Nature collection on Trust & Democracy: Call for Papers

Deadline: 21 October 2025

Concerns about a rise in extremism across democratic nations and the emergence of illiberal democracies put the spotlight on research that helps us understand how crises of democracy can be averted.

Trust is an integral part of a healthy society: the trust people place in each other builds social cohesion; what media citizens place their trust in affects the spread of (mis)information; trust in democratic processes increases citizens’ engagement and democratic participation; and trust in democratic institutions underpins their legitimacy.

This Collection and open call for papers brings together work that researches the role of trust for society and - by extension - a functional democracy.

We welcome work that spans the breadth of basic research to large-scale interventions. The journals will consider submissions of research Articles, Registered Reports, and Resources on the topic.

Prep

Libraries & Data

library(tidyverse)
library(sandwich)
library(gtsummary)
library(flextable)
library(tables)
library(psych)
library(ggplot2)
library(openxlsx)
library(lmerTest)
library(lme4)
library(knitr)
library(hrbrthemes)
library(interactions)
library(sjPlot)
library(cowplot)

d <- read.csv("/Users/af13/Documents/Research/24_ElectionStudy/data + analyses/2024ElectionStudy_combined_cleancases_full.csv", na.strings = c("","NA"), header = T, fileEncoding="latin1")

mcSummary() function

Variable Construction

Single-measures

# AI Risk


# numeracy
d <- d %>%
  group_by(pid) %>%
  fill(numeracy, .direction = "downup") %>%
  ungroup()

addmargins(table(d$numeracy,d$wave, exclude = F))


# trustGovt

d[d$wave == 1 | d$wave == 2,] <- d[d$wave == 1 | d$wave == 2,] %>%
  group_by(pid) %>%
  fill(trustGovt1, .direction = "downup") %>%
  ungroup()

addmargins(table(d$trustGovt1,d$wave, exclude = F))

d[d$wave == 1 | d$wave == 2,] <- d[d$wave == 1 | d$wave == 2,] %>%
  group_by(pid) %>%
  fill(trustGovt2, .direction = "downup") %>%
  ungroup()

addmargins(table(d$trustGovt2,d$wave, exclude = F))

d$trustGovt <- rowMeans(d[,c("trustGovt1","trustGovt2")], na.rm = T)

d$trustGovt.c <- d$trustGovt - mean(d$trustGovt, na.rm = T)

# trustSci

psych::alpha(d[ ,c("trustSci_1","trustSci_2","trustSci_3","trustSci_4")])


d <- d %>%
  group_by(pid) %>%
  fill(trustSci_1, .direction = "downup") %>%
  ungroup()

addmargins(table(d$trustSci_1,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(trustSci_2, .direction = "downup") %>%
  ungroup()

addmargins(table(d$trustSci_2,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(trustSci_3, .direction = "downup") %>%
  ungroup()

addmargins(table(d$trustSci_3,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(trustSci_4, .direction = "downup") %>%
  ungroup()

addmargins(table(d$trustSci_4,d$wave, exclude = F))

d$trustSci <- rowMeans(d[, c("trustSci_1", "trustSci_2", "trustSci_3", "trustSci_4")], na.rm = T)

table(d$trustSci, d$wave)


# affProj_Trump

d[d$wave == 2 | d$wave == 3,] <- d[d$wave == 2 | d$wave == 3,] %>%
  group_by(pid) %>%
  fill(affProj_Trump_1, .direction = "downup") %>%
  ungroup()

addmargins(table(d$affProj_Trump_1,d$wave, exclude = F))

d[d$wave == 2 | d$wave == 3,] <- d[d$wave == 2 | d$wave == 3,] %>%
  group_by(pid) %>%
  fill(affProj_Trump_2, .direction = "downup") %>%
  ungroup()

addmargins(table(d$affProj_Trump_2,d$wave, exclude = F))

d[d$wave == 2 | d$wave == 3,] <- d[d$wave == 2 | d$wave == 3,] %>%
  group_by(pid) %>%
  fill(affProj_Trump_3, .direction = "downup") %>%
  ungroup()

addmargins(table(d$affProj_Trump_3,d$wave, exclude = F))

d[d$wave == 2 | d$wave == 3,] <- d[d$wave == 2 | d$wave == 3,] %>%
  group_by(pid) %>%
  fill(affProj_Trump_4, .direction = "downup") %>%
  ungroup()

addmargins(table(d$affProj_Trump_4,d$wave, exclude = F))




# punitive policies


d <- d %>%
  group_by(pid) %>%
  fill(deathpenalty, .direction = "downup") %>%
  ungroup()

addmargins(table(d$deathpenalty,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(abortionban, .direction = "downup") %>%
  ungroup()

addmargins(table(d$abortionban,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(ICEraids, .direction = "downup") %>%
  ungroup()

addmargins(table(d$ICEraids,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(gunctrl, .direction = "downup") %>%
  ungroup()

addmargins(table(d$gunctrl,d$wave, exclude = F))
addmargins(table(d$gunctrl,d$wave))

d <- d %>%
  group_by(pid) %>%
  fill(vaxxpass, .direction = "downup") %>%
  ungroup()

addmargins(table(d$vaxxpass,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(hatespeech, .direction = "downup") %>%
  ungroup()

addmargins(table(d$hatespeech,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(jailCEOs, .direction = "downup") %>%
  ungroup()

addmargins(table(d$jailCEOs,d$wave, exclude = F))


# ideological position based on punitive policies

## deathpenalty, abortionban, ICEraids, gunctrl => negative = more liberal, positive = more conservative
## vaxxpass, hatespeech, jailCEOs => positive = more liberal, negative = more conservative

d$vaxxpass.r <- d$vaxxpass * -1
d$hatespeech.r <- d$hatespeech * -1
d$jailCEOs.r <- d$jailCEOs * -1

describe(d[,c('deathpenalty', 'abortionban', 'ICEraids', 'gunctrl','vaxxpass.r', 'hatespeech.r', 'jailCEOs.r')])

d$issue_ideology <- rowMeans(d[,c('deathpenalty', 'abortionban', 'ICEraids', 'gunctrl','vaxxpass.r', 'hatespeech.r', 'jailCEOs.r')], na.rm = T)

psych::alpha(d[,c('deathpenalty', 'abortionban', 'ICEraids', 'gunctrl','vaxxpass.r', 'hatespeech.r', 'jailCEOs.r')]) # a bit low!

# hist(d$issue_ideology)
psych::describe(d$issue_ideology) # that is a normal distribution

d <- d %>%
  group_by(pid) %>%
  fill(issue_ideology, .direction = "downup") %>%
  ungroup()

addmargins(table(d$issue_ideology,d$wave, exclude = F))

# climate change belief

d$climbel_1 <- d$climatechange_belief_1
d$climbel_2 <- d$climatechange_belief_2
d$climbel_3 <- d$climatechange_belief_3
d$climbel_4 <- d$climatechange_belief_4

d <- d %>%
  group_by(pid) %>%
  fill(climatechange_belief_1, .direction = "downup") %>%
  ungroup()

addmargins(table(d$climatechange_belief_1,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(climatechange_belief_2, .direction = "downup") %>%
  ungroup()

addmargins(table(d$climatechange_belief_2,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(climatechange_belief_3, .direction = "downup") %>%
  ungroup()

addmargins(table(d$climatechange_belief_3,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(climatechange_belief_4, .direction = "downup") %>%
  ungroup()

addmargins(table(d$climatechange_belief_4,d$wave, exclude = F))

# GCB

d <- d %>%
  group_by(pid) %>%
  fill(GCB_1, .direction = "downup") %>%
  ungroup()

addmargins(table(d$GCB_1,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(GCB_2, .direction = "downup") %>%
  ungroup()

addmargins(table(d$GCB_2,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(GCB_3, .direction = "downup") %>%
  ungroup()

addmargins(table(d$GCB_3,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(GCB_4, .direction = "downup") %>%
  ungroup()

addmargins(table(d$GCB_4,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(GCB_5, .direction = "downup") %>%
  ungroup()

addmargins(table(d$GCB_5,d$wave, exclude = F))

psych::alpha(d[,c("GCB_1", "GCB_2", "GCB_3", "GCB_4", "GCB_5")])

d <- d %>%
  group_by(pid) %>%
  fill(GCB, .direction = "downup") %>%
  ungroup()

addmargins(table(d$GCB,d$wave, exclude = F))

# AI risk

d <- d %>%
  group_by(pid) %>%
  fill(AIrisk_1, .direction = "downup") %>%
  ungroup()

addmargins(table(d$AIrisk_1,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(AIrisk_2, .direction = "downup") %>%
  ungroup()

addmargins(table(d$AIrisk_2,d$wave, exclude = F))

d$AIrisk <- rowMeans(d[,c("AIrisk_1","AIrisk_2")], na.rm = T)

d$AIrisk.c <- d$AIrisk - mean(d$AIrisk, na.rm = T)

# Group FT

d <- d %>%
  group_by(pid) %>%
  fill(FT_groups_1, .direction = "downup") %>%
  ungroup()

addmargins(table(d$FT_groups_1,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(FT_groups_2, .direction = "downup") %>%
  ungroup()

addmargins(table(d$FT_groups_2,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(FT_groups_3, .direction = "downup") %>%
  ungroup()

addmargins(table(d$FT_groups_3,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(FT_groups_4, .direction = "downup") %>%
  ungroup()

addmargins(table(d$FT_groups_4,d$wave, exclude = F))


# Religion

d <- d %>%
  group_by(pid) %>%
  fill(religion, .direction = "downup") %>%
  ungroup()

addmargins(table(d$religion,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(Evangelical, .direction = "downup") %>%
  ungroup()

addmargins(table(d$Evangelical,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(rel_importance, .direction = "downup") %>%
  ungroup()

addmargins(table(d$rel_importance,d$wave, exclude = F))


# ZIP code

d <- d %>%
  group_by(pid) %>%
  fill(ZIPcode, .direction = "downup") %>%
  ungroup()

addmargins(table(d$ZIPcode,d$wave, exclude = F))

# State

d <- d %>%
  group_by(pid) %>%
  fill(state, .direction = "downup") %>%
  ungroup()

addmargins(table(d$state,d$wave, exclude = F))

d$state <- as.factor(d$state)
d$state[d$state == "invalid"] <- NA
d$state[d$state == "Invalid"] <- NA

d$state <- droplevels(d$state)

table(d$state, exclude = F)

# per_gop

d <- d %>%
  group_by(pid) %>%
  fill(per_gop, .direction = "downup") %>%
  ungroup()

addmargins(table(d$per_gop,d$wave, exclude = F))

d$per_gop <- as.numeric(d$per_gop)


# per_dem

d <- d %>%
  group_by(pid) %>%
  fill(per_dem, .direction = "downup") %>%
  ungroup()

addmargins(table(d$per_dem,d$wave, exclude = F))

d$per_dem <- as.numeric(d$per_dem)

# vote_MC

d <- d %>%
  group_by(pid) %>%
  fill(vote_MC_1, .direction = "downup") %>%
  ungroup()

addmargins(table(d$vote_MC_1,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(vote_MC_2, .direction = "downup") %>%
  ungroup()

addmargins(table(d$vote_MC_2,d$wave, exclude = F))


# Israel

table(d$israel)

d <- d %>%
  group_by(pid) %>%
  fill(israel, .direction = "downup") %>%
  ungroup()

addmargins(table(d$israel,d$wave, exclude = F))

table(d$israel_usRole)


d <- d %>%
  group_by(pid) %>%
  fill(israel_usRole, .direction = "downup") %>%
  ungroup()

addmargins(table(d$israel_usRole,d$wave, exclude = F))
d$israel_usRole <- as.numeric(as.character(d$israel_usRole))


# border

table(d$border_Harris)


d <- d %>%
  group_by(pid) %>%
  fill(border_Harris, .direction = "downup") %>%
  ungroup()

addmargins(table(d$border_Harris,d$wave, exclude = F))


table(d$border_Trump)

d <- d %>%
  group_by(pid) %>%
  fill(border_Trump, .direction = "downup") %>%
  ungroup()

addmargins(table(d$border_Trump,d$wave, exclude = F))


# polling

d <- d %>%
  group_by(pid) %>%
  fill(pollFreq, .direction = "downup") %>%
  ungroup()

addmargins(table(d$pollFreq,d$wave, exclude = F))

d$pollFreq <- dplyr::recode(d$pollFreq,
                            `1` = 7,
                            `2` = 6,
                            `3` = 5,
                            `4` = 4,
                            `5` = 3,
                            `6` = 2,
                            `7` = 1)

d[d$wave == 1 | d$wave ==2,] <- d[d$wave == 1 | d$wave ==2,] %>%
  group_by(pid) %>%
  fill(pollAcc, .direction = "downup") %>%
  ungroup()

d[d$wave == 3 | d$wave == 4,] <- d[d$wave == 3 | d$wave == 4,] %>%
  group_by(pid) %>%
  fill(pollAcc, .direction = "downup") %>%
  ungroup()

addmargins(table(d$pollAcc,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(pollPred, .direction = "downup") %>%
  ungroup()

addmargins(table(d$pollPred,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(pollsource, .direction = "downup") %>%
  ungroup()

addmargins(table(d$pollsource,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(pollsource_7_TEXT, .direction = "downup") %>%
  ungroup()

addmargins(table(d$pollsource_7_TEXT,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(pollrel1, .direction = "downup") %>%
  ungroup()

addmargins(table(d$pollrel1,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(pollbias1, .direction = "downup") %>%
  ungroup()

addmargins(table(d$pollbias1,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(pollrel2, .direction = "downup") %>%
  ungroup()

addmargins(table(d$pollrel2,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(pollbias2, .direction = "downup") %>%
  ungroup()

addmargins(table(d$pollbias2,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(pollrel3, .direction = "downup") %>%
  ungroup()

addmargins(table(d$pollrel3,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(pollbias3, .direction = "downup") %>%
  ungroup()

addmargins(table(d$pollbias3,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(pollrel4, .direction = "downup") %>%
  ungroup()

addmargins(table(d$pollrel4,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(pollbias4, .direction = "downup") %>%
  ungroup()

addmargins(table(d$pollbias4,d$wave, exclude = F))

# NFC

d <- d %>%
  group_by(pid) %>%
  fill(NFC6_1, .direction = "downup") %>%
  ungroup()

addmargins(table(d$NFC6_1,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(NFC6_2, .direction = "downup") %>%
  ungroup()

addmargins(table(d$NFC6_2,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(NFC6_3, .direction = "downup") %>%
  ungroup()

addmargins(table(d$NFC6_3,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(NFC6_4, .direction = "downup") %>%
  ungroup()

addmargins(table(d$NFC6_4,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(NFC6_5, .direction = "downup") %>%
  ungroup()

addmargins(table(d$NFC6_5,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(NFC6_6, .direction = "downup") %>%
  ungroup()

addmargins(table(d$NFC6_6,d$wave, exclude = F))

d$NFC <- rowMeans(d[,c("NFC6_1", "NFC6_2", "NFC6_3", "NFC6_4", "NFC6_5", "NFC6_6")], na.rm = T)


# Executive order measures

d <- d %>%
  group_by(pid) %>%
  fill(EO_impact_1, .direction = "downup") %>%
  ungroup()

addmargins(table(d$EO_impact_1,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(EO_impact_2, .direction = "downup") %>%
  ungroup()

addmargins(table(d$EO_impact_2,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(EO_impact_3, .direction = "downup") %>%
  ungroup()

addmargins(table(d$EO_impact_3,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(EO_impact_4, .direction = "downup") %>%
  ungroup()

addmargins(table(d$EO_impact_4,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(EO_valence_1, .direction = "downup") %>%
  ungroup()

addmargins(table(d$EO_valence_1,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(EO_valence_2, .direction = "downup") %>%
  ungroup()

addmargins(table(d$EO_valence_2,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(EO_valence_3, .direction = "downup") %>%
  ungroup()

addmargins(table(d$EO_valence_3,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(EO_valence_4, .direction = "downup") %>%
  ungroup()

addmargins(table(d$EO_valence_4,d$wave, exclude = F))


# gov't process measures

d <- d %>%
  group_by(pid) %>%
  fill(govt_process, .direction = "downup") %>%
  ungroup()

addmargins(table(d$govt_process,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(representation_Dem, .direction = "downup") %>%
  ungroup()

addmargins(table(d$representation_Dem,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(representation_Rep, .direction = "downup") %>%
  ungroup()

addmargins(table(d$representation_Rep,d$wave, exclude = F))


# ideology

d <- d %>%
  group_by(pid) %>%
  fill(ideology, .direction = "downup") %>%
  ungroup()

addmargins(table(d$ideology,d$wave, exclude = F))

# EO valence & impact

d <- d %>%
  group_by(pid) %>%
  fill(EO_valence_1, .direction = "downup") %>%
  ungroup()

addmargins(table(d$EO_valence_1,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(EO_valence_2, .direction = "downup") %>%
  ungroup()

addmargins(table(d$EO_valence_2,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(EO_valence_3, .direction = "downup") %>%
  ungroup()

addmargins(table(d$EO_valence_3,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(EO_valence_4, .direction = "downup") %>%
  ungroup()

addmargins(table(d$EO_valence_4,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(EO_impact_1, .direction = "downup") %>%
  ungroup()

addmargins(table(d$EO_impact_1,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(EO_impact_2, .direction = "downup") %>%
  ungroup()

addmargins(table(d$EO_impact_2,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(EO_impact_3, .direction = "downup") %>%
  ungroup()

addmargins(table(d$EO_impact_3,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(EO_impact_4, .direction = "downup") %>%
  ungroup()

addmargins(table(d$EO_impact_4,d$wave, exclude = F))

d$EO_valence <- rowMeans(d[,c("EO_valence_1","EO_valence_2","EO_valence_3","EO_valence_4")],na.rm = T)

d$EO_impact <- rowMeans(d[,c("EO_impact_1","EO_impact_2","EO_impact_3","EO_impact_4")],na.rm = T)

repeated measures

# emotions
d$Neg_Emo <- rowMeans(d[,c("Emotions_1", "Emotions_2", "Emotions_5")], na.rm = T)

psych::alpha(d[,c("Emotions_1", "Emotions_2", "Emotions_5")])


cor.test(d$Emotions_1[d$wave == 1], d$Emotions_2[d$wave == 1])
cor.test(d$Emotions_1[d$wave == 2], d$Emotions_2[d$wave == 2])
psych::alpha(d[d$wave == 3,c("Emotions_1", "Emotions_2", "Emotions_5")])
psych::alpha(d[d$wave == 4,c("Emotions_1", "Emotions_2", "Emotions_5")])

d$Neg_Emo.c <- d$Neg_Emo - mean(d$Neg_Emo, na.rm = T)

d$Pos_Emo <- rowMeans(d[,c("Emotions_3", "Emotions_4")], na.rm = T)
cor.test(d$Emotions_3, d$Emotions_4)
cor.test(d$Emotions_3[d$wave == 1], d$Emotions_4[d$wave == 1])
cor.test(d$Emotions_3[d$wave == 2], d$Emotions_4[d$wave == 2])
cor.test(d$Emotions_3[d$wave == 3], d$Emotions_4[d$wave == 3])
cor.test(d$Emotions_3[d$wave == 4], d$Emotions_4[d$wave == 4])

d$Pos_Emo.c <- d$Pos_Emo - mean(d$Pos_Emo, na.rm = T)

# vote confidence
d$voteconfidence <- rowMeans(d[,c('voteconf_natl','voteconf_self')], na.rm = T)

cor.test(d$voteconf_natl, d$voteconf_self)
cor.test(d$voteconf_natl[d$wave == 1], d$voteconf_self[d$wave == 1])
cor.test(d$voteconf_natl[d$wave == 2], d$voteconf_self[d$wave == 2])
cor.test(d$voteconf_natl[d$wave == 3], d$voteconf_self[d$wave == 3])
cor.test(d$voteconf_natl[d$wave == 4], d$voteconf_self[d$wave == 4])

