## $min_bic
## [1] -764.6309
regfit <- liste[1]$regfit
bdd <- liste[2]$bdd
reg.summary <- summary(regfit); plot_regsubsets(reg.summary)
plot of chunk unnamed-chunk-112
par(mfrow=c(1 ,1)) ; plot(regfit, scale ="bic")
plot of chunk unnamed-chunk-113
reg <- glm(data = bdd,
formula = proportion_interet ~ year + X_10km + Dnst_Cultures +
prop_tmoins1 + prop_tmoins2)
summary(reg); autoplot(reg)
##
## Call:
## glm(formula = proportion_interet ~ year + X_10km + Dnst_Cultures +
## prop_tmoins1 + prop_tmoins2, data = bdd)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.150556 0.036203 4.159 3.28e-05 ***
## year2011 -0.048601 0.028298 -1.717 0.085988 .
## year2012 -0.073510 0.027884 -2.636 0.008420 **
## year2013 -0.079699 0.028262 -2.820 0.004830 **
## year2014 0.016909 0.027651 0.612 0.540907
## year2015 0.077243 0.028609 2.700 0.006970 **
## year2016 -0.018716 0.028562 -0.655 0.512334
## year2017 0.012765 0.028604 0.446 0.655432
## year2018 0.003966 0.028448 0.139 0.889144
## year2019 0.011780 0.028686 0.411 0.681353
## year2020 0.034032 0.029402 1.157 0.247169
## year2021 0.068854 0.028739 2.396 0.016637 *
## year2022 -0.006965 0.028784 -0.242 0.808820
## year2023 -0.083061 0.028925 -2.872 0.004110 **
## year2024 -0.102721 0.028622 -3.589 0.000337 ***
## year2025 -0.116665 0.030174 -3.866 0.000113 ***
## X_10km 0.038734 0.005380 7.200 7.38e-13 ***
## Dnst_Cultures 0.216753 0.050455 4.296 1.79e-05 ***
## prop_tmoins1 0.256546 0.017367 14.772 < 2e-16 ***
## prop_tmoins2 0.182266 0.018174 10.029 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.07255263)
##
## Null deviance: 319.13 on 3402 degrees of freedom
## Residual deviance: 245.45 on 3383 degrees of freedom
## AIC: 751.66
##
## Number of Fisher Scoring iterations: 2
plot of chunk unnamed-chunk-115
bgtest(reg); bptest(reg); car::vif(reg)
##
## Breusch-Godfrey test for serial correlation of order up to 1
##
## data: reg
## LM test = 1.9699, df = 1, p-value = 0.1605
##
## studentized Breusch-Pagan test
##
## data: reg
## BP = 234.13, df = 19, p-value < 2.2e-16
## GVIF Df GVIF^(1/(2*Df))
## year 0.1828791 15 0.9449427
## X_10km 1.2627740 1 1.1237322
## Dnst_Cultures 1.1986316 1 1.0948203
## prop_tmoins1 1.1872232 1 1.0895977
## prop_tmoins2 1.1983305 1 1.0946829
Fouine - Chevreuil
bdd_reg <- tab_glm(Donnees,
espece_interet = 60674,
espece_benchmark = 61057)
liste <- choisi_forme_year(bdd = bdd_reg)
## $choice
## [1] "quantitative"
##
## $min_bic
## [1] -347.8022
regfit <- liste[1]$regfit
bdd <- liste[2]$bdd
reg.summary <- summary(regfit); plot_regsubsets(reg.summary)
plot of chunk unnamed-chunk-117
par(mfrow=c(1 ,1)) ; plot(regfit, scale ="bic")
plot of chunk unnamed-chunk-118
reg <- glm(data = bdd,
formula = proportion_interet ~ year + X_10km +
Ind_Diversite + Dnst_Cultures + Dist_Eau +
prop_tmoins1 + prop_tmoins2 + year2)
summary(reg); autoplot(reg)
