1. load libraries

2. Load Seurat Object

pbmc
An object of class Seurat 
62900 features across 49305 samples within 6 assays 
Active assay: SCT (26176 features, 2912 variable features)
 3 layers present: counts, data, scale.data
 5 other assays present: RNA, ADT, prediction.score.celltype.l1, prediction.score.celltype.l2, prediction.score.celltype.l3
 5 dimensional reductions calculated: integrated_dr, ref.umap, pca, umap, harmony

3. The post-integration (Pi) object

my.pbmc.pi
An object of class Pi 
6 fields in the object: seurat.obj, exp.freq, markers, ds, cell.prop, parent.meta.data.
The following field has been processed:
    seurat.obj: A Seurat object of 26176 features and 49305 cells.
        6 assays: RNA, ADT, prediction.score.celltype.l1, prediction.score.celltype.l2, prediction.score.celltype.l3, SCT, and 5 reductions: integrated_dr, ref.umap, pca, umap, harmony
Metadata from the parent object provided? No 
Subclusters integrated? No

4. run UMAP and check clusters of all the cells in the object.

RunDimPlot(object = my.pbmc.pi)

4. run UMAP and check Prediction of all the cells in the object.

RunDimPlot(object = my.pbmc.pi,
           group.by = "Prediction")

5. Marker analysis and matrix plot(Clusters)

my.pbmc.pi <- RunFindAllMarkers(my.pbmc.pi,
                                ident = "seurat_clusters",logfc.threshold = 0.25,min.pct = 0.25,   only.pos = TRUE,return.thresh = 0.05)
Calculating cluster 0
Calculating cluster 1
Calculating cluster 2
Calculating cluster 3
Calculating cluster 4
Calculating cluster 5
Calculating cluster 6
Calculating cluster 7
Calculating cluster 8
Calculating cluster 9
Calculating cluster 10
Calculating cluster 11
Calculating cluster 12
Calculating cluster 13

##. Matrix plot(Clusters)

6. Marker analysis and matrix plot (Predictions)

my.pbmc.pi <- RunFindAllMarkers(my.pbmc.pi,
                                ident = "Prediction",logfc.threshold = 0.25,min.pct = 0.25,   only.pos = TRUE,return.thresh = 0.05)
Calculating cluster CD4 Temra
Calculating cluster CD4 Tcm
Calculating cluster CD4 Tc
Calculating cluster CD4 Tem
Calculating cluster CD4 Trm cell-death
Calculating cluster CD4 Tisg
Calculating cluster CD4 Th17
Calculating cluster CD4 proliferation
Calculating cluster CD4 Treg naive-like
Calculating cluster None T
Calculating cluster CD4 Trm
Calculating cluster CD4 Tfh
Calculating cluster CD4 Treg
Calculating cluster CD4 Tn
Calculating cluster CD4 Tex
Calculating cluster CD4 activated
Calculating cluster CD4 Tisg cell-death
Calculating cluster CD4 Tstr
Calculating cluster CD4 Tn adhesion

##. Matrix plot (Predictions)

p2 <- RunMatrixPlot(my.pbmc.pi,
              markers.key = "Markers|Prediction|AllMarkers|test.use=wilcox", 
              column.anno.name.rot = 45, 
              heatmap.height = 10, heatmap.width = 25,)
Set active identity to Prediction
Performing relative-counts-normalization
Centering and scaling data matrix

  |                                                                                         
  |                                                                                   |   0%
  |                                                                                         
  |===================================================================================| 100%
p2 

7. Marker analysis and matrix plot (Predictions)

my.pbmc.pi <- RunFindAllMarkers(my.pbmc.pi,
                                ident = "Prediction",logfc.threshold = 0.5,min.pct = 0.5,   only.pos = TRUE,return.thresh = 0.01)
Calculating cluster CD4 Temra
Calculating cluster CD4 Tcm
Calculating cluster CD4 Tc
Calculating cluster CD4 Tem
Calculating cluster CD4 Trm cell-death
Calculating cluster CD4 Tisg
Calculating cluster CD4 Th17
Calculating cluster CD4 proliferation
Calculating cluster CD4 Treg naive-like
Calculating cluster None T
Calculating cluster CD4 Trm
Calculating cluster CD4 Tfh
Calculating cluster CD4 Treg
Calculating cluster CD4 Tn
Calculating cluster CD4 Tex
Calculating cluster CD4 activated
Calculating cluster CD4 Tisg cell-death
Calculating cluster CD4 Tstr
Calculating cluster CD4 Tn adhesion
PiData Markers|Prediction|AllMarkers|test.use=wilcox already exisits. Overwriting...