# party ID
## Creating continuous measure of party from branching ANES question

d$partyCont <- NA
d$partyCont[d$demStrength == 1] <- -3
d$partyCont[d$demStrength == 2] <- -2
d$partyCont[d$partyClose == 1] <- -1
d$partyCont[d$partyClose == 3] <- 0
d$partyCont[d$partyClose == 2] <- 1
d$partyCont[d$repStrength == 2] <- 2
d$partyCont[d$repStrength == 1] <- 3

## Creating factor measure of party from continuous measure
d$party_factor <- NA
d$party_factor[d$partyCont == -3 | d$partyCont == -2 | d$partyCont == -1] <- "Democrat"
d$party_factor[d$partyCont == 3 | d$partyCont == 2 | d$partyCont == 1] <- "Republican"
d$party_factor[d$partyCont == 0] <- "Independent"

table(d$party_factor)


# affective polarization

## Parties
d$FT_Outgroup <- ifelse(d$party_factor == "Democrat", d$FT_parties_2,
                        ifelse(d$party_factor == "Republican", d$FT_parties_1, NA))

d$FT_diff <- NA
d$FT_diff <- d$FT_parties_1 - d$FT_parties_2

d$affPol <- ifelse(d$party_factor == "Democrat", d$FT_parties_1 - d$FT_parties_2,
                   ifelse(d$party_factor == "Republican", d$FT_parties_2 - d$FT_parties_1,
                          ifelse(d$party_factor == "Independent", NA, NA)))


## Politicians
d$FT_Outcandidate <- ifelse(d$party_factor == "Democrat", d$FT_pols_2,
                        ifelse(d$party_factor == "Republican", d$FT_pols_1, NA))

d$FT_CandDiff <- NA
d$FT_CandDiff <- d$FT_pols_1 - d$FT_pols_2
describeBy(d$FT_CandDiff, d$party_factor)

d$affPol_cand <- ifelse(d$party_factor == "Democrat", d$FT_pols_1 - d$FT_pols_2,
                   ifelse(d$party_factor == "Republican", d$FT_pols_2 - d$FT_pols_1,
                          ifelse(d$party_factor == "Independent", NA, NA)))


# connectedness

d$connectedness_6 <- as.numeric(d$connectedness_6)

d$connectedness <- rowMeans(d[,c("connectedness_1","connectedness_2","connectedness_3","connectedness_4","connectedness_5","connectedness_6","connectedness_7","connectedness_8")], na.rm = T)

psych::alpha(d[ , c("connectedness_1","connectedness_2","connectedness_3","connectedness_4","connectedness_5","connectedness_6","connectedness_7","connectedness_8")])


# demNorms

d$antidemNorms <- rowMeans(d[,c("demNorms_Reps_1", "demNorms_Reps_2", "demNorms_Reps_3", "demNorms_Reps_4", "demNorms_Dems_1", "demNorms_Dems_2", "demNorms_Dems_3", "demNorms_Dems_4")], na.rm = T)

psych::alpha(d[,c("demNorms_Reps_1", "demNorms_Reps_2", "demNorms_Reps_3", "demNorms_Reps_4")])
psych::alpha(d[d$wave == 1,c("demNorms_Reps_1", "demNorms_Reps_2", "demNorms_Reps_3", "demNorms_Reps_4")])
psych::alpha(d[d$wave == 2,c("demNorms_Reps_1", "demNorms_Reps_2", "demNorms_Reps_3", "demNorms_Reps_4")])
psych::alpha(d[d$wave == 3,c("demNorms_Reps_1", "demNorms_Reps_2", "demNorms_Reps_3", "demNorms_Reps_4")])
psych::alpha(d[d$wave == 4,c("demNorms_Reps_1", "demNorms_Reps_2", "demNorms_Reps_3", "demNorms_Reps_4")])

psych::alpha(d[,c("demNorms_Dems_1", "demNorms_Dems_2", "demNorms_Dems_3", "demNorms_Dems_4")])
psych::alpha(d[d$wave == 1,c("demNorms_Dems_1", "demNorms_Dems_2", "demNorms_Dems_3", "demNorms_Dems_4")])
psych::alpha(d[d$wave == 2,c("demNorms_Dems_1", "demNorms_Dems_2", "demNorms_Dems_3", "demNorms_Dems_4")])
psych::alpha(d[d$wave == 3,c("demNorms_Dems_1", "demNorms_Dems_2", "demNorms_Dems_3", "demNorms_Dems_4")])
psych::alpha(d[d$wave == 4,c("demNorms_Dems_1", "demNorms_Dems_2", "demNorms_Dems_3", "demNorms_Dems_4")])

d$demNorms <- (d$antidemNorms*-1)

psych::describe(d$demNorms)
psych::describe(d$antidemNorms)


# anti-Asian animus

d$AAA <- rowMeans(d[c("AAA_1", "AAA_2", "AAA_3")], na.rm = T)

psych::alpha(d[,c("demNorms_Dems_1", "demNorms_Dems_2", "demNorms_Dems_3", "demNorms_Dems_4")])


# gov't trust

cor.test(d$trustGovt1, d$trustGovt2) # yeah
cor.test(d$trustGovt1[d$wave == 1], d$trustGovt2[d$wave == 1]) 
cor.test(d$trustGovt1[d$wave == 2], d$trustGovt2[d$wave == 2]) 
cor.test(d$trustGovt1[d$wave == 3], d$trustGovt2[d$wave == 3]) 
cor.test(d$trustGovt1[d$wave == 4], d$trustGovt2[d$wave == 4]) 

d$trustGovt <- rowMeans(d[c("trustGovt1", "trustGovt2")], na.rm = T)


# science trust

d$trustSci <- rowMeans(d[c("trustSci_1", "trustSci_2","trustSci_3","trustSci_4")], na.rm = T)

psych::alpha(d[c("trustSci_1", "trustSci_2","trustSci_3","trustSci_4")])


# Vote Choice

table(d$voteChoice_final, d$wave)

d$voteID <- NA
d$voteID[d$voteChoice_final == 1] <- "Trump"
d$voteID[d$voteChoice_final == 2] <- "Harris"
d$voteID[d$VoteChoice == 1] <- "Trump"
d$voteID[d$VoteChoice == 2] <- "Harris"
d$voteID[d$VoteLean == 1] <- "Trump"
d$voteID[d$VoteLean == 2] <- "Harris"
d$voteID[d$VoteLean == 3] <- "Other"
d$voteID[d$voteChoice_final == 4] <- "Did Not Vote"
d$voteID[d$voteChoice_final == 3] <- "Other" # Hmmm

table(d$voteID, exclude = F)


# counter-proj

## ID
d$proj_ID <- NA
d$proj_ID[d$voteID == "Harris"] <- "Left"
d$proj_ID[d$voteID == "Trump"] <- "Right"
d$proj_ID[d$voteID == "Other" & d$party_factor == "Democrat"] <- "Left"
d$proj_ID[d$voteID == "Other" & d$party_factor == "Republican"] <- "Right"

## affective polarization
d$affPol_proj_Harris <- d$FT_proj_Harris_2 - d$FT_proj_Harris_1
d$affPol_proj_Trump <- d$FT_proj_Trump_1 - d$FT_proj_Trump_2
d$affPol_proj_Dem <- d$FT_proj_Dem_2 - d$FT_proj_Dem_1
d$affPol_proj_Rep <- d$FT_proj_Rep_1 - d$FT_proj_Rep_2

## dem norms
d$demNorms_proj_harris <- rowMeans(d[,c("demNorms_proj_harris_1", "demNorms_proj_harris_2", "demNorms_proj_harris_3", "demNorms_proj_harris_4")], na.rm = T)
d$demNorms_proj_Trump <- rowMeans(d[,c("demNorms_proj_Trump_1", "demNorms_proj_Trump_2", "demNorms_proj_Trump_3", "demNorms_proj_Trump_4")], na.rm = T)
d$demNorms_proj_Dem <- rowMeans(d[,c("demNorms_proj_Dem_1", "demNorms_proj_Dem_2", "demNorms_proj_Dem_3", "demNorms_proj_Dem_4")], na.rm = T)
d$demNorms_proj_Rep <- rowMeans(d[,c("demNorms_proj_Rep_1", "demNorms_proj_Rep_2", "demNorms_proj_Rep_3", "demNorms_proj_Rep_4")], na.rm = T)

# Affective Polarization
#d$affPol_proj <- ifelse(d$voteID == "Harris", d$affPol_proj_Harris,
#                  ifelse(d$voteID == "Trump", d$affPol_proj_Trump,
#                   ifelse(d$voteID == "Other" & d$party_factor == "Democrat", #d$affPol_proj_Dem, 
#                    ifelse(d$voteID == "Other" & d$party_factor == "Republican", #d$affPol_proj_Rep, NA))))

d$affPol_proj <- rowMeans(d[,c("affPol_proj_Harris","affPol_proj_Trump","affPol_proj_Dem","affPol_proj_Rep")], na.rm = T)

describeBy(d$affPol_proj, list(d$proj_ID, d$wave))

## Negative Polarization
d$negPol_proj <- ifelse(d$voteID == "Harris", d$FT_proj_Harris_1,
                  ifelse(d$voteID == "Trump", d$FT_proj_Trump_2,
                   ifelse(d$voteID == "Other" & d$party_factor == "Democrat", d$FT_proj_Dem_1, 
                    ifelse(d$voteID == "Other" & d$party_factor == "Republican", d$FT_proj_Rep_2, NA))))

## Democratic Norms
d$demNorms_proj <- ifelse(d$voteID == "Harris", d$demNorms_proj_harris,
                  ifelse(d$voteID == "Trump", d$demNorms_proj_Trump,
                   ifelse(d$voteID == "Other" & d$party_factor == "Democrat", d$demNorms_proj_Dem, 
                    ifelse(d$voteID == "Other" & d$party_factor == "Republican", d$demNorms_proj_Rep, NA))))

# climate attitudes
d$climBel_proj <- ifelse(d$voteID == "Harris", d$climBel_proj_Harris,
                  ifelse(d$voteID == "Trump", d$climbel_proj_Trump,
                   ifelse(d$voteID == "Other" & d$party_factor == "Democrat", d$climBel_proj_Dem, 
                    ifelse(d$voteID == "Other" & d$party_factor == "Republican", d$climBel_proj_Rep, NA))))


# ID centrality variables

## ID formation 1
d$IDform_1 <- rowMeans(d[, c("IDform_Dem_1", "IDform_Rep_1", "IDform_ind_1", "IDform_lib_1", "IDform_leftist_1", "IDform_prog_1", "IDform_con_1", "IDform_right_1", "IDform_mod_1", "IDform_socialist_1", "IDform_natlist_1", "IDform_libertarian_1", "IDform_feminist_1", "IDform_prolife_1", "IDform_prochoice_1", "IDform_MAGA_1", "IDform_enviro_1", "IDform_antiTrump_1", "IDform_pop_1", "IDform_other_1")], na.rm = T) 



## ID formation 2
d$IDform_2 <- rowMeans(d[, c("IDform_Dem_2", "IDform_Rep_2", "IDform_ind_2", "IDform_lib_2", "IDform_leftist_2", "IDform_prog_2", "IDform_con_2", "IDform_right_2", "IDform_mod_2", "IDform_socialist_2", "IDform_natlist_2", "IDform_libertarian_2", "IDform_feminist_2", "IDform_prolife_2", "IDform_prochoice_2", "IDform_MAGA_2", "IDform_enviro_2", "IDform_antiTrump_2", "IDform_pop_2", "IDform_other_2")], na.rm = T) 


## ID formation 3
d$IDform_3 <- rowMeans(d[, c("IDform_Dem_3", "IDform_Rep_3", "IDform_ind_3", "IDform_lib_3", "IDform_leftist_3", "IDform_prog_3", "IDform_con_3", "IDform_right_3", "IDform_mod_3", "IDform_socialist_3", "IDform_natlist_3", "IDform_libertarian_3", "IDform_feminist_3", "IDform_prolife_3", "IDform_prochoice_3", "IDform_MAGA_3", "IDform_enviro_3", "IDform_antiTrump_3", "IDform_pop_3", "IDform_other_3")], na.rm = T) 


## ID formation 4
d$IDform_4 <- rowMeans(d[, c("IDform_Dem_4", "IDform_Rep_4", "IDform_ind_4", "IDform_lib_4", "IDform_leftist_4", "IDform_prog_4", "IDform_con_4", "IDform_right_4", "IDform_mod_4", "IDform_socialist_4", "IDform_natlist_4", "IDform_libertarian_4", "IDform_feminist_4", "IDform_prolife_4", "IDform_prochoice_4", "IDform_MAGA_4", "IDform_enviro_4", "IDform_antiTrump_4", "IDform_pop_4", "IDform_other_4")], na.rm = T) 

## ID formation 5
d$IDform_5 <- rowMeans(d[, c("IDform_Dem_5", "IDform_Rep_5", "IDform_ind_5", "IDform_lib_5", "IDform_leftist_5", "IDform_prog_5", "IDform_con_5", "IDform_right_5", "IDform_mod_5", "IDform_socialist_5", "IDform_natlist_5", "IDform_libertarian_5", "IDform_feminist_5", "IDform_prolife_5", "IDform_prochoice_5", "IDform_MAGA_5", "IDform_enviro_5", "IDform_antiTrump_5", "IDform_pop_5", "IDform_other_5")], na.rm = T)


## ID formation 6
d$IDform_6 <- rowMeans(d[, c("IDform_Dem_6", "IDform_Rep_6", "IDform_ind_6", "IDform_lib_6", "IDform_leftist_6", "IDform_prog_6", "IDform_con_6", "IDform_right_6", "IDform_mod_6", "IDform_socialist_6", "IDform_natlist_6", "IDform_libertarian_6", "IDform_feminist_6", "IDform_prolife_6", "IDform_prochoice_6", "IDform_MAGA_6", "IDform_enviro_6", "IDform_antiTrump_6", "IDform_pop_6", "IDform_other_6")], na.rm = T) 


## composite identity centrality
d$IDform <- rowMeans(d[,c("IDform_1", "IDform_2", "IDform_3", "IDform_4", "IDform_5", "IDform_6")], na.rm = T)

psych::alpha(d[,c("IDform_1", "IDform_2", "IDform_3", "IDform_4", "IDform_5", "IDform_6")])


# Identity Variables

d$numID_selected <- NA
d$numID_selected <- rowSums(d[,c("polID_Liberal_select", "polID_Leftist_select", "polID_Progressive_select", "polID_Conservative_select", "polID_RightWing_select", "polID_Moderate_select", "polID_Socialist_select", "polID_Nationalist_select", "polID_Libertarian_select", "polID_Feminist_select", "polID_Prolife_select", "polID_Prochoice_select", "polID_MAGA_select", "polID_AntiTrump_select", "polID_Environmentalist_select", "polID_Populist_select", "polID_Other_select")],na.rm = T)

table(d$numID_selected, d$wave)

## Calculate & join ID sds for each participant
ID_sds <- d %>%
  dplyr::group_by(pid) %>%
  dplyr::summarize(sdID_selected = sd(numID_selected, na.rm = TRUE))

d <- d %>%
  left_join(ID_sds, by = "pid")

Results

Figures:

Figures are typically sized at 90mm (single column) or 180mm (double column), with a maximum height of 170mm, and font sizes should be 5-7pt at this size

Prep: Analytic codes & centering

### partisan identity vars

# Contrast Codes

## dems vs. reps
d$pDem_Rep <- NA
d$pDem_Rep[d$party_factor == "Democrat"] <- -1/2
d$pDem_Rep[d$party_factor == "Independent"] <- 0
d$pDem_Rep[d$party_factor == "Republican"] <- 1/2

## partisans vs. inds
d$pParty_Ind <- NA
d$pParty_Ind[d$party_factor == "Democrat"] <- -1/3
d$pParty_Ind[d$party_factor == "Independent"] <- 2/3
d$pParty_Ind[d$party_factor == "Republican"] <- -1/3


# Dummy Codes

## Democrats

### dems vs. R
d$pDem_R <- NA
d$pDem_R[d$party_factor == "Democrat"] <- 0
d$pDem_R[d$party_factor == "Independent"] <- 0
d$pDem_R[d$party_factor == "Republican"] <- 1

### dems vs. I
d$pDem_I <- NA
d$pDem_I[d$party_factor == "Democrat"] <- 0
d$pDem_I[d$party_factor == "Independent"] <- 1
d$pDem_I[d$party_factor == "Republican"] <- 0

## Republicans

### reps vs. D
d$pRep_D <- NA
d$pRep_D[d$party_factor == "Democrat"] <- 1
d$pRep_D[d$party_factor == "Independent"] <- 0
d$pRep_D[d$party_factor == "Republican"] <- 0

### reps vs. I
d$pRep_I <- NA
d$pRep_I[d$party_factor == "Democrat"] <- 0
d$pRep_I[d$party_factor == "Independent"] <- 1
d$pRep_I[d$party_factor == "Republican"] <- 0

## Independents

### inds vs. D
d$pInd_D <- NA
d$pInd_D[d$party_factor == "Democrat"] <- 1
d$pInd_D[d$party_factor == "Independent"] <- 0
d$pInd_D[d$party_factor == "Republican"] <- 0

### inds vs. R
d$pInd_R <- NA
d$pInd_R[d$party_factor == "Democrat"] <- 0
d$pInd_R[d$party_factor == "Independent"] <- 0
d$pInd_R[d$party_factor == "Republican"] <- 1

# party switch
d$party_switch.d <- ifelse(d$party_switch == "TRUE", 1, 0)

### wave

d$wave <- as.factor(d$wave)

# contrast codes
d$wave.lin <- NA
d$wave.lin[d$wave == 1] <- -1/2
d$wave.lin[d$wave == 2] <- -1/4
d$wave.lin[d$wave == 3] <- 1/4
d$wave.lin[d$wave == 4] <- 1/2

d$wave.quad <- NA
d$wave.quad[d$wave == 1] <- -1/2
d$wave.quad[d$wave == 2] <- 1/2
d$wave.quad[d$wave == 3] <- 1/2
d$wave.quad[d$wave == 4] <- -1/2

d$wave.cub <- NA
d$wave.cub[d$wave == 1] <- 1/4
d$wave.cub[d$wave == 2] <- -1/2
d$wave.cub[d$wave == 3] <- 1/2
d$wave.cub[d$wave == 4] <- -1/4

# dummy codes

## wave 1
d$wave1_2 <- NA
d$wave1_2[d$wave == 1] <- 0
d$wave1_2[d$wave == 2] <- 1
d$wave1_2[d$wave == 3] <- 0
d$wave1_2[d$wave == 4] <- 0

d$wave1_3 <- NA
d$wave1_3[d$wave == 1] <- 0
d$wave1_3[d$wave == 2] <- 0
d$wave1_3[d$wave == 3] <- 1
d$wave1_3[d$wave == 4] <- 0

d$wave1_4 <- NA
d$wave1_4[d$wave == 1] <- 0
d$wave1_4[d$wave == 2] <- 0
d$wave1_4[d$wave == 3] <- 0
d$wave1_4[d$wave == 4] <- 1

## wave 2
d$wave2_1 <- NA
d$wave2_1[d$wave == 1] <- 1
d$wave2_1[d$wave == 2] <- 0
d$wave2_1[d$wave == 3] <- 0
d$wave2_1[d$wave == 4] <- 0

d$wave2_3 <- NA
d$wave2_3[d$wave == 1] <- 0
d$wave2_3[d$wave == 2] <- 0
d$wave2_3[d$wave == 3] <- 1
d$wave2_3[d$wave == 4] <- 0

d$wave2_4 <- NA
d$wave2_4[d$wave == 1] <- 0
d$wave2_4[d$wave == 2] <- 0
d$wave2_4[d$wave == 3] <- 0
d$wave2_4[d$wave == 4] <- 1