##
## Call:
## glm(formula = proportion_interet ~ year + X_10km + Ind_Diversite +
## Dnst_Cultures + Dist_Eau + prop_tmoins1 + prop_tmoins2 +
## year2, data = bdd)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.080e+02 7.157e+02 -0.151 0.880090
## year 1.137e-01 7.094e-01 0.160 0.872675
## X_10km 1.135e-02 3.636e-03 3.123 0.001803 **
## Ind_Diversite 1.009e-01 2.608e-02 3.867 0.000112 ***
## Dnst_Cultures 2.746e-01 4.888e-02 5.619 2.06e-08 ***
## Dist_Eau 2.027e-04 5.494e-05 3.690 0.000227 ***
## prop_tmoins1 1.740e-01 1.613e-02 10.784 < 2e-16 ***
## prop_tmoins2 1.146e-01 1.639e-02 6.989 3.25e-12 ***
## year2 -2.989e-05 1.758e-04 -0.170 0.864977
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.03672347)
##
## Null deviance: 157.58 on 3863 degrees of freedom
## Residual deviance: 141.57 on 3855 degrees of freedom
## AIC: -1791.4
##
## Number of Fisher Scoring iterations: 2
plot of chunk unnamed-chunk-120
bgtest(reg); bptest(reg); car::vif(reg)
##
## Breusch-Godfrey test for serial correlation of order up to 1
##
## data: reg
## LM test = 8.7065, df = 1, p-value = 0.003171
##
## studentized Breusch-Pagan test
##
## data: reg
## BP = 182.35, df = 8, p-value < 2.2e-16
## year X_10km Ind_Diversite Dnst_Cultures Dist_Eau prop_tmoins1 prop_tmoins2 year2
## 1.030860e+06 1.275662e+00 2.426668e+00 2.455537e+00 1.063430e+00 1.092809e+00 1.097525e+00 1.030863e+06
Fouine - Blaireau
bdd_reg <- tab_glm(Donnees,
espece_interet = 60674,
espece_benchmark = 60636)
liste <- choisi_forme_year(bdd = bdd_reg)
## $choice
## [1] "quantitative"
##
## $min_bic
## [1] -233.328
regfit <- liste[1]$regfit
bdd <- liste[2]$bdd
reg.summary <- summary(regfit); plot_regsubsets(reg.summary)
plot of chunk unnamed-chunk-122
par(mfrow=c(1 ,1)) ; plot(regfit, scale ="bic")
plot of chunk unnamed-chunk-123
reg <- glm(data = bdd,
formula = proportion_interet ~ year + X_10km +
Ind_Diversite + Dnst_Cultures +
prop_tmoins1 + prop_tmoins2 + year2)
summary(reg); autoplot(reg)
##
## Call:
## glm(formula = proportion_interet ~ year + X_10km + Ind_Diversite +
## Dnst_Cultures + prop_tmoins1 + prop_tmoins2 + year2, data = bdd)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.556e+03 1.158e+03 -2.207 0.027365 *
## year 2.544e+00 1.148e+00 2.217 0.026717 *
## X_10km 5.264e-02 5.916e-03 8.899 < 2e-16 ***
## Ind_Diversite 2.205e-01 4.452e-02 4.952 7.75e-07 ***
## Dnst_Cultures 2.507e-01 8.029e-02 3.122 0.001810 **
## prop_tmoins1 1.096e-01 1.831e-02 5.984 2.44e-09 ***
## prop_tmoins2 6.944e-02 1.881e-02 3.693 0.000226 ***
## year2 -6.332e-04 2.844e-04 -2.226 0.026068 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.07493417)
##
## Null deviance: 252.77 on 3072 degrees of freedom
## Residual deviance: 229.67 on 3065 degrees of freedom
## AIC: 768.2
##
## Number of Fisher Scoring iterations: 2
plot of chunk unnamed-chunk-125
bgtest(reg); bptest(reg); car::vif(reg)
##
## Breusch-Godfrey test for serial correlation of order up to 1
##
## data: reg
## LM test = 0.60221, df = 1, p-value = 0.4377
##
## studentized Breusch-Pagan test
##
## data: reg
## BP = 132.07, df = 7, p-value < 2.2e-16
## year X_10km Ind_Diversite Dnst_Cultures prop_tmoins1 prop_tmoins2 year2
## 1.043894e+06 1.254070e+00 2.327168e+00 2.290791e+00 1.088410e+00 1.098843e+00 1.043872e+06
Temoins