##. Matrix plot (Predictions)

LS0tCnRpdGxlOiAiRGF0YSBWaXN1YWxpemF0aW9uIChSYWdhcyktQWxsX3NhbXBsZXNfZmluZEFsbE1hcmtlcnMiCmF1dGhvcjogIk5hc2lyIE1haG1vb2QgQWJiYXNpIgpkYXRlOiAiYHIgU3lzLkRhdGUoKWAiCm91dHB1dDoKICBodG1sX25vdGVib29rOgogICAgdG9jOiB5ZXMKICAgIHRvY19mbG9hdDogeWVzCiAgICB0b2NfY29sbGFwc2VkOiB5ZXMKICB3b3JkX2RvY3VtZW50OgogICAgdG9jOiB5ZXMKICBodG1sX2RvY3VtZW50OgogICAgdG9jOiB5ZXMKICAgIGRmX3ByaW50OiBwYWdlZAogIHBkZl9kb2N1bWVudDoKICAgIHRvYzogeWVzCi0tLQoKCiMgMS4gbG9hZCBsaWJyYXJpZXMKYGBge3Igc2V0dXAsIGluY2x1ZGU9RkFMU0V9CmxpYnJhcnkoU2V1cmF0KQpsaWJyYXJ5KFNldXJhdFdyYXBwZXJzKQpsaWJyYXJ5KG1vbm9jbGUzKQpsaWJyYXJ5KGRwbHlyKQpsaWJyYXJ5KGdncGxvdDIpCmxpYnJhcnkoaW5mZXJjbnYpCmxpYnJhcnkoU0NwdWJyKQoKIyBMb2FkIHJlcXVpcmVkIGxpYnJhcmllcwpsaWJyYXJ5KFNldXJhdCkKbGlicmFyeShNYXRyaXgpCmxpYnJhcnkoZGF0YS50YWJsZSkKbGlicmFyeShwYXRjaHdvcmspCgpsaWJyYXJ5KFNldXJhdEV4dGVuZCkKbGlicmFyeShTZXVyYXRFeHRlbmREYXRhKQpsaWJyYXJ5KFJhZ2FzKQoKYGBgCgojIDIuIExvYWQgU2V1cmF0IE9iamVjdCAKYGBge3J9CgpBbGxfc2FtcGxlc19NZXJnZWQgPC0gcmVhZFJEUygiLi4vMjUtMDctMjAyNS9UcmFqZWN0b3J5X0NlcmFwaW8vQWxsX3NhbXBsZXNfTWVyZ2VkX3dpdGhfU1RDQVRfYW5kX2NsZWFuZWQucmRzIikKCnBibWMgPC0gQWxsX3NhbXBsZXNfTWVyZ2VkCgpybShBbGxfc2FtcGxlc19NZXJnZWQpCgpnYygpCgpwYm1jCmBgYAoKIyAzLiBUaGUgcG9zdC1pbnRlZ3JhdGlvbiAoUGkpIG9iamVjdApgYGB7ciwgZmlnLmhlaWdodD02LCBmaWcud2lkdGg9OH0KbXkucGJtYy5waSA8LSBDcmVhdGVQb3N0SW50ZWdyYXRpb25PYmplY3Qob2JqZWN0ID0gcGJtYykKCm15LnBibWMucGkKYGBgCgoKCiMgNC4gcnVuIFVNQVAgYW5kIGNoZWNrIGNsdXN0ZXJzIG9mIGFsbCB0aGUgY2VsbHMgaW4gdGhlIG9iamVjdC4KYGBge3IsIGZpZy5oZWlnaHQ9NiwgZmlnLndpZHRoPTh9ClJ1bkRpbVBsb3Qob2JqZWN0ID0gbXkucGJtYy5waSkKYGBgCgoKCgoKIyA0LiBydW4gVU1BUCBhbmQgY2hlY2sgUHJlZGljdGlvbiBvZiBhbGwgdGhlIGNlbGxzIGluIHRoZSBvYmplY3QuCmBgYHtyLCBmaWcuaGVpZ2h0PTYsIGZpZy53aWR0aD0xMH0KUnVuRGltUGxvdChvYmplY3QgPSBteS5wYm1jLnBpLAogICAgICAgICAgIGdyb3VwLmJ5ID0gIlByZWRpY3Rpb24iKQpgYGAKCgoKCiMgNS4gTWFya2VyIGFuYWx5c2lzIGFuZCBtYXRyaXggcGxvdChDbHVzdGVycykKYGBge3IsIGZpZy5oZWlnaHQ9NiwgZmlnLndpZHRoPTh9Cm15LnBibWMucGkgPC0gUnVuRmluZEFsbE1hcmtlcnMobXkucGJtYy5waSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBpZGVudCA9ICJzZXVyYXRfY2x1c3RlcnMiLGxvZ2ZjLnRocmVzaG9sZCA9IDAuMjUsbWluLnBjdCA9IDAuMjUsICAgb25seS5wb3MgPSBUUlVFLHJldHVybi50aHJlc2ggPSAwLjA1KQpgYGAKCgojIy4gTWF0cml4IHBsb3QoQ2x1c3RlcnMpCmBgYHtyLCBmaWcuaGVpZ2h0PTYsIGZpZy53aWR0aD0xMH0KcDEgPC0gUnVuTWF0cml4UGxvdChteS5wYm1jLnBpLAogICAgICAgICAgICAgIG1hcmtlcnMua2V5ID0gIk1hcmtlcnN8c2V1cmF0X2NsdXN0ZXJzfEFsbE1hcmtlcnN8dGVzdC51c2U9d2lsY294IiwgCiAgICAgICAgICAgICAgY29sdW1uLmFubm8ubmFtZS5yb3QgPSA0NSwgCiAgICAgICAgICAgICAgaGVhdG1hcC5oZWlnaHQgPSA3KQoKcDEKYGBgCgoKCgoKCiMgNi4gTWFya2VyIGFuYWx5c2lzIGFuZCBtYXRyaXggcGxvdCAoUHJlZGljdGlvbnMpCmBgYHtyLCBmaWcuaGVpZ2h0PTYsIGZpZy53aWR0aD0xMH0KbXkucGJtYy5waSA8LSBSdW5GaW5kQWxsTWFya2VycyhteS5wYm1jLnBpLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGlkZW50ID0gIlByZWRpY3Rpb24iLGxvZ2ZjLnRocmVzaG9sZCA9IDAuMjUsbWluLnBjdCA9IDAuMjUsICAgb25seS5wb3MgPSBUUlVFLHJldHVybi50aHJlc2ggPSAwLjA1KQpgYGAKCgojIy4gTWF0cml4IHBsb3QgKFByZWRpY3Rpb25zKQpgYGB7ciwgZmlnLmhlaWdodD0xMiwgZmlnLndpZHRoPTE0fQpwMiA8LSBSdW5NYXRyaXhQbG90KG15LnBibWMucGksCiAgICAgICAgICAgICAgbWFya2Vycy5rZXkgPSAiTWFya2Vyc3xQcmVkaWN0aW9ufEFsbE1hcmtlcnN8dGVzdC51c2U9d2lsY294IiwgCiAgICAgICAgICAgICAgY29sdW1uLmFubm8ubmFtZS5yb3QgPSA0NSwgCiAgICAgICAgICAgICAgaGVhdG1hcC5oZWlnaHQgPSAxMCwgaGVhdG1hcC53aWR0aCA9IDI1LCkKcDIgCmBgYAoKIyA3LiBNYXJrZXIgYW5hbHlzaXMgYW5kIG1hdHJpeCBwbG90IChQcmVkaWN0aW9ucykKYGBge3IsIGZpZy5oZWlnaHQ9NiwgZmlnLndpZHRoPTEwfQpteS5wYm1jLnBpIDwtIFJ1bkZpbmRBbGxNYXJrZXJzKG15LnBibWMucGksCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgaWRlbnQgPSAiUHJlZGljdGlvbiIsbG9nZmMudGhyZXNob2xkID0gMC41LG1pbi5wY3QgPSAwLjUsICAgb25seS5wb3MgPSBUUlVFLHJldHVybi50aHJlc2ggPSAwLjAxKQpgYGAKCgoKIyMuIE1hdHJpeCBwbG90IChQcmVkaWN0aW9ucykKYGBge3IsIGZpZy5oZWlnaHQ9MTIsIGZpZy53aWR0aD0xNH0KcDMgPC0gUnVuTWF0cml4UGxvdChteS5wYm1jLnBpLAogICAgICAgICAgICAgIG1hcmtlcnMua2V5ID0gIk1hcmtlcnN8UHJlZGljdGlvbnxBbGxNYXJrZXJzfHRlc3QudXNlPXdpbGNveCIsIAogICAgICAgICAgICAgIGNvbHVtbi5hbm5vLm5hbWUucm90ID0gNDUsIAogICAgICAgICAgICAgIGhlYXRtYXAuaGVpZ2h0ID0gMTAsIGhlYXRtYXAud2lkdGggPSAyNSwpCnAzIApgYGAK