## wave 3
d$wave3_1 <- NA
d$wave3_1[d$wave == 1] <- 1
d$wave3_1[d$wave == 2] <- 0
d$wave3_1[d$wave == 3] <- 0
d$wave3_1[d$wave == 4] <- 0

d$wave3_2 <- NA
d$wave3_2[d$wave == 1] <- 0
d$wave3_2[d$wave == 2] <- 1
d$wave3_2[d$wave == 3] <- 0
d$wave3_2[d$wave == 4] <- 0

d$wave3_4 <- NA
d$wave3_4[d$wave == 1] <- 0
d$wave3_4[d$wave == 2] <- 0
d$wave3_4[d$wave == 3] <- 0
d$wave3_4[d$wave == 4] <- 1

## wave 4
d$wave4_1 <- NA
d$wave4_1[d$wave == 1] <- 1
d$wave4_1[d$wave == 2] <- 0
d$wave4_1[d$wave == 3] <- 0
d$wave4_1[d$wave == 4] <- 0

d$wave4_2 <- NA
d$wave4_2[d$wave == 1] <- 0
d$wave4_2[d$wave == 2] <- 1
d$wave4_2[d$wave == 3] <- 0
d$wave4_2[d$wave == 4] <- 0

d$wave4_3 <- NA
d$wave4_3[d$wave == 1] <- 0
d$wave4_3[d$wave == 2] <- 0
d$wave4_3[d$wave == 3] <- 1
d$wave4_3[d$wave == 4] <- 0

# Polling Variable
d$pollFreq.c <- d$pollFreq - mean(d$pollFreq, na.rm = T)

# Race
d$vs_race <- as.factor(as.character(d$vs_race))
d$vs_race <- relevel(d$vs_race, ref = "White")

# Gender
d$vs_gender <- as.factor(as.character(d$vs_gender))

d$male_female <- NA
d$male_female[d$vs_gender == "Male"] <- -1/2
d$male_female[d$vs_gender == "Female"] <- 1/2
d$male_female[d$vs_gender == "Other"] <- 0

d$nonbinary_mf <- NA
d$nonbinary_mf[d$vs_gender == "Male"] <- 1/3
d$nonbinary_mf[d$vs_gender == "Female"] <- 1/3
d$nonbinary_mf[d$vs_gender == "Other"] <- -2/3

# generic conspiracist beliefs
d$GCB.c <- d$GCB - mean(d$GCB, na.rm = T)

# affPol (scaled)
d$affPol.100 <- d$affPol/100

# poll reliability & poll ideology bias

## averaging across all media sources
d$pollrel <- rowMeans(d[,c("pollrel1", "pollrel2", "pollrel3", "pollrel4")], na.rm = T)

d$pollbias <- rowMeans(d[,c("pollbias1", "pollbias2", "pollbias3", "pollbias4")], na.rm = T)

## scaled variables
d$pollrel.z <- scale(d$pollrel)
d$pollbias.z <- 2 * (d$pollbias - min(d$pollbias, na.rm = TRUE)) / (max(d$pollbias, na.rm = TRUE) - min(d$pollbias, na.rm = TRUE)) - 1

## magnitude and tilt separate
d$pollbias_abs <- abs(d$pollbias)
d$pollbias_tilt <- ifelse(d$pollbias > 0, "conservative",
                          ifelse(d$pollbias < 0, "liberal", NA))
table(d$pollbias_tilt)
## 
## conservative      liberal 
##         2014         3764
# Vote share measures

d$per_sum <- rowSums(d[,c("per_dem","per_gop")], na.rm = T)

d$per_sum[d$per_sum == 0] <- NA

d$per_inparty <- ifelse(d$party_factor == "Democrat", d$per_dem,
                        ifelse(d$party_factor == "Republican", d$per_gop,
                               ifelse(d$party_factor == "Independent", NA, NA)))

1. Perceived Election Legitimacy is foundational to Democratic Values (Dem Norms, Aff Pol, Trust in Govt)

Democratic values were operationalized using measures of trust in the federal government, support for democratic norms, and affective polarization. Support for democratic norms and affective polarization are measured with respect to the opposing political party, so analyses for these variables exclude Independents.

Perceived election legitimacy was measured with two questions:

  • How confident are you that your own vote was counted as you intended? (voteconf_self)

  • How confident are you that votes nationwide were counted as voters intended? (voteconf_natl)

And averaged together for the main analysis (voteconfidence).

a. DV: Trust in Govt

wave_label <- c(`1` = "Wave 1", `2` = "Wave 2", `3` = "Wave 3", `4` = "Wave 4")

ggplot(d[!is.na(d$party_factor),]) +
  geom_jitter(aes(x = voteconfidence, 
                  y = trustGovt, 
                  fill = party_factor,
                  color = party_factor),
              alpha = .2, size = .2,
              height = .2, width = .2) +
   geom_smooth(aes(x = voteconfidence, 
           y = trustGovt, 
           fill = party_factor,
           color = party_factor),
       method = "lm", alpha = .4, se = F) +
   geom_smooth(aes(x = voteconfidence, 
           y = trustGovt),
       method = "lm", color = "black") +
   facet_grid(~wave, labeller = as_labeller(wave_label)) +
   labs(x = "Perceived Election Legitimacy",
        y = "Trust in Federal Government") +
  scale_fill_manual("Participant Partisan 
Identity", 
                     values = c("#1696d2","grey","#db2b27")) +
  scale_color_manual("Participant Partisan 
Identity", 
                     values = c("#1696d2","grey","#db2b27")) +
   scale_y_continuous(breaks = seq(-2,2,.5)) +
  theme_bw()

(DVPEL1 <- ggplot(d[!is.na(d$party_factor),]) +
   geom_smooth(aes(x = voteconfidence, 
           y = trustGovt, 
           fill = party_factor,
           color = party_factor),
       method = "lm") +
   facet_grid(~wave, labeller = as_labeller(wave_label)) +
   labs(x = element_blank(),
        y = "Trust in Federal Government") +
  scale_fill_manual("Participant Partisan 
Identity", 
                     values = c("#1696d2","grey","#db2b27")) +
  scale_color_manual("Participant Partisan 
Identity", 
                     values = c("#1696d2","grey","#db2b27")) +
   scale_y_continuous(breaks = seq(-2,1,.5)) +
  coord_cartesian(ylim = c(-2,1)) +
  theme_bw())

Summary

Perceived election legitimacy (PEL) positively predicts trust in the federal government (b = 0.18, p < .001), with no variation in strength by partisan identity (p = .68 and p = .12) collapsing across time. Over the course of the study, the predictive strength of perceived election legitimacy decreased (b = -0.06, p = .006), with this decline primarily occurring from wave 1 to wave 2, when explanatory power decreased significantly (b = -0.09, p < .001). Differences from wave 2 to wave 3 (p = .12) and wave 4 (p = .92) were not significant. There was partisan variation in this trend over time, such that Democrats and Republicans differed in degree to which the perceived election legitimacy-governmental trust relationship decreased in magnitude (b = -0.13, p = .002). However, perceived election legitimacy still positively predicted trust in the federal government for Democrats (b = 0.15, p < .001) and Republicans (b = 0.24, p < .001), and marginally for Independents (b = 0.08, p = .092), in the final wave of the study.

Models

Main model

TrustPel.m1 <- lmer(trustGovt ~ (pDem_Rep + pParty_Ind) * (wave.lin + wave.quad + wave.cub) * voteconfidence 
                    + vs_race + vs_age + male_female + nonbinary_mf
                    + (1 | pid),
                    data = d)
tab_model(TrustPel.m1, show.stat = T, show.df = T, df.method = "satterthwaite")
  trustGovt
Predictors Estimates CI Statistic p df
(Intercept) -1.50 -1.68 – -1.32 -16.11 <0.001 3061.31
pDem Rep -0.20 -0.36 – -0.04 -2.40 0.017 7942.57
pParty Ind -0.04 -0.23 – 0.14 -0.46 0.646 7942.60
wave lin -0.35 -0.49 – -0.20 -4.81 <0.001 5996.13
wave quad 0.12 0.01 – 0.23 2.23 0.026 5755.89
wave cub -0.26 -0.40 – -0.13 -3.80 <0.001 5653.59
voteconfidence 0.18 0.16 – 0.21 16.15 <0.001 7927.20
vs race [Black] 0.22 0.12 – 0.32 4.19 <0.001 2587.58
vs race [Hispanic] 0.23 0.13 – 0.34 4.29 <0.001 2531.51
vs race [Other] 0.07 -0.05 – 0.20 1.15 0.248 2448.53
vs age -0.00 -0.00 – 0.00 -0.48 0.632 2500.76
male female 0.04 -0.03 – 0.10 1.08 0.282 2518.40
nonbinary mf 0.66 0.27 – 1.05 3.30 0.001 2585.11
pDem Rep × wave lin 0.92 0.62 – 1.22 5.98 <0.001 6086.59
pDem Rep × wave quad -0.34 -0.57 – -0.11 -2.89 0.004 5844.53
pDem Rep × wave cub 0.04 -0.24 – 0.32 0.29 0.771 5704.05
pParty Ind × wave lin -0.01 -0.34 – 0.33 -0.04 0.971 6011.76
pParty Ind × wave quad -0.23 -0.50 – 0.03 -1.77 0.077 5772.46
pParty Ind × wave cub -0.19 -0.52 – 0.14 -1.14 0.256 5686.69
pDem Rep × voteconfidence 0.01 -0.03 – 0.05 0.42 0.677 7819.55
pParty Ind ×
voteconfidence
-0.04 -0.10 – 0.01 -1.54 0.124 7878.74
wave lin × voteconfidence -0.06 -0.10 – -0.02 -2.74 0.006 5985.60
wave quad ×
voteconfidence
-0.03 -0.06 – 0.00 -1.87 0.062 5758.36
wave cub × voteconfidence 0.06 0.02 – 0.10 3.17 0.002 5672.24
(pDem Rep × wave lin) ×
voteconfidence
0.13 0.05 – 0.21 3.16 0.002 6044.90
(pDem Rep × wave quad) ×
voteconfidence
-0.06 -0.12 – 0.01 -1.75 0.080 5836.34
(pDem Rep × wave cub) ×
voteconfidence
0.04 -0.04 – 0.11 0.94 0.350 5717.40
(pParty Ind × wave lin) ×
voteconfidence
-0.04 -0.14 – 0.06 -0.72 0.471 5994.87
(pParty Ind × wave quad)
× voteconfidence
0.07 -0.01 – 0.15 1.83 0.067 5776.50
(pParty Ind × wave cub) ×
voteconfidence
0.06 -0.03 – 0.16 1.29 0.198 5695.19
Random Effects
σ2 0.40
τ00 pid 0.53
ICC 0.57
N pid 2592
Observations 7975
Marginal R2 / Conditional R2 0.202 / 0.653

Main model centered at Wave 2

TrustPel.m1.w2 <- lmer(trustGovt ~ (pDem_Rep + pParty_Ind) * (wave2_1 + wave2_3 + wave2_4) * voteconfidence 
                    + vs_race + vs_age + male_female + nonbinary_mf
                    + (1 | pid),
                    data = d)
tab_model(TrustPel.m1.w2, show.stat = T, show.df = T, df.method = "satterthwaite")
  trustGovt
Predictors Estimates CI Statistic p df
(Intercept) -1.22 -1.42 – -1.02 -11.86 <0.001 4272.23
pDem Rep -0.61 -0.85 – -0.37 -5.00 <0.001 7158.73
pParty Ind -0.06 -0.35 – 0.22 -0.44 0.662 7265.19
wave2 1 -0.23 -0.37 – -0.10 -3.42 0.001 5985.61
wave2 3 -0.44 -0.59 – -0.28 -5.58 <0.001 5679.64
wave2 4 -0.45 -0.61 – -0.28 -5.36 <0.001 5732.22
voteconfidence 0.15 0.12 – 0.18 9.00 <0.001 7077.11
vs race [Black] 0.22 0.12 – 0.32 4.19 <0.001 2587.58
vs race [Hispanic] 0.23 0.13 – 0.34 4.29 <0.001 2531.51
vs race [Other] 0.07 -0.05 – 0.20 1.15 0.248 2448.53
vs age -0.00 -0.00 – 0.00 -0.48 0.632 2500.76
male female 0.04 -0.03 – 0.10 1.08 0.282 2518.40
nonbinary mf 0.66 0.27 – 1.05 3.30 0.001 2585.11
pDem Rep × wave2 1 0.14 -0.15 – 0.43 0.95 0.340 6144.00
pDem Rep × wave2 3 0.50 0.19 – 0.81 3.14 0.002 5681.36
pDem Rep × wave2 4 1.04 0.69 – 1.38 5.84 <0.001 5763.27
pParty Ind × wave2 1 0.09 -0.23 – 0.41 0.56 0.572 5987.40
pParty Ind × wave2 3 -0.19 -0.57 – 0.18 -1.02 0.309 5736.25
pParty Ind × wave2 4 0.18 -0.21 – 0.58 0.91 0.363 5769.88
pDem Rep × voteconfidence -0.07 -0.13 – -0.01 -2.20 0.028 6845.48
pParty Ind ×
voteconfidence
-0.03 -0.11 – 0.05 -0.68 0.499 6978.74
wave2 1 × voteconfidence 0.09 0.05 – 0.13 4.54 <0.001 6000.48
wave2 3 × voteconfidence 0.03 -0.01 – 0.08 1.54 0.123 5676.57
wave2 4 × voteconfidence 0.00 -0.04 – 0.05 0.10 0.923 5725.28
(pDem Rep × wave2 1) ×
voteconfidence
0.05 -0.03 – 0.13 1.23 0.218 6118.44
(pDem Rep × wave2 3) ×
voteconfidence
0.10 0.02 – 0.18 2.41 0.016 5688.79
(pDem Rep × wave2 4) ×
voteconfidence
0.16 0.07 – 0.26 3.46 0.001 5757.37
(pParty Ind × wave2 1) ×
voteconfidence
-0.02 -0.11 – 0.08 -0.31 0.757 6002.23
(pParty Ind × wave2 3) ×
voteconfidence
0.05 -0.06 – 0.15 0.81 0.416 5715.45
(pParty Ind × wave2 4) ×
voteconfidence
-0.09 -0.20 – 0.03 -1.43 0.154 5749.32
Random Effects
σ2 0.40
τ00 pid 0.53
ICC 0.57
N pid 2592
Observations 7975
Marginal R2 / Conditional R2 0.202 / 0.653

Model centered at Wave 4, party ID-specific effects

TrustPel.m1.w4.d <- lmer(trustGovt ~ (pDem_R + pDem_I) * (wave4_1 + wave4_2+ wave4_3) * voteconfidence 
                    + vs_race + vs_age + male_female + nonbinary_mf
                    + (1 | pid),
                    data = d)
tab_model(TrustPel.m1.w4.d, show.stat = T, show.df = T, df.method = "satterthwaite")
  trustGovt
Predictors Estimates CI Statistic p df
(Intercept) -1.92 -2.16 – -1.68 -15.59 <0.001 6451.12
pDem R 0.42 0.12 – 0.72 2.78 0.005 6631.69
pDem I 0.33 -0.01 – 0.67 1.88 0.060 6659.08
wave4 1 0.69 0.47 – 0.92 6.08 <0.001 6253.85
wave4 2 1.03 0.82 – 1.23 9.76 <0.001 5738.32
wave4 3 0.41 0.19 – 0.62 3.76 <0.001 5635.34
voteconfidence 0.15 0.10 – 0.19 5.89 <0.001 6469.47
vs race [Black] 0.22 0.12 – 0.32 4.19 <0.001 2587.58
vs race [Hispanic] 0.23 0.13 – 0.34 4.29 <0.001 2531.51
vs race [Other] 0.07 -0.05 – 0.20 1.15 0.248 2448.53
vs age -0.00 -0.00 – 0.00 -0.48 0.632 2500.76
male female 0.04 -0.03 – 0.10 1.08 0.282 2518.40
nonbinary mf 0.66 0.27 – 1.05 3.30 0.001 2585.11
pDem R × wave4 1 -0.90 -1.23 – -0.56 -5.20 <0.001 6102.44
pDem R × wave4 2 -1.04 -1.38 – -0.69 -5.84 <0.001 5763.27
pDem R × wave4 3 -0.53 -0.89 – -0.18 -2.96 0.003 5634.26
pDem I × wave4 1 -0.54 -0.94 – -0.14 -2.65 0.008 6038.10
pDem I × wave4 2 -0.70 -1.11 – -0.29 -3.36 0.001 5763.67
pDem I × wave4 3 -0.64 -1.07 – -0.22 -2.97 0.003 5618.08
pDem R × voteconfidence 0.09 0.01 – 0.17 2.32 0.021 6361.49
pDem I × voteconfidence -0.07 -0.17 – 0.04 -1.27 0.203 6469.22
wave4 1 × voteconfidence 0.12 0.06 – 0.18 4.08 <0.001 6157.56
wave4 2 × voteconfidence 0.05 -0.01 – 0.11 1.77 0.076 5728.74
wave4 3 × voteconfidence 0.02 -0.04 – 0.08 0.64 0.521 5632.50
(pDem R × wave4 1) ×
voteconfidence
-0.11 -0.21 – -0.02 -2.41 0.016 6059.96
(pDem R × wave4 2) ×
voteconfidence
-0.16 -0.26 – -0.07 -3.46 0.001 5757.37
(pDem R × wave4 3) ×
voteconfidence
-0.06 -0.16 – 0.03 -1.26 0.207 5639.66
(pDem I × wave4 1) ×
voteconfidence
0.01 -0.11 – 0.13 0.21 0.835 6005.22
(pDem I × wave4 2) ×
voteconfidence
0.00 -0.12 – 0.13 0.06 0.953 5744.42
(pDem I × wave4 3) ×
voteconfidence
0.10 -0.03 – 0.23 1.56 0.120 5620.69
Random Effects
σ2 0.40
τ00 pid 0.53
ICC 0.57
N pid 2592
Observations 7975
Marginal R2 / Conditional R2 0.202 / 0.653
TrustPel.m1.w4.i <- lmer(trustGovt ~ (pInd_R + pInd_D) * (wave4_1 + wave4_2+ wave4_3) * voteconfidence 
                    + vs_race + vs_age + male_female + nonbinary_mf
                    + (1 | pid),
                    data = d)
tab_model(TrustPel.m1.w4.i, show.stat = T, show.df = T, df.method = "satterthwaite")
  trustGovt
Predictors Estimates CI Statistic p df
(Intercept) -1.59 -1.93 – -1.25 -9.20 <0.001 7935.81
pInd R 0.09 -0.29 – 0.47 0.47 0.638 6617.54
pInd D -0.33 -0.67 – 0.01 -1.88 0.060 6659.08
wave4 1 0.15 -0.17 – 0.48 0.92 0.358 5929.39
wave4 2 0.33 -0.02 – 0.68 1.82 0.069 5757.75
wave4 3 -0.24 -0.61 – 0.13 -1.28 0.201 5593.93
voteconfidence 0.08 -0.01 – 0.17 1.69 0.092 6514.82
vs race [Black] 0.22 0.12 – 0.32 4.19 <0.001 2587.58
vs race [Hispanic] 0.23 0.13 – 0.34 4.29 <0.001 2531.51
vs race [Other] 0.07 -0.05 – 0.20 1.15 0.248 2448.53
vs age -0.00 -0.00 – 0.00 -0.48 0.632 2500.76
male female 0.04 -0.03 – 0.10 1.08 0.282 2518.40
nonbinary mf 0.66 0.27 – 1.05 3.30 0.001 2585.11
pInd R × wave4 1 -0.36 -0.77 – 0.06 -1.69 0.091 5952.22
pInd R × wave4 2 -0.34 -0.78 – 0.11 -1.46 0.144 5773.03
pInd R × wave4 3 0.11 -0.36 – 0.57 0.46 0.644 5607.24
pInd D × wave4 1 0.54 0.14 – 0.94 2.65 0.008 6038.10
pInd D × wave4 2 0.70 0.29 – 1.11 3.36 0.001 5763.67
pInd D × wave4 3 0.64 0.22 – 1.07 2.97 0.003 5618.08
pInd R × voteconfidence 0.16 0.05 – 0.27 2.84 0.004 6421.12
pInd D × voteconfidence 0.07 -0.04 – 0.17 1.27 0.203 6469.22
wave4 1 × voteconfidence 0.14 0.03 – 0.24 2.55 0.011 5956.45
wave4 2 × voteconfidence 0.05 -0.05 – 0.16 0.99 0.321 5738.44
wave4 3 × voteconfidence 0.12 0.01 – 0.23 2.09 0.037 5602.71
(pInd R × wave4 1) ×
voteconfidence
-0.13 -0.25 – -0.00 -1.96 0.050 5973.44
(pInd R × wave4 2) ×
voteconfidence
-0.17 -0.30 – -0.04 -2.51 0.012 5755.59
(pInd R × wave4 3) ×
voteconfidence
-0.16 -0.30 – -0.03 -2.34 0.019 5617.35
(pInd D × wave4 1) ×
voteconfidence
-0.01 -0.13 – 0.11 -0.21 0.835 6005.22
(pInd D × wave4 2) ×
voteconfidence
-0.00 -0.13 – 0.12 -0.06 0.953 5744.42
(pInd D × wave4 3) ×
voteconfidence
-0.10 -0.23 – 0.03 -1.56 0.120 5620.69
Random Effects
σ2 0.40
τ00 pid 0.53
ICC 0.57
N pid 2592
Observations 7975
Marginal R2 / Conditional R2 0.202 / 0.653
TrustPel.m1.w4.r <- lmer(trustGovt ~ (pRep_D + pRep_I) * (wave4_1 + wave4_2+ wave4_3) * voteconfidence 
                    + vs_race + vs_age + male_female + nonbinary_mf
                    + (1 | pid),
                    data = d)
tab_model(TrustPel.m1.w4.r, show.stat = T, show.df = T, df.method = "satterthwaite")
  trustGovt
Predictors Estimates CI Statistic p df
(Intercept) -1.50 -1.79 – -1.21 -10.04 <0.001 7679.64
pRep D -0.42 -0.72 – -0.12 -2.78 0.005 6631.69
pRep I -0.09 -0.47 – 0.29 -0.47 0.638 6617.54
wave4 1 -0.20 -0.46 – 0.05 -1.58 0.113 5943.16
wave4 2 -0.01 -0.29 – 0.27 -0.06 0.952 5762.21
wave4 3 -0.13 -0.41 – 0.15 -0.90 0.371 5615.31
voteconfidence 0.24 0.18 – 0.30 7.46 <0.001 6361.90
vs race [Black] 0.22 0.12 – 0.32 4.19 <0.001 2587.58
vs race [Hispanic] 0.23 0.13 – 0.34 4.29 <0.001 2531.51
vs race [Other] 0.07 -0.05 – 0.20 1.15 0.248 2448.53
vs age -0.00 -0.00 – 0.00 -0.48 0.632 2500.76
male female 0.04 -0.03 – 0.10 1.08 0.282 2518.40
nonbinary mf 0.66 0.27 – 1.05 3.30 0.001 2585.11
pRep D × wave4 1 0.90 0.56 – 1.23 5.20 <0.001 6102.44
pRep D × wave4 2 1.04 0.69 – 1.38 5.84 <0.001 5763.27
pRep D × wave4 3 0.53 0.18 – 0.89 2.96 0.003 5634.26
pRep I × wave4 1 0.36 -0.06 – 0.77 1.69 0.091 5952.22
pRep I × wave4 2 0.34 -0.11 – 0.78 1.46 0.144 5773.03
pRep I × wave4 3 -0.11 -0.57 – 0.36 -0.46 0.644 5607.24
pRep D × voteconfidence -0.09 -0.17 – -0.01 -2.32 0.021 6361.49
pRep I × voteconfidence -0.16 -0.27 – -0.05 -2.84 0.004 6421.12
wave4 1 × voteconfidence 0.01 -0.06 – 0.08 0.25 0.803 5969.97
wave4 2 × voteconfidence -0.11 -0.19 – -0.04 -3.00 0.003 5761.37
wave4 3 × voteconfidence -0.04 -0.12 – 0.03 -1.10 0.272 5628.29
(pRep D × wave4 1) ×
voteconfidence
0.11 0.02 – 0.21 2.41 0.016 6059.96
(pRep D × wave4 2) ×
voteconfidence
0.16 0.07 – 0.26 3.46 0.001 5757.37
(pRep D × wave4 3) ×
voteconfidence
0.06 -0.03 – 0.16 1.26 0.207 5639.66
(pRep I × wave4 1) ×
voteconfidence
0.13 0.00 – 0.25 1.96 0.050 5973.44
(pRep I × wave4 2) ×
voteconfidence
0.17 0.04 – 0.30 2.51 0.012 5755.59
(pRep I × wave4 3) ×
voteconfidence
0.16 0.03 – 0.30 2.34 0.019 5617.35
Random Effects
σ2 0.40
τ00 pid 0.53
ICC 0.57
N pid 2592
Observations 7975
Marginal R2 / Conditional R2 0.202 / 0.653