Sanglier - Renard
bdd_reg <- tab_glm(Donnees,
espece_interet = 60981,
espece_benchmark = 60585)
liste <- choisi_forme_year(bdd = bdd_reg)
## $choice
## [1] "qualitative"
##
## $min_bic
## [1] -1060.57
regfit <- liste[1]$regfit
bdd <- liste[2]$bdd
reg.summary <- summary(regfit); plot_regsubsets(reg.summary)
plot of chunk unnamed-chunk-127
par(mfrow=c(1 ,1)) ; plot(regfit, scale ="bic")
plot of chunk unnamed-chunk-128
reg <- glm(data = bdd,
formula = proportion_interet ~ year + X_10km +
prop_tmoins1 + prop_tmoins2)
summary(reg); autoplot(reg)
##
## Call:
## glm(formula = proportion_interet ~ year + X_10km + prop_tmoins1 +
## prop_tmoins2, data = bdd)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.23472 0.03041 7.719 1.51e-14 ***
## year2011 -0.01766 0.03244 -0.544 0.586193
## year2012 -0.04881 0.03188 -1.531 0.125880
## year2013 -0.05122 0.03230 -1.586 0.112884
## year2014 0.07800 0.03138 2.485 0.012988 *
## year2015 0.06723 0.03284 2.047 0.040734 *
## year2016 0.04965 0.03250 1.528 0.126676
## year2017 0.10641 0.03253 3.271 0.001080 **
## year2018 0.10888 0.03245 3.355 0.000802 ***
## year2019 0.11300 0.03259 3.467 0.000532 ***
## year2020 0.21786 0.03294 6.614 4.31e-11 ***
## year2021 0.20296 0.03283 6.182 7.04e-10 ***
## year2022 0.16891 0.03310 5.103 3.51e-07 ***
## year2023 0.14109 0.03317 4.254 2.16e-05 ***
## year2024 0.11969 0.03263 3.668 0.000248 ***
## year2025 0.08692 0.03398 2.558 0.010574 *
## X_10km 0.05144 0.00561 9.170 < 2e-16 ***
## prop_tmoins1 0.25948 0.01773 14.636 < 2e-16 ***
## prop_tmoins2 0.17450 0.01882 9.273 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.09403153)
##
## Null deviance: 462.18 on 3551 degrees of freedom
## Residual deviance: 332.21 on 3533 degrees of freedom
## AIC: 1703.7
##
## Number of Fisher Scoring iterations: 2
plot of chunk unnamed-chunk-130
bgtest(reg); bptest(reg); car::vif(reg)
##
## Breusch-Godfrey test for serial correlation of order up to 1
##
## data: reg
## LM test = 7.5474, df = 1, p-value = 0.00601
##
## studentized Breusch-Pagan test
##
## data: reg
## BP = 286.55, df = 18, p-value < 2.2e-16
## GVIF Df GVIF^(1/(2*Df))
## year 0.01160071 15 0.8619515
## X_10km -0.81388010 1 NaN
## prop_tmoins1 -0.94723390 1 NaN
## prop_tmoins2 -0.94424561 1 NaN
Sanglier - Chevreuil
bdd_reg <- tab_glm(Donnees,
espece_interet = 60981,
espece_benchmark = 61057)
liste <- choisi_forme_year(bdd = bdd_reg)
## $choice
## [1] "qualitative"
##
## $min_bic
## [1] -199.4537
regfit <- liste[1]$regfit
bdd <- liste[2]$bdd
reg.summary <- summary(regfit); plot_regsubsets(reg.summary)
plot of chunk unnamed-chunk-132
par(mfrow=c(1 ,1)) ; plot(regfit, scale ="bic")
plot of chunk unnamed-chunk-133
reg <- glm(data = bdd,
formula = proportion_interet ~ year + Dnst_Cultures +
prop_tmoins1 + prop_tmoins2)
summary(reg); autoplot(reg)