b. DV: Democratic Norms

ggplot(d[!is.na(d$party_factor) & d$party_factor != "Independent",]) +
  geom_jitter(aes(x = voteconfidence, 
                  y = demNorms, 
                  fill = party_factor,
                  color = party_factor),
              alpha = .2, size = .2,
              height = .2, width = .2) +
   geom_smooth(aes(x = voteconfidence, 
           y = demNorms, 
           fill = party_factor,
           color = party_factor),
       method = "lm", alpha = .4, se = F) +
   geom_smooth(aes(x = voteconfidence, 
           y = demNorms),
       method = "lm", color = "black") +
   facet_grid(~wave, labeller = as_labeller(wave_label)) +
   labs(x = "Perceived Election Legitimacy",
        y = "Support for Democratic Norms") +
  scale_fill_manual("Participant Partisan 
Identity", 
                     values = c("#1696d2","#db2b27")) +
  scale_color_manual("Participant Partisan 
Identity", 
                     values = c("#1696d2","#db2b27")) +
   scale_y_continuous(breaks = seq(-3,3,1)) +
   coord_cartesian(ylim = c(0,3)) +
  theme_bw()

(DVPEL2 <- ggplot(d[!is.na(d$party_factor),]) +
   geom_smooth(aes(x = voteconfidence, 
           y = demNorms, 
           fill = party_factor,
           color = party_factor),
       method = "lm") +
   facet_grid(~wave, labeller = as_labeller(wave_label)) +
   labs(x = element_blank(),
        y = "Support for Democratic Norms") +
  scale_fill_manual("Participant Partisan 
Identity", 
                     values = c("#1696d2","#db2b27")) +
  scale_color_manual("Participant Partisan 
Identity", 
                     values = c("#1696d2","#db2b27")) +
   scale_y_continuous(breaks = seq(0,2,.5)) +
  coord_cartesian(ylim = c(0,2.25)) +
  theme_bw())

Summary

Perceived election legitimacy positively predicts support for democratic norms (b = 0.14, p < .001), without change over course of the study (all p’s > .10). There were partisan differences in strength of predictive power (b = -0.13, p < .001), such that perceived election legitimacy was more strongly predictive of support for democratic norms for Democrats (b = 0.21, p < .001) than for Republicans (b = 0.07, p < .001), collapsing across time.

Models

Main model

DNpel.m1 <- lmer(demNorms ~ (pDem_Rep) * (wave.lin + wave.quad + wave.cub) * voteconfidence 
                 + vs_race + vs_age + male_female + nonbinary_mf
                 + (1 | pid),
                 data = d)
tab_model(DNpel.m1, show.stat = T, show.df = T, df.method = "satterthwaite")
  demNorms
Predictors Estimates CI Statistic p df
(Intercept) 0.59 0.31 – 0.88 4.11 <0.001 2844.51
pDem Rep 0.19 -0.03 – 0.41 1.65 0.098 7128.32
wave lin -0.05 -0.24 – 0.15 -0.45 0.650 5390.85
wave quad 0.09 -0.06 – 0.24 1.19 0.235 5202.29
wave cub -0.01 -0.19 – 0.18 -0.07 0.947 5092.39
voteconfidence 0.14 0.11 – 0.17 9.64 <0.001 6977.95
vs race [Black] -0.75 -0.91 – -0.59 -9.46 <0.001 2422.92
vs race [Hispanic] -0.56 -0.72 – -0.40 -6.81 <0.001 2387.20
vs race [Other] -0.11 -0.31 – 0.08 -1.14 0.252 2321.58
vs age 0.01 0.01 – 0.02 7.40 <0.001 2356.37
male female 0.03 -0.07 – 0.13 0.66 0.512 2366.05
nonbinary mf -0.71 -1.35 – -0.08 -2.22 0.026 2488.56
pDem Rep × wave lin 0.49 0.09 – 0.89 2.41 0.016 5418.19
pDem Rep × wave quad 0.06 -0.24 – 0.37 0.41 0.683 5232.06
pDem Rep × wave cub -0.28 -0.65 – 0.09 -1.46 0.145 5119.96
pDem Rep × voteconfidence -0.13 -0.19 – -0.08 -4.69 <0.001 6900.78
wave lin × voteconfidence 0.04 -0.01 – 0.10 1.61 0.107 5367.59
wave quad ×
voteconfidence
0.00 -0.04 – 0.04 0.18 0.859 5200.78
wave cub × voteconfidence -0.01 -0.06 – 0.04 -0.43 0.665 5104.60
(pDem Rep × wave lin) ×
voteconfidence
-0.10 -0.21 – 0.01 -1.84 0.066 5381.93
(pDem Rep × wave quad) ×
voteconfidence
0.01 -0.07 – 0.09 0.17 0.862 5222.15
(pDem Rep × wave cub) ×
voteconfidence
0.05 -0.05 – 0.15 0.91 0.365 5126.08
Random Effects
σ2 0.70
τ00 pid 1.18
ICC 0.63
N pid 2360
Observations 7151
Marginal R2 / Conditional R2 0.096 / 0.662

Party ID-specific Effects

DNpel.m1.d <- lmer(demNorms ~ (pDem_R) * (wave.lin + wave.quad + wave.cub) * voteconfidence 
                 + vs_race + vs_age + male_female + nonbinary_mf
                 + (1 | pid),
                 data = d)
tab_model(DNpel.m1.d, show.stat = T, show.df = T, df.method = "satterthwaite")
  demNorms
Predictors Estimates CI Statistic p df
(Intercept) 0.50 0.21 – 0.80 3.33 0.001 3114.67
pDem R 0.19 -0.03 – 0.41 1.65 0.098 7128.32
wave lin -0.29 -0.55 – -0.03 -2.21 0.027 5485.61
wave quad 0.06 -0.13 – 0.25 0.61 0.540 5242.00
wave cub 0.13 -0.10 – 0.36 1.13 0.258 5124.93
voteconfidence 0.21 0.17 – 0.25 11.08 <0.001 7053.86
vs race [Black] -0.75 -0.91 – -0.59 -9.46 <0.001 2422.92
vs race [Hispanic] -0.56 -0.72 – -0.40 -6.81 <0.001 2387.20
vs race [Other] -0.11 -0.31 – 0.08 -1.14 0.252 2321.58
vs age 0.01 0.01 – 0.02 7.40 <0.001 2356.37
male female 0.03 -0.07 – 0.13 0.66 0.512 2366.05
nonbinary mf -0.71 -1.35 – -0.08 -2.22 0.026 2488.55
pDem R × wave lin 0.49 0.09 – 0.89 2.41 0.016 5418.19
pDem R × wave quad 0.06 -0.24 – 0.37 0.41 0.683 5232.06
pDem R × wave cub -0.28 -0.65 – 0.09 -1.46 0.145 5119.96
pDem R × voteconfidence -0.13 -0.19 – -0.08 -4.69 <0.001 6900.78
wave lin × voteconfidence 0.10 0.03 – 0.16 2.74 0.006 5414.20
wave quad ×
voteconfidence
0.00 -0.05 – 0.05 0.00 0.998 5212.90
wave cub × voteconfidence -0.03 -0.09 – 0.03 -1.10 0.273 5106.05
(pDem R × wave lin) ×
voteconfidence
-0.10 -0.21 – 0.01 -1.84 0.066 5381.93
(pDem R × wave quad) ×
voteconfidence
0.01 -0.07 – 0.09 0.17 0.862 5222.15
(pDem R × wave cub) ×
voteconfidence
0.05 -0.05 – 0.15 0.91 0.365 5126.08
Random Effects
σ2 0.70
τ00 pid 1.18
ICC 0.63
N pid 2360
Observations 7151
Marginal R2 / Conditional R2 0.096 / 0.662
DNpel.m1.r <- lmer(demNorms ~ (pRep_D) * (wave.lin + wave.quad + wave.cub) * voteconfidence 
                 + vs_race + vs_age + male_female + nonbinary_mf
                 + (1 | pid),
                 data = d)
tab_model(DNpel.m1.r, show.stat = T, show.df = T, df.method = "satterthwaite")
  demNorms
Predictors Estimates CI Statistic p df
(Intercept) 0.69 0.37 – 1.00 4.30 <0.001 3538.80
pRep D -0.19 -0.41 – 0.03 -1.65 0.098 7128.32
wave lin 0.20 -0.10 – 0.50 1.29 0.197 5345.69
wave quad 0.12 -0.11 – 0.36 1.03 0.304 5200.79
wave cub -0.14 -0.44 – 0.15 -0.97 0.331 5094.78
voteconfidence 0.07 0.03 – 0.12 3.38 0.001 6832.25
vs race [Black] -0.75 -0.91 – -0.59 -9.46 <0.001 2422.92
vs race [Hispanic] -0.56 -0.72 – -0.40 -6.81 <0.001 2387.20
vs race [Other] -0.11 -0.31 – 0.08 -1.14 0.252 2321.58
vs age 0.01 0.01 – 0.02 7.40 <0.001 2356.37
male female 0.03 -0.07 – 0.13 0.66 0.512 2366.05
nonbinary mf -0.71 -1.35 – -0.08 -2.22 0.026 2488.55
pRep D × wave lin -0.49 -0.89 – -0.09 -2.41 0.016 5418.19
pRep D × wave quad -0.06 -0.37 – 0.24 -0.41 0.683 5232.06
pRep D × wave cub 0.28 -0.09 – 0.65 1.46 0.145 5119.96
pRep D × voteconfidence 0.13 0.08 – 0.19 4.69 <0.001 6900.78
wave lin × voteconfidence -0.01 -0.09 – 0.08 -0.15 0.881 5348.76
wave quad ×
voteconfidence
0.01 -0.06 – 0.07 0.22 0.822 5210.65
wave cub × voteconfidence 0.01 -0.07 – 0.09 0.30 0.764 5120.94
(pRep D × wave lin) ×
voteconfidence
0.10 -0.01 – 0.21 1.84 0.066 5381.93
(pRep D × wave quad) ×
voteconfidence
-0.01 -0.09 – 0.07 -0.17 0.862 5222.15
(pRep D × wave cub) ×
voteconfidence
-0.05 -0.15 – 0.05 -0.91 0.365 5126.08
Random Effects
σ2 0.70
τ00 pid 1.18
ICC 0.63
N pid 2360
Observations 7151
Marginal R2 / Conditional R2 0.096 / 0.662

c. DV: Affective Polarization

ggplot(d[!is.na(d$party_factor) & d$party_factor != "Independent",]) +
  geom_jitter(aes(x = voteconfidence, 
                  y = affPol, 
                  fill = party_factor,
                  color = party_factor),
              alpha = .2, size = .2,
              height = .2, width = .2) +
   geom_smooth(aes(x = voteconfidence, 
           y = affPol, 
           fill = party_factor,
           color = party_factor),
       method = "lm", alpha = .4, se = F) +
   geom_smooth(aes(x = voteconfidence, 
           y = affPol),
       method = "lm", color = "black") +
   facet_grid(~wave, labeller = as_labeller(wave_label)) +
   labs(x = "Perceived Election Legitimacy",
        y = "Affective Polarization") +
  scale_fill_manual("Participant Partisan 
Identity", 
                     values = c("#1696d2","#db2b27")) +
  scale_color_manual("Participant Partisan 
Identity", 
                     values = c("#1696d2","#db2b27")) +
   coord_cartesian(ylim = c(0,100)) +
  theme_bw()

(DVPEL3 <- ggplot(d[!is.na(d$party_factor),]) +
   geom_smooth(aes(x = voteconfidence, 
           y = affPol, 
           fill = party_factor,
           color = party_factor),
       method = "lm") +
   facet_grid(~wave, labeller = as_labeller(wave_label)) +
   labs(x = "Perceived Election Legitimacy",
        y = "Affective Polarization") +
  scale_fill_manual("Participant Partisan 
Identity", 
                     values = c("#1696d2","#db2b27")) +
  scale_color_manual("Participant Partisan 
Identity", 
                     values = c("#1696d2","#db2b27")) +
   coord_cartesian(ylim = c(0,100)) +
  theme_bw())

Negative Polarization (Just Outparty Perceptions) Instead

ggplot(d[!is.na(d$party_factor) & d$party_factor != "Independent",]) +
  geom_jitter(aes(x = voteconfidence, 
                  y = FT_Outgroup, 
                  fill = party_factor,
                  color = party_factor),
              alpha = .2, size = .2,
              height = .2, width = .2) +
   geom_smooth(aes(x = voteconfidence, 
           y = FT_Outgroup, 
           fill = party_factor,
           color = party_factor),
       method = "lm", alpha = .4, se = F) +
   geom_smooth(aes(x = voteconfidence, 
           y = FT_Outgroup),
       method = "lm", color = "black") +
   facet_grid(~wave, labeller = as_labeller(wave_label)) +
   labs(x = "Perceived Election Legitimacy",
        y = "Negative Polarization") +
  scale_fill_manual("Participant Partisan 
Identity", 
                     values = c("#1696d2","#db2b27")) +
  scale_color_manual("Participant Partisan 
Identity", 
                     values = c("#1696d2","#db2b27")) +
#   coord_cartesian(ylim = c(0,100)) +
  theme_bw()

Summary

Perceived election legitimacy did not significantly predict affective polarization when collapsing across time and partisan identity (p = .090), nor did its predictive strength vary over time (all p’s > .10) or by partisan identity, collapsing across time (p = .73).

However, there was a significant interaction of perceived election legitimacy, partisan identity, and linear time (b = 4.64, p = .001). For Democrats, the perceived election legitimacy-affective polarization relationship was positive collapsing across time (b = 0.21, p < .001) but became more negative from wave 1 to wave 4 (b = 0.10, p = .006), while for Republicans, the relationship was also positive collapsing over time (b = 0.07, p = .001), but did not significantly change over time (all p’s > .10).

Models

Main Model

APpel.m1 <- lmer(affPol ~ (pDem_Rep) * (wave.lin + wave.quad + wave.cub) * voteconfidence 
                 + vs_race + vs_age + male_female + nonbinary_mf
                 + (1 | pid),
                 data = d)
tab_model(APpel.m1, show.stat = T, show.df = T, df.method = "satterthwaite")
  affPol
Predictors Estimates CI Statistic p df
(Intercept) 37.23 29.65 – 44.82 9.63 <0.001 2779.26
pDem Rep -8.07 -13.69 – -2.45 -2.81 0.005 7111.72
wave lin 0.97 -3.98 – 5.92 0.38 0.701 5278.90
wave quad 1.30 -2.44 – 5.04 0.68 0.495 5111.83
wave cub 0.91 -3.69 – 5.51 0.39 0.699 5015.87
voteconfidence -0.63 -1.37 – 0.10 -1.69 0.090 6811.09
vs race [Black] -1.92 -6.10 – 2.26 -0.90 0.367 2407.29
vs race [Hispanic] -2.52 -6.87 – 1.83 -1.14 0.256 2359.86
vs race [Other] 1.17 -4.13 – 6.48 0.43 0.664 2304.94
vs age 0.28 0.18 – 0.37 5.82 <0.001 2336.02
male female 0.87 -1.84 – 3.58 0.63 0.527 2346.17
nonbinary mf 5.73 -11.20 – 22.67 0.66 0.507 2447.57
pDem Rep × wave lin -12.71 -22.66 – -2.77 -2.51 0.012 5304.28
pDem Rep × wave quad -6.21 -13.73 – 1.32 -1.62 0.106 5137.40
pDem Rep × wave cub 10.87 1.62 – 20.12 2.30 0.021 5039.82
pDem Rep × voteconfidence -0.25 -1.68 – 1.17 -0.35 0.726 6716.53
wave lin × voteconfidence 0.75 -0.60 – 2.10 1.09 0.277 5257.62
wave quad ×
voteconfidence
-0.01 -1.02 – 1.00 -0.02 0.982 5109.66
wave cub × voteconfidence -1.03 -2.27 – 0.20 -1.64 0.100 5027.14
(pDem Rep × wave lin) ×
voteconfidence
4.64 1.93 – 7.34 3.36 0.001 5270.64
(pDem Rep × wave quad) ×
voteconfidence
2.37 0.33 – 4.40 2.28 0.023 5127.78
(pDem Rep × wave cub) ×
voteconfidence
-2.85 -5.33 – -0.38 -2.26 0.024 5045.83
Random Effects
σ2 432.07
τ00 pid 881.60
ICC 0.67
N pid 2360
Observations 7141
Marginal R2 / Conditional R2 0.027 / 0.680

Party ID-specific Effects

APpel.m1.d <- lmer(demNorms ~ (pDem_R) * (wave.lin + wave.quad + wave.cub) * voteconfidence 
                 + vs_race + vs_age + male_female + nonbinary_mf
                 + (1 | pid),
                 data = d)
tab_model(APpel.m1.d, show.stat = T, show.df = T, df.method = "satterthwaite")
  demNorms
Predictors Estimates CI Statistic p df
(Intercept) 0.50 0.21 – 0.80 3.33 0.001 3114.67
pDem R 0.19 -0.03 – 0.41 1.65 0.098 7128.32
wave lin -0.29 -0.55 – -0.03 -2.21 0.027 5485.61
wave quad 0.06 -0.13 – 0.25 0.61 0.540 5242.00
wave cub 0.13 -0.10 – 0.36 1.13 0.258 5124.93
voteconfidence 0.21 0.17 – 0.25 11.08 <0.001 7053.86
vs race [Black] -0.75 -0.91 – -0.59 -9.46 <0.001 2422.92
vs race [Hispanic] -0.56 -0.72 – -0.40 -6.81 <0.001 2387.20
vs race [Other] -0.11 -0.31 – 0.08 -1.14 0.252 2321.58
vs age 0.01 0.01 – 0.02 7.40 <0.001 2356.37
male female 0.03 -0.07 – 0.13 0.66 0.512 2366.05
nonbinary mf -0.71 -1.35 – -0.08 -2.22 0.026 2488.55
pDem R × wave lin 0.49 0.09 – 0.89 2.41 0.016 5418.19
pDem R × wave quad 0.06 -0.24 – 0.37 0.41 0.683 5232.06
pDem R × wave cub -0.28 -0.65 – 0.09 -1.46 0.145 5119.96
pDem R × voteconfidence -0.13 -0.19 – -0.08 -4.69 <0.001 6900.78
wave lin × voteconfidence 0.10 0.03 – 0.16 2.74 0.006 5414.20
wave quad ×
voteconfidence
0.00 -0.05 – 0.05 0.00 0.998 5212.90
wave cub × voteconfidence -0.03 -0.09 – 0.03 -1.10 0.273 5106.05
(pDem R × wave lin) ×
voteconfidence
-0.10 -0.21 – 0.01 -1.84 0.066 5381.93
(pDem R × wave quad) ×
voteconfidence
0.01 -0.07 – 0.09 0.17 0.862 5222.15
(pDem R × wave cub) ×
voteconfidence
0.05 -0.05 – 0.15 0.91 0.365 5126.08
Random Effects
σ2 0.70
τ00 pid 1.18
ICC 0.63
N pid 2360
Observations 7151
Marginal R2 / Conditional R2 0.096 / 0.662
APpel.m1.r <- lmer(demNorms ~ (pRep_D) * (wave.lin + wave.quad + wave.cub) * voteconfidence 
                 + vs_race + vs_age + male_female + nonbinary_mf
                 + (1 | pid),
                 data = d)
tab_model(APpel.m1.r, show.stat = T, show.df = T, df.method = "satterthwaite")
  demNorms
Predictors Estimates CI Statistic p df
(Intercept) 0.69 0.37 – 1.00 4.30 <0.001 3538.80
pRep D -0.19 -0.41 – 0.03 -1.65 0.098 7128.32
wave lin 0.20 -0.10 – 0.50 1.29 0.197 5345.69
wave quad 0.12 -0.11 – 0.36 1.03 0.304 5200.79
wave cub -0.14 -0.44 – 0.15 -0.97 0.331 5094.78
voteconfidence 0.07 0.03 – 0.12 3.38 0.001 6832.25
vs race [Black] -0.75 -0.91 – -0.59 -9.46 <0.001 2422.92
vs race [Hispanic] -0.56 -0.72 – -0.40 -6.81 <0.001 2387.20
vs race [Other] -0.11 -0.31 – 0.08 -1.14 0.252 2321.58
vs age 0.01 0.01 – 0.02 7.40 <0.001 2356.37
male female 0.03 -0.07 – 0.13 0.66 0.512 2366.05
nonbinary mf -0.71 -1.35 – -0.08 -2.22 0.026 2488.55
pRep D × wave lin -0.49 -0.89 – -0.09 -2.41 0.016 5418.19
pRep D × wave quad -0.06 -0.37 – 0.24 -0.41 0.683 5232.06
pRep D × wave cub 0.28 -0.09 – 0.65 1.46 0.145 5119.96
pRep D × voteconfidence 0.13 0.08 – 0.19 4.69 <0.001 6900.78
wave lin × voteconfidence -0.01 -0.09 – 0.08 -0.15 0.881 5348.76
wave quad ×
voteconfidence
0.01 -0.06 – 0.07 0.22 0.822 5210.65
wave cub × voteconfidence 0.01 -0.07 – 0.09 0.30 0.764 5120.94
(pRep D × wave lin) ×
voteconfidence
0.10 -0.01 – 0.21 1.84 0.066 5381.93
(pRep D × wave quad) ×
voteconfidence
-0.01 -0.09 – 0.07 -0.17 0.862 5222.15
(pRep D × wave cub) ×
voteconfidence
-0.05 -0.15 – 0.05 -0.91 0.365 5126.08
Random Effects
σ2 0.70
τ00 pid 1.18
ICC 0.63
N pid 2360
Observations 7151
Marginal R2 / Conditional R2 0.096 / 0.662

d. All pro-democracy attitudes controlling for each other?