##
## Call:
## glm(formula = proportion_interet ~ year + Dnst_Cultures + prop_tmoins1 +
## prop_tmoins2, data = bdd)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0242991 0.0219660 1.106 0.2687
## year2011 -0.0001973 0.0234234 -0.008 0.9933
## year2012 -0.0189542 0.0231851 -0.818 0.4137
## year2013 -0.0398235 0.0234139 -1.701 0.0891 .
## year2014 0.0348741 0.0226847 1.537 0.1243
## year2015 0.0115532 0.0228572 0.505 0.6133
## year2016 -0.0062960 0.0226451 -0.278 0.7810
## year2017 0.0030824 0.0226367 0.136 0.8917
## year2018 0.0196435 0.0224409 0.875 0.3814
## year2019 -0.0040407 0.0223276 -0.181 0.8564
## year2020 0.0394455 0.0223505 1.765 0.0777 .
## year2021 0.0205912 0.0220454 0.934 0.3503
## year2022 0.0560697 0.0222606 2.519 0.0118 *
## year2023 0.0220989 0.0221996 0.995 0.3196
## year2024 0.0421686 0.0222299 1.897 0.0579 .
## year2025 0.0148647 0.0229454 0.648 0.5171
## Dnst_Cultures 0.1491470 0.0339353 4.395 1.14e-05 ***
## prop_tmoins1 0.1611545 0.0170172 9.470 < 2e-16 ***
## prop_tmoins2 0.1138267 0.0177986 6.395 1.80e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.04256823)
##
## Null deviance: 175.29 on 3854 degrees of freedom
## Residual deviance: 163.29 on 3836 degrees of freedom
## AIC: -1207.9
##
## Number of Fisher Scoring iterations: 2
plot of chunk unnamed-chunk-135
bgtest(reg); bptest(reg); car::vif(reg)
##
## Breusch-Godfrey test for serial correlation of order up to 1
##
## data: reg
## LM test = 4.8726, df = 1, p-value = 0.02729
##
## studentized Breusch-Pagan test
##
## data: reg
## BP = 45.457, df = 18, p-value = 0.0003559
## GVIF Df GVIF^(1/(2*Df))
## year -0.15136578 15 NaN
## Dnst_Cultures 0.09428647 1 0.3070610
## prop_tmoins1 0.09872164 1 0.3142000
## prop_tmoins2 0.09780651 1 0.3127403
Sanglier - Blaireau
bdd_reg <- tab_glm(Donnees,
espece_interet = 60981,
espece_benchmark = 60636)
liste <- choisi_forme_year(bdd = bdd_reg)
## $choice
## [1] "qualitative"
##
## $min_bic
## [1] -248.077
regfit <- liste[1]$regfit
bdd <- liste[2]$bdd
reg.summary <- summary(regfit); plot_regsubsets(reg.summary)
plot of chunk unnamed-chunk-137
par(mfrow=c(1 ,1)) ; plot(regfit, scale ="bic")
plot of chunk unnamed-chunk-138
reg <- glm(data = bdd,
formula = proportion_interet ~ year + X_10km + Dnst_Cultures +
prop_tmoins1 + prop_tmoins2)
summary(reg); autoplot(reg)
##
## Call:
## glm(formula = proportion_interet ~ year + X_10km + Dnst_Cultures +
## prop_tmoins1 + prop_tmoins2, data = bdd)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.4668279 0.0494233 9.445 < 2e-16 ***
## year2011 0.0240958 0.0421576 0.572 0.56766
## year2012 -0.0073660 0.0413201 -0.178 0.85853
## year2013 -0.0602275 0.0414542 -1.453 0.14636
## year2014 0.0250580 0.0397142 0.631 0.52811
## year2015 -0.0001815 0.0407718 -0.004 0.99645
## year2016 0.0095609 0.0403891 0.237 0.81289
## year2017 0.0425383 0.0399324 1.065 0.28684
## year2018 0.0874844 0.0399147 2.192 0.02847 *
## year2019 -0.0048970 0.0398041 -0.123 0.90209
## year2020 0.0987014 0.0396902 2.487 0.01294 *
## year2021 0.0865935 0.0395677 2.188 0.02871 *
## year2022 0.1035929 0.0394489 2.626 0.00868 **
## year2023 0.1158291 0.0398254 2.908 0.00366 **
## year2024 0.0363072 0.0394860 0.919 0.35791
## year2025 0.0221901 0.0405070 0.548 0.58386
## X_10km 0.0623979 0.0066507 9.382 < 2e-16 ***
## Dnst_Cultures -0.2954371 0.0644660 -4.583 4.76e-06 ***
## prop_tmoins1 0.1278614 0.0186951 6.839 9.52e-12 ***
## prop_tmoins2 0.0968736 0.0196290 4.935 8.42e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.1002081)
##
## Null deviance: 352.60 on 3177 degrees of freedom
## Residual deviance: 316.46 on 3158 degrees of freedom
## AIC: 1729.7
##
## Number of Fisher Scoring iterations: 2
plot of chunk unnamed-chunk-140
bgtest(reg); bptest(reg); car::vif(reg)
##
## Breusch-Godfrey test for serial correlation of order up to 1
##
## data: reg
## LM test = 3.1092, df = 1, p-value = 0.07785
##
## studentized Breusch-Pagan test
##
## data: reg
## BP = 66.918, df = 19, p-value = 2.969e-07
## GVIF Df GVIF^(1/(2*Df))
## year -0.189882 15 NaN
## X_10km 1.306186 1 1.142885
## Dnst_Cultures 1.202463 1 1.096569
## prop_tmoins1 1.119084 1 1.057868
## prop_tmoins2 1.095088 1 1.046464
Renard - Chevreuil
bdd_reg <- tab_glm(Donnees,
espece_interet = 60585,
espece_benchmark = 61057)
liste <- choisi_forme_year(bdd = bdd_reg)
## $choice
## [1] "quantitative"
##
## $min_bic
## [1] -1229.348
regfit <- liste[1]$regfit
bdd <- liste[2]$bdd
reg.summary <- summary(regfit); plot_regsubsets(reg.summary)
plot of chunk unnamed-chunk-142
par(mfrow=c(1 ,1)) ; plot(regfit, scale ="bic")
plot of chunk unnamed-chunk-143
reg <- glm(data = bdd,
formula = proportion_interet ~ year + X_10km + Dist_Eau +
prop_tmoins1 + prop_tmoins2 + year2)
summary(reg); autoplot(reg)
##
## Call:
## glm(formula = proportion_interet ~ year + X_10km + Dist_Eau +
## prop_tmoins1 + prop_tmoins2 + year2, data = bdd)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.529e+04 1.054e+03 14.514 < 2e-16 ***
## year -1.514e+01 1.044e+00 -14.492 < 2e-16 ***
## X_10km -5.360e-02 4.879e-03 -10.985 < 2e-16 ***
## Dist_Eau 4.067e-04 7.592e-05 5.357 8.93e-08 ***
## prop_tmoins1 1.943e-01 1.459e-02 13.318 < 2e-16 ***
## prop_tmoins2 1.136e-01 1.481e-02 7.670 2.11e-14 ***
## year2 3.745e-03 2.588e-04 14.471 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.08629524)
##
## Null deviance: 500.24 on 4304 degrees of freedom
## Residual deviance: 370.90 on 4298 degrees of freedom
## AIC: 1678.9
##
## Number of Fisher Scoring iterations: 2
plot of chunk unnamed-chunk-145
bgtest(reg); bptest(reg); car::vif(reg)
##
## Breusch-Godfrey test for serial correlation of order up to 1
##
## data: reg
## LM test = 22.29, df = 1, p-value = 2.344e-06
##
## studentized Breusch-Pagan test
##
## data: reg
## BP = 157.74, df = 6, p-value < 2.2e-16
## year X_10km Dist_Eau prop_tmoins1 prop_tmoins2 year2
## 1.107323e+06 1.107833e+00 1.047281e+00 1.234158e+00 1.284714e+00 1.107372e+06
Renard - Blaireau
bdd_reg <- tab_glm(Donnees,
espece_interet = 60585,
espece_benchmark = 60636)
liste <- choisi_forme_year(bdd = bdd_reg)
## $choice
## [1] "quantitative"
##
## $min_bic
## [1] -758.7898
regfit <- liste[1]$regfit
bdd <- liste[2]$bdd
reg.summary <- summary(regfit); plot_regsubsets(reg.summary)
plot of chunk unnamed-chunk-147
par(mfrow=c(1 ,1)) ; plot(regfit, scale ="bic")
plot of chunk unnamed-chunk-148
reg <- glm(data = bdd,
formula = proportion_interet ~ year + Dnst_Cultures +
Dist_Ecotone + prop_tmoins1 + prop_tmoins2 + year2)
summary(reg); autoplot(reg)