DemPEL.m1 <-  lmer(trustGovt ~ (pDem_Rep) * (wave.lin + wave.quad + wave.cub) * voteconfidence * demNorms * affPol.100
                 + vs_race + vs_age + male_female + nonbinary_mf
                 + (1 | pid),
                 data = d)
tab_model(DemPEL.m1, show.stat = T, show.df = T, df.method = "satterthwaite")
  trustGovt
Predictors Estimates CI Statistic p df
(Intercept) -1.48 -1.72 – -1.23 -11.82 <0.001 4787.82
pDem Rep -0.14 -0.47 – 0.19 -0.85 0.397 6380.64
wave lin -0.32 -0.69 – 0.05 -1.68 0.094 5377.33
wave quad 0.01 -0.27 – 0.29 0.07 0.948 5239.83
wave cub -0.38 -0.73 – -0.04 -2.16 0.031 5211.06
voteconfidence 0.24 0.19 – 0.29 10.27 <0.001 6449.21
demNorms 0.04 -0.05 – 0.13 0.82 0.410 6284.75
affPol 100 -0.14 -0.38 – 0.10 -1.16 0.248 6416.24
vs race [Black] 0.20 0.09 – 0.31 3.68 <0.001 2324.48
vs race [Hispanic] 0.25 0.14 – 0.36 4.37 <0.001 2259.13
vs race [Other] 0.08 -0.06 – 0.21 1.14 0.255 2150.29
vs age 0.00 -0.00 – 0.00 0.61 0.543 2245.65
male female -0.00 -0.07 – 0.07 -0.10 0.922 2211.92
nonbinary mf 0.66 0.22 – 1.09 2.98 0.003 2348.23
pDem Rep × wave lin 0.90 0.15 – 1.65 2.35 0.019 5494.58
pDem Rep × wave quad -0.56 -1.13 – 0.01 -1.94 0.053 5303.02
pDem Rep × wave cub 0.23 -0.47 – 0.92 0.64 0.523 5204.97
pDem Rep × voteconfidence -0.04 -0.13 – 0.05 -0.83 0.408 6223.72
wave lin × voteconfidence 0.05 -0.05 – 0.15 0.98 0.325 5395.88
wave quad ×
voteconfidence
-0.01 -0.09 – 0.07 -0.21 0.832 5251.81
wave cub × voteconfidence 0.11 0.01 – 0.20 2.20 0.028 5214.41
pDem Rep × demNorms -0.03 -0.20 – 0.14 -0.35 0.725 6037.53
wave lin × demNorms 0.13 -0.07 – 0.34 1.26 0.208 5342.34
wave quad × demNorms 0.12 -0.04 – 0.27 1.48 0.138 5241.87
wave cub × demNorms 0.19 -0.00 – 0.37 1.94 0.052 5241.63
voteconfidence × demNorms -0.04 -0.06 – -0.01 -3.01 0.003 6289.99
pDem Rep × affPol 100 -0.11 -0.58 – 0.36 -0.47 0.640 6256.98
wave lin × affPol 100 -0.32 -0.84 – 0.20 -1.19 0.232 5363.86
wave quad × affPol 100 0.28 -0.12 – 0.69 1.36 0.173 5275.32
wave cub × affPol 100 0.31 -0.19 – 0.82 1.22 0.224 5183.22
voteconfidence × affPol
100
-0.02 -0.09 – 0.04 -0.69 0.493 6264.43
demNorms × affPol 100 0.01 -0.12 – 0.14 0.10 0.917 6094.61
(pDem Rep × wave lin) ×
voteconfidence
-0.19 -0.40 – 0.01 -1.82 0.069 5495.04
(pDem Rep × wave quad) ×
voteconfidence
0.12 -0.03 – 0.28 1.55 0.122 5315.11
(pDem Rep × wave cub) ×
voteconfidence
-0.06 -0.25 – 0.13 -0.61 0.545 5194.61
(pDem Rep × wave lin) ×
demNorms
-0.10 -0.52 – 0.31 -0.48 0.630 5393.13
(pDem Rep × wave quad) ×
demNorms
0.02 -0.30 – 0.33 0.10 0.916 5337.64
(pDem Rep × wave cub) ×
demNorms
-0.15 -0.52 – 0.23 -0.76 0.446 5276.04
(pDem Rep ×
voteconfidence) ×
demNorms
0.00 -0.04 – 0.05 0.12 0.904 6129.73
(wave lin ×
voteconfidence) ×
demNorms
-0.06 -0.12 – -0.01 -2.41 0.016 5348.74
(wave quad ×
voteconfidence) ×
demNorms
-0.02 -0.06 – 0.02 -1.18 0.239 5239.53
(wave cub ×
voteconfidence) ×
demNorms
-0.05 -0.10 – -0.00 -2.10 0.036 5239.18
(pDem Rep × wave lin) ×
affPol 100
0.20 -0.86 – 1.26 0.37 0.715 5449.66
(pDem Rep × wave quad) ×
affPol 100
0.58 -0.24 – 1.40 1.39 0.166 5311.23
(pDem Rep × wave cub) ×
affPol 100
0.32 -0.69 – 1.33 0.62 0.533 5172.17
(pDem Rep ×
voteconfidence) × affPol
100
0.07 -0.05 – 0.20 1.14 0.255 6144.56
(wave lin ×
voteconfidence) × affPol
100
-0.01 -0.15 – 0.14 -0.13 0.899 5375.16
(wave quad ×
voteconfidence) × affPol
100
-0.08 -0.19 – 0.03 -1.36 0.173 5277.75
(wave cub ×
voteconfidence) × affPol
100
-0.11 -0.25 – 0.03 -1.56 0.119 5206.94
(pDem Rep × demNorms) ×
affPol 100
-0.06 -0.31 – 0.20 -0.43 0.668 5964.37
(wave lin × demNorms) ×
affPol 100
-0.08 -0.38 – 0.22 -0.51 0.612 5286.02
(wave quad × demNorms) ×
affPol 100
-0.24 -0.47 – -0.00 -2.00 0.045 5305.48
(wave cub × demNorms) ×
affPol 100
-0.34 -0.62 – -0.06 -2.35 0.019 5186.40
(voteconfidence ×
demNorms) × affPol 100
0.01 -0.02 – 0.04 0.53 0.599 6110.59
(pDem Rep × wave lin ×
voteconfidence) ×
demNorms
0.05 -0.06 – 0.15 0.85 0.394 5395.22
(pDem Rep × wave quad ×
voteconfidence) ×
demNorms
-0.01 -0.09 – 0.07 -0.34 0.734 5324.73
(pDem Rep × wave cub ×
voteconfidence) ×
demNorms
0.05 -0.04 – 0.15 1.09 0.276 5251.81
(pDem Rep × wave lin ×
voteconfidence) × affPol
100
0.52 0.23 – 0.81 3.49 <0.001 5453.00
(pDem Rep × wave quad ×
voteconfidence) × affPol
100
-0.32 -0.54 – -0.09 -2.78 0.006 5313.52
(pDem Rep × wave cub ×
voteconfidence) × affPol
100
-0.02 -0.29 – 0.26 -0.12 0.904 5183.66
(pDem Rep × wave lin ×
demNorms) × affPol 100
0.24 -0.37 – 0.84 0.77 0.442 5312.13
(pDem Rep × wave quad ×
demNorms) × affPol 100
-0.28 -0.75 – 0.19 -1.16 0.244 5366.87
(pDem Rep × wave cub ×
demNorms) × affPol 100
-0.29 -0.85 – 0.27 -1.00 0.316 5199.55
(pDem Rep ×
voteconfidence ×
demNorms) × affPol 100
0.02 -0.05 – 0.08 0.49 0.623 6052.75
(wave lin ×
voteconfidence ×
demNorms) × affPol 100
0.03 -0.05 – 0.11 0.76 0.448 5292.31
(wave quad ×
voteconfidence ×
demNorms) × affPol 100
0.05 -0.00 – 0.11 1.84 0.066 5295.64
(wave cub ×
voteconfidence ×
demNorms) × affPol 100
0.09 0.02 – 0.16 2.43 0.015 5200.83
(pDem Rep × wave lin ×
voteconfidence ×
demNorms) × affPol 100
-0.07 -0.22 – 0.08 -0.93 0.350 5319.16
(pDem Rep × wave quad ×
voteconfidence ×
demNorms) × affPol 100
0.06 -0.06 – 0.18 1.01 0.311 5345.10
(pDem Rep × wave cub ×
voteconfidence ×
demNorms) × affPol 100
0.04 -0.10 – 0.19 0.61 0.541 5200.73
Random Effects
σ2 0.37
τ00 pid 0.53
ICC 0.58
N pid 2345
Observations 7051
Marginal R2 / Conditional R2 0.238 / 0.683
DemPEL.m2 <-  lmer(demNorms ~ (pDem_Rep) * (wave.lin + wave.quad + wave.cub) * voteconfidence * affPol.100 * trustGovt.c
                 + vs_race + vs_age + male_female + nonbinary_mf
                 + (1 | pid),
                 data = d)
tab_model(DemPEL.m2, show.stat = T, show.df = T, df.method = "satterthwaite")
  demNorms
Predictors Estimates CI Statistic p df
(Intercept) 0.65 0.33 – 0.96 4.00 <0.001 3966.12
pDem Rep -0.04 -0.42 – 0.33 -0.23 0.814 6514.27
wave lin -0.10 -0.51 – 0.31 -0.47 0.636 5302.38
wave quad 0.03 -0.27 – 0.34 0.21 0.831 5163.99
wave cub -0.31 -0.67 – 0.06 -1.65 0.100 5102.69
voteconfidence 0.15 0.10 – 0.20 5.90 <0.001 6593.39
affPol 100 -0.22 -0.52 – 0.09 -1.38 0.167 6299.20
trustGovt c -0.14 -0.31 – 0.03 -1.62 0.106 6260.29
vs race [Black] -0.73 -0.88 – -0.57 -9.30 <0.001 2375.08
vs race [Hispanic] -0.54 -0.70 – -0.38 -6.67 <0.001 2334.13
vs race [Other] -0.11 -0.30 – 0.09 -1.10 0.272 2252.40
vs age 0.01 0.01 – 0.02 7.46 <0.001 2347.07
male female 0.03 -0.06 – 0.13 0.69 0.492 2309.78
nonbinary mf -0.57 -1.19 – 0.05 -1.80 0.072 2442.95
pDem Rep × wave lin 0.25 -0.58 – 1.08 0.59 0.557 5325.20
pDem Rep × wave quad -0.26 -0.88 – 0.36 -0.83 0.405 5230.48
pDem Rep × wave cub 0.12 -0.62 – 0.85 0.31 0.756 5133.68
pDem Rep × voteconfidence -0.04 -0.14 – 0.06 -0.78 0.434 6381.56
wave lin × voteconfidence 0.04 -0.07 – 0.15 0.71 0.477 5346.94
wave quad ×
voteconfidence
0.02 -0.06 – 0.10 0.49 0.627 5187.55
wave cub × voteconfidence 0.04 -0.06 – 0.14 0.82 0.410 5119.64
pDem Rep × affPol 100 0.28 -0.32 – 0.88 0.91 0.361 6150.11
wave lin × affPol 100 0.06 -0.63 – 0.76 0.18 0.859 5311.33
wave quad × affPol 100 0.09 -0.43 – 0.61 0.34 0.732 5171.71
wave cub × affPol 100 0.55 -0.08 – 1.17 1.71 0.087 5130.95
voteconfidence × affPol
100
-0.02 -0.10 – 0.06 -0.40 0.686 6236.76
pDem Rep × trustGovt c 0.03 -0.30 – 0.35 0.15 0.882 6070.05
wave lin × trustGovt c -0.10 -0.49 – 0.29 -0.49 0.622 5524.32
wave quad × trustGovt c 0.02 -0.27 – 0.31 0.15 0.881 5230.43
wave cub × trustGovt c -0.12 -0.47 – 0.23 -0.67 0.503 5107.65
voteconfidence ×
trustGovt c
0.00 -0.04 – 0.04 0.00 1.000 6209.86
affPol 100 × trustGovt c 0.25 -0.01 – 0.51 1.87 0.061 5972.12
(pDem Rep × wave lin) ×
voteconfidence
-0.02 -0.24 – 0.20 -0.19 0.849 5361.53
(pDem Rep × wave quad) ×
voteconfidence
0.05 -0.11 – 0.22 0.62 0.534 5243.99
(pDem Rep × wave cub) ×
voteconfidence
-0.06 -0.26 – 0.13 -0.65 0.513 5145.56
(pDem Rep × wave lin) ×
affPol 100
-0.22 -1.61 – 1.17 -0.31 0.760 5323.54
(pDem Rep × wave quad) ×
affPol 100
0.11 -0.93 – 1.15 0.21 0.836 5205.68
(pDem Rep × wave cub) ×
affPol 100
-1.11 -2.36 – 0.14 -1.74 0.082 5138.35
(pDem Rep ×
voteconfidence) × affPol
100
-0.19 -0.34 – -0.03 -2.35 0.019 6119.09
(wave lin ×
voteconfidence) × affPol
100
-0.01 -0.19 – 0.17 -0.08 0.937 5342.02
(wave quad ×
voteconfidence) × affPol
100
-0.02 -0.16 – 0.11 -0.33 0.745 5194.98
(wave cub ×
voteconfidence) × affPol
100
-0.10 -0.26 – 0.07 -1.17 0.243 5145.24
(pDem Rep × wave lin) ×
trustGovt c
-0.35 -1.12 – 0.43 -0.88 0.380 5483.85
(pDem Rep × wave quad) ×
trustGovt c
-0.18 -0.76 – 0.41 -0.60 0.549 5308.26
(pDem Rep × wave cub) ×
trustGovt c
-0.82 -1.52 – -0.11 -2.28 0.023 5146.36
(pDem Rep ×
voteconfidence) ×
trustGovt c
0.00 -0.08 – 0.09 0.09 0.928 6036.89
(wave lin ×
voteconfidence) ×
trustGovt c
0.07 -0.03 – 0.17 1.34 0.179 5582.92
(wave quad ×
voteconfidence) ×
trustGovt c
-0.01 -0.09 – 0.06 -0.35 0.730 5227.87
(wave cub ×
voteconfidence) ×
trustGovt c
0.02 -0.07 – 0.11 0.47 0.636 5112.29
(pDem Rep × affPol 100) ×
trustGovt c
-0.14 -0.65 – 0.38 -0.52 0.600 5874.97
(wave lin × affPol 100) ×
trustGovt c
0.10 -0.51 – 0.72 0.33 0.743 5470.61
(wave quad × affPol 100)
× trustGovt c
-0.04 -0.51 – 0.42 -0.19 0.850 5217.81
(wave cub × affPol 100) ×
trustGovt c
0.21 -0.35 – 0.77 0.74 0.460 5110.62
(voteconfidence × affPol
100) × trustGovt c
-0.05 -0.11 – 0.01 -1.58 0.113 5919.31
(pDem Rep × wave lin ×
voteconfidence) × affPol
100
0.12 -0.24 – 0.48 0.67 0.505 5355.01
(pDem Rep × wave quad ×
voteconfidence) × affPol
100
0.03 -0.24 – 0.30 0.24 0.811 5229.10
(pDem Rep × wave cub ×
voteconfidence) × affPol
100
0.27 -0.05 – 0.59 1.65 0.100 5146.99
(pDem Rep × wave lin ×
voteconfidence) ×
trustGovt c
0.05 -0.14 – 0.25 0.54 0.588 5553.14
(pDem Rep × wave quad ×
voteconfidence) ×
trustGovt c
0.05 -0.10 – 0.19 0.63 0.531 5307.45
(pDem Rep × wave cub ×
voteconfidence) ×
trustGovt c
0.22 0.04 – 0.39 2.41 0.016 5144.89
(pDem Rep × wave lin ×
affPol 100) × trustGovt c
-0.10 -1.33 – 1.13 -0.15 0.877 5446.75
(pDem Rep × wave quad ×
affPol 100) × trustGovt c
-0.64 -1.56 – 0.29 -1.34 0.180 5258.23
(pDem Rep × wave cub ×
affPol 100) × trustGovt c
0.51 -0.62 – 1.64 0.89 0.376 5126.71
(pDem Rep ×
voteconfidence × affPol
100) × trustGovt c
0.02 -0.11 – 0.14 0.29 0.775 5841.66
(wave lin ×
voteconfidence × affPol
100) × trustGovt c
-0.06 -0.21 – 0.09 -0.77 0.444 5565.08
(wave quad ×
voteconfidence × affPol
100) × trustGovt c
0.04 -0.07 – 0.16 0.71 0.475 5228.23
(wave cub ×
voteconfidence × affPol
100) × trustGovt c
-0.06 -0.20 – 0.07 -0.90 0.366 5124.22
(pDem Rep × wave lin ×
voteconfidence × affPol
100) × trustGovt c
0.09 -0.22 – 0.39 0.55 0.585 5543.41
(pDem Rep × wave quad ×
voteconfidence × affPol
100) × trustGovt c
0.15 -0.08 – 0.38 1.31 0.190 5272.30
(pDem Rep × wave cub ×
voteconfidence × affPol
100) × trustGovt c
-0.18 -0.46 – 0.10 -1.25 0.213 5132.71
Random Effects
σ2 0.70
τ00 pid 1.11
ICC 0.61
N pid 2345
Observations 7051
Marginal R2 / Conditional R2 0.115 / 0.658
DemPEL.m3 <-  lmer(affPol ~ (pDem_Rep) * (wave.lin + wave.quad + wave.cub) * voteconfidence * demNorms * trustGovt.c
                 + vs_race + vs_age + male_female + nonbinary_mf
                 + (1 | pid),
                 data = d)
tab_model(DemPEL.m3, show.stat = T, show.df = T, df.method = "satterthwaite")
  affPol
Predictors Estimates CI Statistic p df
(Intercept) 36.86 28.91 – 44.80 9.10 <0.001 3287.89
pDem Rep -9.92 -17.38 – -2.46 -2.61 0.009 6591.66
wave lin 4.03 -3.85 – 11.90 1.00 0.316 5217.62
wave quad 1.63 -4.26 – 7.53 0.54 0.588 5069.57
wave cub 0.56 -6.56 – 7.67 0.15 0.878 4992.57
voteconfidence 0.01 -1.00 – 1.01 0.02 0.988 6172.26
demNorms -1.40 -3.41 – 0.60 -1.37 0.169 5987.30
trustGovt c -3.46 -6.43 – -0.49 -2.28 0.022 6033.26
vs race [Black] -2.08 -6.24 – 2.09 -0.98 0.328 2412.15
vs race [Hispanic] -2.71 -7.02 – 1.61 -1.23 0.219 2328.18
vs race [Other] 0.63 -4.63 – 5.89 0.23 0.815 2239.72
vs age 0.28 0.19 – 0.38 5.92 <0.001 2340.60
male female 0.80 -1.88 – 3.48 0.59 0.558 2295.42
nonbinary mf 5.58 -11.12 – 22.27 0.65 0.513 2391.84
pDem Rep × wave lin -6.33 -22.15 – 9.50 -0.78 0.433 5245.10
pDem Rep × wave quad -6.63 -18.47 – 5.22 -1.10 0.273 5090.19
pDem Rep × wave cub 27.04 12.77 – 41.31 3.72 <0.001 5004.69
pDem Rep × voteconfidence 1.36 -0.62 – 3.33 1.35 0.178 6057.35
wave lin × voteconfidence -0.57 -2.78 – 1.63 -0.51 0.612 5245.67
wave quad ×
voteconfidence
-0.12 -1.77 – 1.52 -0.15 0.883 5089.33
wave cub × voteconfidence -0.38 -2.35 – 1.59 -0.38 0.707 5003.38
pDem Rep × demNorms -0.11 -4.05 – 3.84 -0.05 0.958 5899.91
wave lin × demNorms -0.14 -4.61 – 4.32 -0.06 0.950 5196.56
wave quad × demNorms -0.48 -3.83 – 2.88 -0.28 0.781 5068.18
wave cub × demNorms -0.72 -4.79 – 3.35 -0.35 0.729 5009.96
voteconfidence × demNorms -0.09 -0.60 – 0.41 -0.36 0.722 5909.22
pDem Rep × trustGovt c -1.11 -7.00 – 4.78 -0.37 0.711 5962.49
wave lin × trustGovt c 3.69 -2.89 – 10.28 1.10 0.271 5310.12
wave quad × trustGovt c -1.45 -6.43 – 3.52 -0.57 0.567 5075.38
wave cub × trustGovt c 4.72 -1.49 – 10.93 1.49 0.137 5012.29
voteconfidence ×
trustGovt c
0.46 -0.28 – 1.19 1.22 0.224 6008.27
demNorms × trustGovt c 1.19 -0.45 – 2.83 1.42 0.154 5752.17
(pDem Rep × wave lin) ×
voteconfidence
3.62 -0.81 – 8.04 1.60 0.109 5257.00
(pDem Rep × wave quad) ×
voteconfidence
3.15 -0.15 – 6.45 1.87 0.061 5105.18
(pDem Rep × wave cub) ×
voteconfidence
-7.46 -11.40 – -3.52 -3.71 <0.001 5012.47
(pDem Rep × wave lin) ×
demNorms
3.28 -5.68 – 12.24 0.72 0.473 5219.81
(pDem Rep × wave quad) ×
demNorms
-2.76 -9.49 – 3.97 -0.80 0.421 5085.57
(pDem Rep × wave cub) ×
demNorms
-12.67 -20.83 – -4.50 -3.04 0.002 5019.07
(pDem Rep ×
voteconfidence) ×
demNorms
-0.86 -1.86 – 0.14 -1.68 0.092 5839.15
(wave lin ×
voteconfidence) ×
demNorms
0.33 -0.82 – 1.48 0.57 0.571 5217.97
(wave quad ×
voteconfidence) ×
demNorms
0.08 -0.78 – 0.95 0.19 0.848 5084.53
(wave cub ×
voteconfidence) ×
demNorms
-0.11 -1.14 – 0.93 -0.21 0.837 5013.88
(pDem Rep × wave lin) ×
trustGovt c
7.27 -5.81 – 20.36 1.09 0.276 5262.66
(pDem Rep × wave quad) ×
trustGovt c
4.38 -5.63 – 14.40 0.86 0.391 5102.89
(pDem Rep × wave cub) ×
trustGovt c
6.26 -6.21 – 18.74 0.98 0.325 5032.97
(pDem Rep ×
voteconfidence) ×
trustGovt c
0.29 -1.17 – 1.75 0.39 0.695 5956.58
(wave lin ×
voteconfidence) ×
trustGovt c
-0.54 -2.19 – 1.10 -0.65 0.517 5324.55
(wave quad ×
voteconfidence) ×
trustGovt c
0.30 -0.93 – 1.53 0.48 0.629 5076.42
(wave cub ×
voteconfidence) ×
trustGovt c
-1.37 -2.90 – 0.15 -1.76 0.078 5003.24
(pDem Rep × demNorms) ×
trustGovt c
-0.93 -4.18 – 2.31 -0.56 0.573 5684.23
(wave lin × demNorms) ×
trustGovt c
-0.38 -4.16 – 3.40 -0.20 0.845 5212.14
(wave quad × demNorms) ×
trustGovt c
-0.72 -3.61 – 2.16 -0.49 0.623 5098.82
(wave cub × demNorms) ×
trustGovt c
-2.51 -6.05 – 1.04 -1.39 0.166 5023.56
(voteconfidence ×
demNorms) × trustGovt c
-0.18 -0.57 – 0.20 -0.95 0.344 5744.00
(pDem Rep × wave lin ×
voteconfidence) ×
demNorms
-0.78 -3.08 – 1.53 -0.66 0.510 5238.14
(pDem Rep × wave quad ×
voteconfidence) ×
demNorms
0.28 -1.45 – 2.00 0.31 0.754 5097.14
(pDem Rep × wave cub ×
voteconfidence) ×
demNorms
3.23 1.15 – 5.30 3.05 0.002 5018.09
(pDem Rep × wave lin ×
voteconfidence) ×
trustGovt c
-1.55 -4.82 – 1.72 -0.93 0.352 5287.89
(pDem Rep × wave quad ×
voteconfidence) ×
trustGovt c
-1.29 -3.76 – 1.19 -1.02 0.307 5100.53
(pDem Rep × wave cub ×
voteconfidence) ×
trustGovt c
-0.35 -3.41 – 2.71 -0.22 0.824 5024.36
(pDem Rep × wave lin ×
demNorms) × trustGovt c
5.90 -1.62 – 13.43 1.54 0.124 5187.90
(pDem Rep × wave quad ×
demNorms) × trustGovt c
-4.27 -10.08 – 1.55 -1.44 0.151 5133.39
(pDem Rep × wave cub ×
demNorms) × trustGovt c
-7.10 -14.23 – 0.03 -1.95 0.051 5050.21
(pDem Rep ×
voteconfidence ×
demNorms) × trustGovt c
0.28 -0.48 – 1.04 0.72 0.469 5696.48
(wave lin ×
voteconfidence ×
demNorms) × trustGovt c
-0.05 -0.94 – 0.84 -0.11 0.914 5242.25
(wave quad ×
voteconfidence ×
demNorms) × trustGovt c
0.02 -0.66 – 0.69 0.04 0.965 5114.56
(wave cub ×
voteconfidence ×
demNorms) × trustGovt c
0.58 -0.25 – 1.40 1.37 0.170 5018.20
(pDem Rep × wave lin ×
voteconfidence ×
demNorms) × trustGovt c
-1.14 -2.91 – 0.63 -1.26 0.207 5221.97
(pDem Rep × wave quad ×
voteconfidence ×
demNorms) × trustGovt c
0.92 -0.44 – 2.29 1.33 0.183 5144.59
(pDem Rep × wave cub ×
voteconfidence ×
demNorms) × trustGovt c
1.29 -0.37 – 2.94 1.53 0.127 5044.90
Random Effects
σ2 427.43
τ00 pid 849.56
ICC 0.67
N pid 2345
Observations 7051
Marginal R2 / Conditional R2 0.039 / 0.678
cor.test(d$demNorms, d$affPol)
## 
##  Pearson's product-moment correlation
## 
## data:  d$demNorms and d$affPol
## t = -4.3318, df = 7160, p-value = 1.499e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.07419860 -0.02799901
## sample estimates:
##         cor 
## -0.05112616
cor.test(d$demNorms, d$trustGovt)
## 
##  Pearson's product-moment correlation
## 
## data:  d$demNorms and d$trustGovt
## t = -7.0066, df = 7081, p-value = 2.668e-12
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.10606102 -0.05980333
## sample estimates:
##         cor 
## -0.08297687
cor.test(d$affPol, d$trustGovt)
## 
##  Pearson's product-moment correlation
## 
## data:  d$affPol and d$trustGovt
## t = -4.5911, df = 7070, p-value = 4.486e-06
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.07772887 -0.03125292
## sample estimates:
##         cor 
## -0.05452042

Plot

plot_grid(DVPEL1, DVPEL2, DVPEL3, ncol = 1)

2. PEL Over Time (Outcome Bias)

Plots of PEL spread

ggplot(d, aes(x=voteconfidence)) +
  geom_density(fill="#69b3a2", color="#e9ecef", alpha=0.9) +
  theme_bw() +
  labs(x = "Perceived Election Legitimacy")

ggplot(d[!is.na(d$party_factor),], aes(x=voteconfidence, fill = party_factor)) +
  geom_density(color="black", alpha=0.5, position = 'identity') +
  theme_bw() +
  facet_grid(wave~., labeller = as_labeller(wave_label)) +
  scale_fill_manual("Participant Party ID",
                    values = c("#1696d2","grey","#db2b27")) +
  labs(x = "Perceived Election Legitimacy")

ggplot(d[!is.na(d$party_factor),], 
       aes(x = party_factor, 
           y = voteconfidence,
           fill = party_factor,
           color = party_factor)) +
  geom_jitter(height = .3, width =.3, alpha=0.4, size = .5, show.legend = F ) +
  stat_summary(geom = "errorbar", color = "black", width = .1, show.legend = F) +
  stat_summary( geom = "point", fun = "mean", color = "black",  size = 1 , show.legend = F) +
  theme_bw() +
  scale_fill_manual(values = c("#1696d2","grey","#db2b27")) +
  scale_color_manual(values = c("#1696d2","grey","#db2b27")) +
  labs(x = "Participant Party ID",
       y = "Perceived Election Legitimacy")

a. PEL Is Susceptible to Outcome Bias

ggplot(d[!is.na(d$party_factor),], 
       aes(x = wave, 
           y = voteconfidence, 
           color = party_factor,
           fill = party_factor)) +
  geom_jitter(alpha = .3, size = .2) +
   stat_summary(geom = "path", fun = "mean", linetype = "dashed", show.legend = F, aes(group = party_factor, color = party_factor)) +
   stat_summary(geom = "point", fun = "mean") +
   labs(x = "Participant Party ID",
        y = "Perceived Election Legitimacy") +
   coord_cartesian(ylim = c(1,5)) +
   scale_y_continuous(breaks = seq(1,5,1)) +
  scale_fill_manual("Participant
Partisan Identity",
                    values = c("#1696d2","black","#db2b27")) +
  scale_color_manual("Participant
Partisan Identity",
                    values = c("#1696d2","black","#db2b27")) +
  scale_x_discrete(labels = c("Wave 1","Wave 2", "Wave 3", "Wave 4")) +
  theme(legend.position = "none") +
  theme_bw()

ggplot(d[!is.na(d$party_factor),], 
       aes(x = wave, 
           y = voteconfidence, 
           color = party_factor,
           fill = party_factor)) +
   stat_summary(geom = "errorbar", color = "black", width = .1, show.legend = F) +
   stat_summary(geom = "path", fun = "mean", linetype = "dashed", show.legend = F, aes(group = party_factor, color = party_factor)) +
   stat_summary(geom = "point", fun = "mean") +
   labs(x = "Wave",
        y = "Perceived Election Legitimacy",
        title = "Perceived Election Legitimacy Over Time, Displayed by Partisan Identity") +
   coord_cartesian(ylim = c(1,5)) +
   scale_y_continuous(breaks = seq(1,5,1)) +
  scale_fill_manual("Participant
Partisan Identity",
                    values = c("#1696d2","grey42","#db2b27")) +
  scale_color_manual("Participant
Partisan Identity",
                    values = c("#1696d2","grey42","#db2b27")) +
  theme(legend.position = "none") +
  theme_bw()

Mean (and SD) for PEL by party over time

# Average PEL
kable(round(tapply(d$voteconfidence, list(d$party_factor, d$wave), FUN = mean, na.rm = T),2))
1 2 3 4
Democrat 3.87 3.60 3.58 3.39
Independent 2.72 3.05 3.15 2.95
Republican 2.67 3.68 3.62 3.65
# SD for PEL
round(tapply(d$voteconfidence, list(d$party_factor, d$wave), FUN = sd, na.rm = T),2)
##                1    2    3    4
## Democrat    1.06 1.20 1.14 1.22
## Independent 1.28 1.28 1.23 1.32
## Republican  1.16 1.02 0.96 1.02

Summary

Is perceived election legitimacy sensitive to election outcome? And does outcome bias differed by partisan identity?

In wave 1, before the election, perceived election legitimacy was near the midpoint of the scale (b = 2.68, 95% CI = [2.49, 2.88], t(2722.4) = 27.12, p < .001), with Democrats expressing higher perceived election legitimacy (M = 3.87) than Republicans (M = 2.67; b = -1.24, 95% CI = [-1.33, -1.15], t(2471.0) = -27.35, p < .001) and Independents (M = 3.87; b = -0.49, 95% CI = [-0.59, -0.39], t(3297.0) = -9.52, p < .001). Collapsing across partisan identity, perceived election legitimacy increased over linear time (b = 0.17, 95% CI = [0.11, 0.23], t(2111.0) = 6.06, p < .001).

Partisan identity moderated this change over time (b = 1.20, 95% CI = [1.10, 1.31], t(2126.9) = 22.13, p < .001), in the expected direction. Democrats’ perceived election legitimacy falls linearly over time (b = -0.43, 95% CI = [-0.50, -0.37], t(5920.0) = -12.87, p < .001) until, in wave 4, Democrats express lower perceived election legitimacy (M = 3.39) than Republicans (M = 3.65; b = 0.29, 95% CI = [0.18, 0.40], t(7995.0) = 5.04, p < .001) and higher perceived election legitimacy than Independents (M = 2.95; b = -0.28, 95% CI = [-0.45, -0.12], t(7667.0) = -3.46, p = .001). Republicans’ perceived election legitimacy increases over linear time (b = 0.77, 95% CI = [0.70, 0.85], t(5898.6) = 20.66, p < .001), though this increase takes place primarily from wave 1 to wave 2 (immediately pre- and post-election; b = 1.04, 95% CI = [0.97, 1.11], t(5729.2) = 29.88, p < .001), after which Republicans’ perceived election legitimacy remains stable from wave 2 to wave 3 and wave 4 (both p’s > .05).

Models

Main Model

PEL.m1 <- lmer(voteconfidence ~ (pDem_Rep + pParty_Ind) * (wave.lin + wave.quad + wave.cub) + vs_race + vs_age + male_female + nonbinary_mf + (wave.lin | pid),
              data = d)
tab_model(PEL.m1, show.stat = T, show.df = T, df.method = "satterthwaite")
  voteconfidence
Predictors Estimates CI Statistic p df
(Intercept) 2.91 2.71 – 3.10 29.71 <0.001 2638.49
pDem Rep -0.21 -0.28 – -0.13 -5.43 <0.001 3622.70
pParty Ind -0.39 -0.49 – -0.30 -8.33 <0.001 6033.17
wave lin 0.17 0.11 – 0.23 5.63 <0.001 2110.88
wave quad 0.24 0.20 – 0.28 11.39 <0.001 4552.42
wave cub -0.10 -0.15 – -0.05 -3.91 <0.001 4078.55
vs race [Black] -0.22 -0.33 – -0.10 -3.75 <0.001 2629.05
vs race [Hispanic] -0.03 -0.15 – 0.09 -0.52 0.602 2594.59
vs race [Other] -0.08 -0.23 – 0.06 -1.17 0.240 2538.99
vs age 0.01 0.00 – 0.01 5.42 <0.001 2554.74
male female -0.38 -0.45 – -0.31 -10.17 <0.001 2539.38
nonbinary mf 0.49 0.05 – 0.93 2.17 0.030 2650.68
pDem Rep × wave lin 1.20 1.10 – 1.31 22.13 <0.001 2126.93
pDem Rep × wave quad 0.56 0.48 – 0.63 15.19 <0.001 4605.95
pDem Rep × wave cub -0.65 -0.73 – -0.56 -14.74 <0.001 4097.92
pParty Ind × wave lin 0.01 -0.14 – 0.17 0.19 0.851 2568.65
pParty Ind × wave quad 0.02 -0.09 – 0.13 0.32 0.746 4805.45
pParty Ind × wave cub 0.11 -0.02 – 0.24 1.63 0.104 4262.92
Random Effects
σ2 0.50
τ00 pid 0.69
τ11 pid.wave.lin 0.25
ρ01 pid 0.21
ICC 0.59
N pid 2606
Observations 8079
Marginal R2 / Conditional R2 0.140 / 0.644

Model Centered at Wave 1

PEL.m1.w1 <- lmer(voteconfidence ~ (pDem_Rep + pParty_Ind) * wave 
                 + vs_race + vs_age + male_female + nonbinary_mf 
                 + (1 | pid),
              data = d)
tab_model(PEL.m1.w1, show.stat = T, show.df = T, df.method = "satterthwaite")
  voteconfidence
Predictors Estimates CI Statistic p df
(Intercept) 2.68 2.49 – 2.88 27.12 <0.001 2722.44
pDem Rep -1.24 -1.33 – -1.15 -27.35 <0.001 6359.22
pParty Ind -0.38 -0.49 – -0.27 -6.56 <0.001 7978.01
wave [2] 0.35 0.30 – 0.41 13.31 <0.001 5827.54
wave [3] 0.34 0.28 – 0.40 12.08 <0.001 5895.87
wave [4] 0.22 0.16 – 0.28 6.86 <0.001 5959.39
vs race [Black] -0.22 -0.34 – -0.11 -3.85 <0.001 2636.40
vs race [Hispanic] -0.03 -0.14 – 0.09 -0.42 0.678 2606.71
vs race [Other] -0.09 -0.23 – 0.05 -1.26 0.206 2534.30
vs age 0.01 0.00 – 0.01 5.34 <0.001 2559.11
male female -0.38 -0.46 – -0.31 -10.16 <0.001 2540.17
nonbinary mf 0.49 0.05 – 0.93 2.18 0.029 2670.74
pDem Rep × wave [2] 1.33 1.24 – 1.42 28.44 <0.001 5771.22
pDem Rep × wave [3] 1.29 1.20 – 1.39 26.34 <0.001 5832.62
pDem Rep × wave [4] 1.53 1.42 – 1.64 26.56 <0.001 5918.42
pParty Ind × wave [2] -0.07 -0.20 – 0.07 -0.95 0.344 5948.40
pParty Ind × wave [3] 0.04 -0.10 – 0.19 0.58 0.564 5995.74
pParty Ind × wave [4] -0.05 -0.22 – 0.11 -0.61 0.545 6045.97
Random Effects
σ2 0.55
τ00 pid 0.66
ICC 0.55
N pid 2606
Observations 8079
Marginal R2 / Conditional R2 0.140 / 0.611

Party ID-specific Effects (at different time points)

PEL.m1.d <- lmer(voteconfidence ~ (pDem_R + pDem_I) * (wave.lin + wave.quad + wave.cub) 
                 + vs_race + vs_age + male_female + nonbinary_mf 
                 + (1 | pid),
              data = d)
tab_model(PEL.m1.d, show.stat = T, show.df = T, df.method = "satterthwaite")
  voteconfidence
Predictors Estimates CI Statistic p df
(Intercept) 3.14 2.95 – 3.34 31.63 <0.001 2669.12
pDem R -0.20 -0.27 – -0.13 -5.31 <0.001 3915.77
pDem I -0.50 -0.59 – -0.40 -10.01 <0.001 6238.04
wave lin -0.43 -0.50 – -0.37 -12.87 <0.001 5919.98
wave quad -0.04 -0.09 – 0.01 -1.69 0.091 5709.24
wave cub 0.19 0.13 – 0.25 6.17 <0.001 5609.38
vs race [Black] -0.22 -0.34 – -0.11 -3.85 <0.001 2636.40
vs race [Hispanic] -0.03 -0.14 – 0.09 -0.42 0.678 2606.71
vs race [Other] -0.09 -0.23 – 0.05 -1.26 0.206 2534.30
vs age 0.01 0.00 – 0.01 5.34 <0.001 2559.11
male female -0.38 -0.46 – -0.31 -10.16 <0.001 2540.17
nonbinary mf 0.49 0.05 – 0.93 2.18 0.029 2670.74
pDem R × wave lin 1.21 1.11 – 1.30 23.94 <0.001 5916.56
pDem R × wave quad 0.55 0.47 – 0.62 14.60 <0.001 5707.11
pDem R × wave cub -0.64 -0.73 – -0.56 -14.20 <0.001 5616.45
pDem I × wave lin 0.61 0.45 – 0.76 7.80 <0.001 6041.11
pDem I × wave quad 0.29 0.17 – 0.40 4.91 <0.001 5807.56
pDem I × wave cub -0.21 -0.36 – -0.07 -2.98 0.003 5704.80
Random Effects
σ2 0.55
τ00 pid 0.66
ICC 0.55
N pid 2606
Observations 8079
Marginal R2 / Conditional R2 0.140 / 0.611
PEL.m1.d.w <- lmer(voteconfidence ~ (pDem_R + pDem_I) * wave + vs_race + vs_age + male_female + nonbinary_mf + (1 | pid),
              data = d)
tab_model(PEL.m1.d.w, show.stat = T, show.df = T, df.method = "satterthwaite")
  voteconfidence
Predictors Estimates CI Statistic p df
(Intercept) 3.43 3.23 – 3.62 34.12 <0.001 2794.49
pDem R -1.24 -1.33 – -1.15 -27.35 <0.001 6359.22
pDem I -1.00 -1.12 – -0.88 -16.41 <0.001 7857.48
wave [2] -0.29 -0.35 – -0.23 -9.35 <0.001 5788.82
wave [3] -0.32 -0.38 – -0.26 -9.84 <0.001 5852.19
wave [4] -0.53 -0.60 – -0.45 -13.72 <0.001 5926.05
vs race [Black] -0.22 -0.34 – -0.11 -3.85 <0.001 2636.40
vs race [Hispanic] -0.03 -0.14 – 0.09 -0.42 0.678 2606.71
vs race [Other] -0.09 -0.23 – 0.05 -1.26 0.206 2534.30
vs age 0.01 0.00 – 0.01 5.34 <0.001 2559.11
male female -0.38 -0.46 – -0.31 -10.16 <0.001 2540.17
nonbinary mf 0.49 0.05 – 0.93 2.18 0.029 2670.74
pDem R × wave [2] 1.33 1.24 – 1.42 28.44 <0.001 5771.22
pDem R × wave [3] 1.29 1.20 – 1.39 26.34 <0.001 5832.62
pDem R × wave [4] 1.53 1.42 – 1.64 26.56 <0.001 5918.42
pDem I × wave [2] 0.60 0.46 – 0.74 8.26 <0.001 5937.49
pDem I × wave [3] 0.69 0.54 – 0.84 8.94 <0.001 5986.71
pDem I × wave [4] 0.71 0.54 – 0.89 8.13 <0.001 6036.28
Random Effects
σ2 0.55
τ00 pid 0.66
ICC 0.55
N pid 2606
Observations 8079
Marginal R2 / Conditional R2 0.140 / 0.611
PEL.m1.d.w4 <- lmer(voteconfidence ~ (pDem_R + pDem_I) * (wave4_1 + wave4_2 + wave4_3) 
                    + vs_race + vs_age + male_female + nonbinary_mf 
                    + (1 | pid),
              data = d)
tab_model(PEL.m1.d.w4, show.stat = T, show.df = T, df.method = "satterthwaite")
  voteconfidence
Predictors Estimates CI Statistic p df
(Intercept) 2.90 2.70 – 3.10 27.96 <0.001 3132.71
pDem R 0.29 0.18 – 0.40 5.04 <0.001 7995.01
pDem I -0.28 -0.45 – -0.12 -3.46 0.001 7666.95
wave4 1 0.53 0.45 – 0.60 13.72 <0.001 5926.05
wave4 2 0.24 0.16 – 0.31 6.06 <0.001 5727.09
wave4 3 0.21 0.13 – 0.28 5.23 <0.001 5661.83
vs race [Black] -0.22 -0.34 – -0.11 -3.85 <0.001 2636.40
vs race [Hispanic] -0.03 -0.14 – 0.09 -0.42 0.678 2606.71
vs race [Other] -0.09 -0.23 – 0.05 -1.26 0.206 2534.30
vs age 0.01 0.00 – 0.01 5.34 <0.001 2559.11
male female -0.38 -0.46 – -0.31 -10.16 <0.001 2540.17
nonbinary mf 0.49 0.05 – 0.93 2.18 0.029 2670.74
pDem R × wave4 1 -1.53 -1.64 – -1.42 -26.56 <0.001 5918.42
pDem R × wave4 2 -0.20 -0.31 – -0.08 -3.38 0.001 5740.45
pDem R × wave4 3 -0.24 -0.35 – -0.12 -4.03 <0.001 5671.07
pDem I × wave4 1 -0.71 -0.89 – -0.54 -8.13 <0.001 6036.28
pDem I × wave4 2 -0.11 -0.29 – 0.06 -1.25 0.211 5818.82
pDem I × wave4 3 -0.02 -0.21 – 0.16 -0.27 0.788 5719.44
Random Effects
σ2 0.55
τ00 pid 0.66
ICC 0.55
N pid 2606
Observations 8079
Marginal R2 / Conditional R2 0.140 / 0.611
PEL.m1.r <- lmer(voteconfidence ~ (pRep_D + pRep_I) * (wave.lin + wave.quad + wave.cub) 
                 + vs_race + vs_age + male_female + nonbinary_mf 
                 + (1 | pid),
              data = d)
tab_model(PEL.m1.r, show.stat = T, show.df = T, df.method = "satterthwaite")
  voteconfidence
Predictors Estimates CI Statistic p df
(Intercept) 2.94 2.74 – 3.14 29.12 <0.001 2699.41
pRep D 0.20 0.13 – 0.27 5.31 <0.001 3915.77
pRep I -0.30 -0.40 – -0.20 -5.78 <0.001 6179.33
wave lin 0.77 0.70 – 0.85 20.66 <0.001 5898.56
wave quad 0.51 0.45 – 0.56 18.16 <0.001 5689.24
wave cub -0.46 -0.52 – -0.39 -13.61 <0.001 5603.09
vs race [Black] -0.22 -0.34 – -0.11 -3.85 <0.001 2636.40
vs race [Hispanic] -0.03 -0.14 – 0.09 -0.42 0.678 2606.71
vs race [Other] -0.09 -0.23 – 0.05 -1.26 0.206 2534.30
vs age 0.01 0.00 – 0.01 5.34 <0.001 2559.11
male female -0.38 -0.46 – -0.31 -10.16 <0.001 2540.17
nonbinary mf 0.49 0.05 – 0.93 2.18 0.029 2670.74
pRep D × wave lin -1.21 -1.30 – -1.11 -23.94 <0.001 5916.56
pRep D × wave quad -0.55 -0.62 – -0.47 -14.60 <0.001 5707.11
pRep D × wave cub 0.64 0.56 – 0.73 14.20 <0.001 5616.44
pRep I × wave lin -0.60 -0.76 – -0.44 -7.55 <0.001 6035.14
pRep I × wave quad -0.26 -0.38 – -0.14 -4.34 <0.001 5806.24
pRep I × wave cub 0.43 0.29 – 0.57 5.84 <0.001 5697.51
Random Effects
σ2 0.55
τ00 pid 0.66
ICC 0.55
N pid 2606
Observations 8079
Marginal R2 / Conditional R2 0.140 / 0.611
PEL.m1.r.w2 <- lmer(voteconfidence ~ (pRep_D + pRep_I) * (wave2_1 + wave2_3 + wave2_4) 
                    + vs_race + vs_age + male_female + nonbinary_mf 
                    + (1 | pid),
              data = d)
tab_model(PEL.m1.r.w2, show.stat = T, show.df = T, df.method = "satterthwaite")
  voteconfidence
Predictors Estimates CI Statistic p df
(Intercept) 3.23 3.03 – 3.43 31.36 <0.001 2911.60
pRep D -0.09 -0.19 – -0.00 -1.99 0.046 6777.32
pRep I -0.49 -0.63 – -0.35 -7.04 <0.001 8043.00
wave2 1 -1.04 -1.11 – -0.97 -29.88 <0.001 5729.20
wave2 3 -0.07 -0.14 – 0.00 -1.92 0.055 5593.61
wave2 4 -0.04 -0.12 – 0.04 -0.93 0.354 5741.17
vs race [Black] -0.22 -0.34 – -0.11 -3.85 <0.001 2636.40
vs race [Hispanic] -0.03 -0.14 – 0.09 -0.42 0.678 2606.71
vs race [Other] -0.09 -0.23 – 0.05 -1.26 0.206 2534.30
vs age 0.01 0.00 – 0.01 5.34 <0.001 2559.11
male female -0.38 -0.46 – -0.31 -10.16 <0.001 2540.17
nonbinary mf 0.49 0.05 – 0.93 2.18 0.029 2670.74
pRep D × wave2 1 1.33 1.24 – 1.42 28.44 <0.001 5771.22
pRep D × wave2 3 0.04 -0.06 – 0.14 0.83 0.405 5597.20
pRep D × wave2 4 -0.20 -0.31 – -0.08 -3.38 0.001 5740.45
pRep I × wave2 1 0.73 0.59 – 0.88 9.84 <0.001 5923.60
pRep I × wave2 3 0.13 -0.03 – 0.29 1.59 0.112 5696.15
pRep I × wave2 4 -0.08 -0.26 – 0.10 -0.90 0.369 5822.95
Random Effects
σ2 0.55
τ00 pid 0.66
ICC 0.55
N pid 2606
Observations 8079
Marginal R2 / Conditional R2 0.140 / 0.611

3. Effect of Social Norms

a. Media-based Norms

ggplot(d[!is.na(d$party_factor),],
       aes(x = pollbias.z, 
           y = voteconfidence, 
           fill = party_factor,
           color = party_factor)) +
  geom_smooth(method = "lm",
              fullrange = T) +
  facet_grid(~wave, labeller = as_labeller(wave_label)) +
  labs(x = "Polling Partisan Bias (Normalized)",
       y = "Perceived Election Legitimacy",
       title = "The Influence of Media Environment Bias on Perceived Election Legitimacy,
Displayed Over Time by Partisan Identity") +
  scale_fill_manual("Participant 
Partisan Identity", 
                    values = c("#1696d2","grey","#db2b27")) +
  scale_color_manual("Participant 
Partisan Identity", 
                     values = c("#1696d2","grey","#db2b27")) +
  theme_bw() +
  coord_cartesian(ylim = c(1,5)) 

Summary

The impact of media environment-based social norms, as operationalized by partisan bias in polling sources, on perceived election legitimacy was evaluated in the context of a model that used perceived polling accuracy and self-reported frequency of accessing polling information as controls. Collapsing across time and partisan identity, polling bias negatively predicted perceived election legitimacy (b = -0.36, 95% CI = [-0.52, -0.21], t(2496.0) = -4.49, p < .001), such that the more conservative-tilt in a participants’ media environment, the lower their perceived election legitimacy. However, this effect occurred in the context of meaningful higher-order interactions.

The overall polling bias-perceived election legitimacy relationship changed over linear time (b = 0.34, 95% CI = [0.11 – 0.56], t(4327.0) = 2.96, p = .003), with this change primarily occurring from wave 1 to wave 2 (b = -0.35, 95% CI = [-0.56 – -0.14], t(4178.0) = -3.27, p = .001). Further, the magnitude of this change differed between Democrats and Republicans (b = -0.38, 95% CI = [-0.73 – -0.03], t(4109.0) = -2.13, p = .034), such that the change in effect of polling bias on perceived election legitimacy from wave 1 to wave 2 for Democrats (b = -0.27, 95% CI = [-0.52 – -0.01], t(4094.0) = -2.05, p = .040) was less pronounced than for Republicans (b = -0.65, 95% CI = [-0.89 – -0.41], t(4092.0) = -5.28, p < .001). Perceived polling accuracy positively predicted perceived election legitimacy overall (b = 0.08, 95% CI = [0.06 – 0.10], t(5634.0) = 8.07, p < .001), while self-reported polling frequency had a marginal negative impact on perceived election legitimacy (b = -0.02, 95% CI = [-0.04, 0.00], t(1655.0) = -1.88, p = .060).