##
## Call:
## glm(formula = proportion_interet ~ year + Dnst_Cultures + Dist_Ecotone +
## prop_tmoins1 + prop_tmoins2 + year2, data = bdd)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.381e+04 1.282e+03 10.775 < 2e-16 ***
## year -1.367e+01 1.271e+00 -10.755 < 2e-16 ***
## Dnst_Cultures -4.907e-01 5.620e-02 -8.731 < 2e-16 ***
## Dist_Ecotone 9.220e-04 2.449e-04 3.765 0.000169 ***
## prop_tmoins1 1.715e-01 1.509e-02 11.364 < 2e-16 ***
## prop_tmoins2 9.894e-02 1.520e-02 6.509 8.52e-11 ***
## year2 3.380e-03 3.149e-04 10.735 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.1159999)
##
## Null deviance: 561.09 on 3937 degrees of freedom
## Residual deviance: 456.00 on 3931 degrees of freedom
## AIC: 2701.4
##
## Number of Fisher Scoring iterations: 2
plot of chunk unnamed-chunk-150
bgtest(reg); bptest(reg); car::vif(reg)
##
## Breusch-Godfrey test for serial correlation of order up to 1
##
## data: reg
## LM test = 2.3276, df = 1, p-value = 0.1271
##
## studentized Breusch-Pagan test
##
## data: reg
## BP = 26.379, df = 6, p-value = 0.0001892
## year Dnst_Cultures Dist_Ecotone prop_tmoins1 prop_tmoins2 year2
## 1.118421e+06 1.033724e+00 1.006498e+00 1.174905e+00 1.262761e+00 1.118372e+06
Chevreuil - Blaireau
bdd_reg <- tab_glm(Donnees,
espece_interet = 61057,
espece_benchmark = 60636)
liste <- choisi_forme_year(bdd = bdd_reg)
## $choice
## [1] "qualitative"
##
## $min_bic
## [1] -389.2782
regfit <- liste[1]$regfit
bdd <- liste[2]$bdd
reg.summary <- summary(regfit); plot_regsubsets(reg.summary)
plot of chunk unnamed-chunk-152
par(mfrow=c(1 ,1)) ; plot(regfit, scale ="bic")
plot of chunk unnamed-chunk-153
reg <- glm(data = bdd,
formula = proportion_interet ~ year + X_10km + Dnst_Cultures +
Dist_Eau + prop_tmoins1 + prop_tmoins2)
summary(reg); autoplot(reg)
##
## Call:
## glm(formula = proportion_interet ~ year + X_10km + Dnst_Cultures +
## Dist_Eau + prop_tmoins1 + prop_tmoins2, data = bdd)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.094e+00 4.188e-02 26.129 < 2e-16 ***
## year2011 -1.924e-02 3.138e-02 -0.613 0.539864
## year2012 -1.117e-01 3.170e-02 -3.522 0.000433 ***
## year2013 -1.433e-01 3.239e-02 -4.423 1.00e-05 ***
## year2014 -1.712e-01 3.209e-02 -5.335 1.01e-07 ***
## year2015 -1.557e-01 3.235e-02 -4.813 1.54e-06 ***
## year2016 -1.175e-01 3.233e-02 -3.635 0.000282 ***
## year2017 -1.418e-01 3.238e-02 -4.377 1.23e-05 ***
## year2018 -1.148e-01 3.247e-02 -3.536 0.000411 ***
## year2019 -1.457e-01 3.215e-02 -4.532 6.00e-06 ***
## year2020 -1.145e-01 3.248e-02 -3.526 0.000426 ***
## year2021 -9.334e-02 3.205e-02 -2.913 0.003604 **
## year2022 -1.490e-01 3.234e-02 -4.609 4.18e-06 ***
## year2023 -8.884e-02 3.221e-02 -2.758 0.005834 **
## year2024 -1.837e-01 3.222e-02 -5.701 1.28e-08 ***
## year2025 -1.826e-01 3.264e-02 -5.596 2.33e-08 ***
## X_10km 5.673e-02 5.401e-03 10.504 < 2e-16 ***
## Dnst_Cultures -5.335e-01 5.221e-02 -10.218 < 2e-16 ***
## Dist_Eau -2.599e-04 8.057e-05 -3.226 0.001266 **
## prop_tmoins1 1.496e-01 1.514e-02 9.882 < 2e-16 ***
## prop_tmoins2 1.024e-01 1.504e-02 6.805 1.16e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.08786384)
##
## Null deviance: 410.53 on 4152 degrees of freedom
## Residual deviance: 363.05 on 4132 degrees of freedom
## AIC: 1708.7
##
## Number of Fisher Scoring iterations: 2
plot of chunk unnamed-chunk-155
bgtest(reg); bptest(reg); car::vif(reg)
##
## Breusch-Godfrey test for serial correlation of order up to 1
##
## data: reg
## LM test = 2.5891, df = 1, p-value = 0.1076
##
## studentized Breusch-Pagan test
##
## data: reg
## BP = 346.05, df = 20, p-value < 2.2e-16
## GVIF Df GVIF^(1/(2*Df))
## year -4.584654 15 NaN
## X_10km 13.811905 1 3.716437
## Dnst_Cultures 13.213404 1 3.635025
## Dist_Eau 11.311008 1 3.363184
## prop_tmoins1 9.317967 1 3.052534
## prop_tmoins2 10.152320 1 3.186270