Models

Main model

PEL.m15 <- lmer(voteconfidence ~ (pDem_Rep + pParty_Ind) * pollbias.z * (wave.lin + wave.quad + wave.cub)
              + pollAcc + pollFreq.c
               + vs_race + vs_age + male_female + nonbinary_mf
               + (1|pid), 
               data = d)
tab_model(PEL.m15, show.stat = T, show.df = T, df.method = "satterthwaite")
  voteconfidence
Predictors Estimates CI Statistic p df
(Intercept) 2.88 2.65 – 3.11 24.36 <0.001 1642.16
pDem Rep -0.13 -0.22 – -0.03 -2.60 0.010 2907.89
pParty Ind -0.34 -0.45 – -0.22 -5.71 <0.001 4821.95
pollbias z -0.36 -0.52 – -0.21 -4.49 <0.001 2495.51
wave lin 0.18 0.10 – 0.25 4.78 <0.001 4315.11
wave quad 0.19 0.13 – 0.24 6.80 <0.001 4154.08
wave cub -0.07 -0.14 – -0.00 -2.01 0.044 4143.01
pollAcc 0.08 0.06 – 0.10 8.07 <0.001 5634.18
pollFreq c -0.02 -0.04 – 0.00 -1.88 0.060 1654.89
vs race [Black] -0.26 -0.39 – -0.13 -3.99 <0.001 1743.24
vs race [Hispanic] -0.10 -0.24 – 0.03 -1.47 0.143 1677.05
vs race [Other] -0.14 -0.30 – 0.02 -1.67 0.095 1642.37
vs age 0.01 0.00 – 0.01 4.77 <0.001 1680.37
male female -0.39 -0.47 – -0.30 -9.00 <0.001 1658.27
nonbinary mf 0.86 0.30 – 1.42 2.99 0.003 1607.59
pDem Rep × pollbias z 0.08 -0.19 – 0.35 0.59 0.556 2894.35
pParty Ind × pollbias z -0.06 -0.41 – 0.30 -0.32 0.753 5029.97
pDem Rep × wave lin 1.14 1.01 – 1.27 17.09 <0.001 4285.63
pDem Rep × wave quad 0.43 0.33 – 0.53 8.64 <0.001 4159.61
pDem Rep × wave cub -0.53 -0.65 – -0.41 -8.89 <0.001 4130.56
pParty Ind × wave lin -0.04 -0.23 – 0.15 -0.44 0.660 4375.60
pParty Ind × wave quad 0.01 -0.13 – 0.16 0.21 0.838 4220.91
pParty Ind × wave cub 0.09 -0.09 – 0.27 1.01 0.314 4210.15
pollbias z × wave lin 0.34 0.11 – 0.56 2.96 0.003 4327.37
pollbias z × wave quad 0.19 0.02 – 0.36 2.24 0.025 4165.90
pollbias z × wave cub -0.10 -0.31 – 0.10 -0.97 0.331 4165.38
(pDem Rep × pollbias z) ×
wave lin
0.03 -0.34 – 0.41 0.16 0.872 4274.70
(pDem Rep × pollbias z) ×
wave quad
0.22 -0.06 – 0.50 1.53 0.125 4174.66
(pDem Rep × pollbias z) ×
wave cub
-0.21 -0.54 – 0.13 -1.20 0.229 4129.54
(pParty Ind × pollbias z)
× wave lin
0.38 -0.22 – 0.97 1.25 0.213 4383.59
(pParty Ind × pollbias z)
× wave quad
-0.16 -0.61 – 0.28 -0.72 0.471 4233.00
(pParty Ind × pollbias z)
× wave cub
0.33 -0.23 – 0.88 1.16 0.247 4235.72
Random Effects
σ2 0.53
τ00 pid 0.57
ICC 0.52
N pid 1674
Observations 5753
Marginal R2 / Conditional R2 0.163 / 0.600

Main model centered at Wave 2

PEL.m15.w2 <- lmer(voteconfidence ~ (pDem_Rep + pParty_Ind) * pollbias.z * (wave2_1 + wave2_3 + wave2_4) 
                   + pollAcc 
                   + pollFreq.c 
                   + vs_age 
                   + nonbinary_mf
                   + male_female
                   + vs_race
                   + (pollAcc + pollFreq.c | pid), 
               data = d)
tab_model(PEL.m15.w2, show.stat = T, show.df = T, df.method = "satterthwaite")
  voteconfidence
Predictors Estimates CI Statistic p df
(Intercept) 2.98 2.74 – 3.21 24.84 <0.001 1521.60
pDem Rep 0.07 -0.05 – 0.19 1.19 0.236 4605.32
pParty Ind -0.35 -0.51 – -0.19 -4.27 <0.001 5375.13
pollbias z -0.30 -0.51 – -0.10 -2.92 0.004 4542.28
wave2 1 -0.28 -0.35 – -0.21 -8.19 <0.001 3758.56
wave2 3 0.02 -0.05 – 0.10 0.60 0.550 4184.91
wave2 4 -0.07 -0.15 – 0.02 -1.57 0.115 4264.87
pollAcc 0.09 0.06 – 0.11 7.60 <0.001 903.87
pollFreq c -0.02 -0.04 – -0.00 -1.96 0.050 981.03
vs age 0.01 0.00 – 0.01 4.59 <0.001 1631.48
nonbinary mf 0.86 0.30 – 1.43 2.99 0.003 1195.74
male female -0.38 -0.46 – -0.30 -8.90 <0.001 1614.60
vs race [Black] -0.26 -0.38 – -0.13 -4.00 <0.001 1656.11
vs race [Hispanic] -0.10 -0.23 – 0.04 -1.44 0.150 1550.91
vs race [Other] -0.12 -0.28 – 0.04 -1.45 0.148 1607.25
pDem Rep × pollbias z 0.30 -0.03 – 0.64 1.79 0.073 4577.37
pParty Ind × pollbias z -0.41 -0.91 – 0.09 -1.61 0.108 5352.70
pDem Rep × wave2 1 -1.12 -1.24 – -1.00 -18.14 <0.001 3746.59
pDem Rep × wave2 3 0.03 -0.10 – 0.16 0.48 0.632 4165.80
pDem Rep × wave2 4 0.28 0.13 – 0.43 3.73 <0.001 4276.50
pParty Ind × wave2 1 0.07 -0.10 – 0.25 0.81 0.418 3878.53
pParty Ind × wave2 3 0.08 -0.11 – 0.27 0.82 0.413 4207.35
pParty Ind × wave2 4 -0.01 -0.22 – 0.21 -0.06 0.955 4281.31
pollbias z × wave2 1 -0.34 -0.55 – -0.14 -3.26 0.001 3796.54
pollbias z × wave2 3 0.06 -0.17 – 0.28 0.49 0.621 4189.05
pollbias z × wave2 4 0.04 -0.22 – 0.29 0.27 0.784 4273.35
(pDem Rep × pollbias z) ×
wave2 1
-0.38 -0.73 – -0.04 -2.19 0.028 3750.20
(pDem Rep × pollbias z) ×
wave2 3
-0.18 -0.54 – 0.19 -0.95 0.342 4138.67
(pDem Rep × pollbias z) ×
wave2 4
-0.25 -0.68 – 0.18 -1.14 0.255 4277.64
(pParty Ind × pollbias z)
× wave2 1
0.35 -0.20 – 0.90 1.23 0.218 3928.29
(pParty Ind × pollbias z)
× wave2 3
0.50 -0.11 – 1.10 1.62 0.106 4208.11
(pParty Ind × pollbias z)
× wave2 4
0.59 -0.10 – 1.28 1.69 0.092 4291.56
Random Effects
σ2 0.50
τ00 pid 0.49
τ11 pid.pollAcc 0.02
τ11 pid.pollFreq.c 0.01
ρ01 -0.23
0.14
ICC 0.54
N pid 1674
Observations 5753
Marginal R2 / Conditional R2 0.161 / 0.615

Wave 2-centered Model with party ID-specific Effects

PEL.m15.w2.d <- lmer(voteconfidence ~ (pDem_R + pDem_I) * pollbias.z * (wave2_1 + wave2_3 + wave2_4) 
                   + pollAcc 
                   + pollFreq.c 
                   + vs_age 
                   + nonbinary_mf
                   + male_female
                   + vs_race
                   + (1|pid), 
               data = d)
tab_model(PEL.m15.w2.d, show.stat = T, show.df = T, df.method = "satterthwaite")
  voteconfidence
Predictors Estimates CI Statistic p df
(Intercept) 3.05 2.81 – 3.29 24.82 <0.001 1810.85
pDem R 0.07 -0.05 – 0.19 1.14 0.253 4885.44
pDem I -0.33 -0.50 – -0.16 -3.78 <0.001 5710.93
pollbias z -0.31 -0.56 – -0.06 -2.45 0.014 4429.49
wave2 1 0.25 0.17 – 0.33 6.08 <0.001 4088.02
wave2 3 -0.02 -0.11 – 0.06 -0.51 0.607 4119.70
wave2 4 -0.21 -0.31 – -0.11 -4.23 <0.001 4231.21
pollAcc 0.08 0.06 – 0.10 8.07 <0.001 5634.18
pollFreq c -0.02 -0.04 – 0.00 -1.88 0.060 1654.89
vs age 0.01 0.00 – 0.01 4.77 <0.001 1680.37
nonbinary mf 0.86 0.30 – 1.42 2.99 0.003 1607.59
male female -0.39 -0.47 – -0.30 -9.00 <0.001 1658.27
vs race [Black] -0.26 -0.39 – -0.13 -3.99 <0.001 1743.24
vs race [Hispanic] -0.10 -0.24 – 0.03 -1.47 0.143 1677.05
vs race [Other] -0.14 -0.30 – 0.02 -1.67 0.095 1642.37
pDem R × pollbias z 0.29 -0.05 – 0.62 1.66 0.097 4885.94
pDem I × pollbias z -0.25 -0.79 – 0.28 -0.93 0.351 5720.81
pDem R × wave2 1 -1.11 -1.24 – -0.99 -17.72 <0.001 4104.90
pDem R × wave2 3 0.04 -0.09 – 0.17 0.59 0.557 4147.05
pDem R × wave2 4 0.29 0.15 – 0.44 3.88 <0.001 4250.32
pDem I × wave2 1 -0.49 -0.68 – -0.31 -5.15 <0.001 4207.98
pDem I × wave2 3 0.09 -0.11 – 0.29 0.86 0.391 4226.79
pDem I × wave2 4 0.12 -0.10 – 0.35 1.07 0.287 4308.91
pollbias z × wave2 1 -0.27 -0.52 – -0.01 -2.05 0.040 4093.84
pollbias z × wave2 3 -0.01 -0.27 – 0.25 -0.07 0.945 4108.14
pollbias z × wave2 4 -0.02 -0.33 – 0.30 -0.10 0.923 4247.73
(pDem R × pollbias z) ×
wave2 1
-0.38 -0.73 – -0.03 -2.13 0.034 4108.58
(pDem R × pollbias z) ×
wave2 3
-0.19 -0.55 – 0.17 -1.03 0.302 4128.83
(pDem R × pollbias z) ×
wave2 4
-0.25 -0.67 – 0.18 -1.13 0.257 4252.89
(pDem I × pollbias z) ×
wave2 1
0.12 -0.47 – 0.71 0.41 0.682 4255.39
(pDem I × pollbias z) ×
wave2 3
0.42 -0.22 – 1.05 1.30 0.195 4234.14
(pDem I × pollbias z) ×
wave2 4
0.41 -0.32 – 1.13 1.09 0.274 4313.18
Random Effects
σ2 0.53
τ00 pid 0.57
ICC 0.52
N pid 1674
Observations 5753
Marginal R2 / Conditional R2 0.163 / 0.600
PEL.m15.w2.r <- lmer(voteconfidence ~ (pRep_D + pRep_I) * pollbias.z * (wave2_1 + wave2_3 + wave2_4) 
                   + pollAcc 
                   + pollFreq.c 
                   + vs_age 
                   + nonbinary_mf
                   + male_female
                   + vs_race
                   + (1|pid), 
               data = d)
tab_model(PEL.m15.w2.r, show.stat = T, show.df = T, df.method = "satterthwaite")
  voteconfidence
Predictors Estimates CI Statistic p df
(Intercept) 3.12 2.88 – 3.37 25.15 <0.001 1850.29
pRep D -0.07 -0.19 – 0.05 -1.14 0.253 4885.44
pRep I -0.40 -0.57 – -0.22 -4.48 <0.001 5714.14
pollbias z -0.03 -0.26 – 0.20 -0.24 0.809 4301.34
wave2 1 -0.86 -0.95 – -0.77 -18.31 <0.001 4096.41
wave2 3 0.02 -0.08 – 0.11 0.33 0.741 4153.25
wave2 4 0.08 -0.03 – 0.19 1.45 0.148 4255.72
pollAcc 0.08 0.06 – 0.10 8.07 <0.001 5634.18
pollFreq c -0.02 -0.04 – 0.00 -1.88 0.060 1654.89
vs age 0.01 0.00 – 0.01 4.77 <0.001 1680.37
nonbinary mf 0.86 0.30 – 1.42 2.99 0.003 1607.59
male female -0.39 -0.47 – -0.30 -9.00 <0.001 1658.27
vs race [Black] -0.26 -0.39 – -0.13 -3.99 <0.001 1743.24
vs race [Hispanic] -0.10 -0.24 – 0.03 -1.47 0.143 1677.05
vs race [Other] -0.14 -0.30 – 0.02 -1.67 0.095 1642.37
pRep D × pollbias z -0.29 -0.62 – 0.05 -1.66 0.097 4885.94
pRep I × pollbias z -0.54 -1.07 – -0.01 -2.01 0.045 5720.92
pRep D × wave2 1 1.11 0.99 – 1.24 17.72 <0.001 4104.90
pRep D × wave2 3 -0.04 -0.17 – 0.09 -0.59 0.557 4147.05
pRep D × wave2 4 -0.29 -0.44 – -0.15 -3.88 <0.001 4250.32
pRep I × wave2 1 0.62 0.43 – 0.81 6.30 <0.001 4199.89
pRep I × wave2 3 0.05 -0.16 – 0.26 0.47 0.635 4228.32
pRep I × wave2 4 -0.17 -0.40 – 0.06 -1.44 0.149 4316.10
pollbias z × wave2 1 -0.65 -0.89 – -0.41 -5.28 <0.001 4092.40
pollbias z × wave2 3 -0.20 -0.45 – 0.05 -1.57 0.115 4140.43
pollbias z × wave2 4 -0.26 -0.55 – 0.03 -1.78 0.075 4249.10
(pRep D × pollbias z) ×
wave2 1
0.38 0.03 – 0.73 2.13 0.034 4108.58
(pRep D × pollbias z) ×
wave2 3
0.19 -0.17 – 0.55 1.03 0.302 4128.83
(pRep D × pollbias z) ×
wave2 4
0.25 -0.18 – 0.67 1.13 0.257 4252.89
(pRep I × pollbias z) ×
wave2 1
0.50 -0.08 – 1.09 1.69 0.091 4241.95
(pRep I × pollbias z) ×
wave2 3
0.61 -0.02 – 1.24 1.90 0.057 4238.88
(pRep I × pollbias z) ×
wave2 4
0.65 -0.06 – 1.37 1.78 0.074 4316.08
Random Effects
σ2 0.53
τ00 pid 0.57
ICC 0.52
N pid 1674
Observations 5753
Marginal R2 / Conditional R2 0.163 / 0.600

b. Geographic Norms

ggplot(d[!is.na(d$party_factor),]) +
  geom_smooth(aes(x = per_dem, 
                  y = voteconfidence, 
                  fill = party_factor,
                  color = party_factor),
              method = "lm",
              fullrange = T) +
  facet_wrap(~wave) +
  labs(x = "Percentage of County voting Democratic",
       y = "Perceived Election Legitimacy") +
  scale_fill_manual("Participant Party ID", 
                    values = c("#1696d2","grey","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","grey","#db2b27")) +
  theme_bw() +
  coord_cartesian(ylim = c(1,5), xlim = c(10,95)) +
  scale_x_continuous(breaks = seq(0,100, 10)) 

ggplot(d[!is.na(d$party_factor),],
       aes(x = per_gop, 
           y = voteconfidence, 
           fill = party_factor,
           color = party_factor)) +
  geom_jitter(alpha = .2, size = .2) +
  geom_smooth(method = "lm",
              fullrange = T, se = F) +
  facet_grid(~wave, labeller = as_labeller(wave_label)) +
  labs(x = "Percentage of County voting for Donald Trump",
       y = "Perceived Election Legitimacy") +
  scale_fill_manual("Participant 
Partisan Identity", 
                    values = c("#1696d2","black","#db2b27")) +
  scale_color_manual("Participant 
Partisan Identity", 
                     values = c("#1696d2","black","#db2b27")) +
  theme_bw() +
  coord_cartesian(ylim = c(1,5)) +
  scale_x_continuous(breaks = seq(from = 0, to = 90, length.out = 7))

ggplot(d[!is.na(d$party_factor),],
       aes(x = per_gop, 
                  y = voteconfidence, 
                  fill = party_factor,
                  color = party_factor)) +
  geom_smooth(method = "lm",
              fullrange = T) +
  facet_grid(~wave, labeller = as_labeller(wave_label)) +
  labs(x = "Percentage of County voting for Donald Trump",
       y = "Perceived Election Legitimacy") +
  scale_fill_manual("Participant
Partisan Identity", 
                    values = c("#1696d2","grey","#db2b27")) +
  scale_color_manual("Participant
Partisan Identity", 
                     values = c("#1696d2","grey","#db2b27")) +
  theme_bw() +
  coord_cartesian(ylim = c(1,5)) +
  scale_x_continuous(breaks = seq(from = 0, to = 90, length.out = 7))

Summary

Geographic social norms, as operationalized by percentage of county of residence that voted for Donald Trump, also influenced perceived election legitimacy. The overall influence of Trump’s vote share was negative (b = -0.005, 95% CI = [-0.01, -0.001], t(3023.6) = -2.92, p = .003), though this interacted with partisan identity (b = 0.01, 95% CI = [0.001, 0.01], t(3706.0) = 2.08, p = .038), such that Trump’s vote share negatively predicted perceived election legitimacy for Democrats (b = -0.01, 95% CI = [-0.01, -0.001], t(2935.3) = -4.15, p < .001), but was not significant for Republicans (p = .43). The change in impact of Trump’s vote share on perceived election legitimacy from wave 1 to wave 2 also differed by partisan identity (b = -0.02, 95% CI = [-0.02, -0.01], t(5462.7) = -4.08, p < .001), such that impact of Trump’s vote share on perceived election legitimacy became stronger and more negative for Democrats (b = -0.01, 95% CI = [-0.001, -0.01], t(5462.7) = -2.04, p = .041), while the impact became less negative–and indeed, appears to have attenuated from negative (b = -0.01, 95% CI = [-0.02, -0.001], t(5796.4) = -3.26, p = .001) in wave 1 to nonsignificance in wave 2 (p = .64)–for Republicans (b = 0.01, 95% CI = [0.01, 0.02], t(5459.0) = 3.60, p < .001).

Models

Main Model

PEL.m12 <- lmer(voteconfidence ~ (pDem_Rep + pParty_Ind) * per_gop * (wave.lin + wave.quad + wave.cub) 
                  +  vs_age
                  +  vs_race
                  +  nonbinary_mf
                  +  male_female
                + (1|pid), 
               data = d)
tab_model(PEL.m12, show.stat = T, show.df = T, df.method = "satterthwaite")
  voteconfidence
Predictors Estimates CI Statistic p df
(Intercept) 3.15 2.89 – 3.41 24.04 <0.001 2727.43
pDem Rep -0.48 -0.79 – -0.18 -3.11 0.002 3810.30
pParty Ind -0.41 -0.78 – -0.04 -2.20 0.028 5914.15
per gop -0.00 -0.01 – -0.00 -2.92 0.004 3023.57
wave lin 0.16 -0.07 – 0.40 1.40 0.163 5662.75
wave quad 0.09 -0.08 – 0.26 1.01 0.314 5382.68
wave cub -0.10 -0.30 – 0.11 -0.92 0.356 5323.34
vs age 0.01 0.00 – 0.01 5.24 <0.001 2411.86
vs race [Black] -0.23 -0.35 – -0.11 -3.89 <0.001 2481.64
vs race [Hispanic] -0.04 -0.16 – 0.08 -0.61 0.541 2440.49
vs race [Other] -0.12 -0.26 – 0.02 -1.62 0.104 2383.97
nonbinary mf 0.52 0.07 – 0.98 2.25 0.024 2544.11
male female -0.37 -0.45 – -0.30 -9.62 <0.001 2391.69
pDem Rep × per gop 0.01 0.00 – 0.01 2.08 0.038 3705.64
pParty Ind × per gop 0.00 -0.01 – 0.01 0.12 0.905 5900.40
pDem Rep × wave lin 0.60 0.17 – 1.02 2.77 0.006 5592.23
pDem Rep × wave quad 0.11 -0.20 – 0.43 0.70 0.485 5376.19
pDem Rep × wave cub -0.34 -0.72 – 0.04 -1.74 0.082 5304.18
pParty Ind × wave lin 0.16 -0.44 – 0.75 0.51 0.607 5718.56
pParty Ind × wave quad -0.01 -0.44 – 0.43 -0.03 0.975 5451.94
pParty Ind × wave cub 0.07 -0.47 – 0.60 0.24 0.809 5413.92
per gop × wave lin 0.00 -0.00 – 0.00 0.06 0.954 5651.15
per gop × wave quad 0.00 -0.00 – 0.01 1.71 0.087 5376.06
per gop × wave cub -0.00 -0.00 – 0.00 -0.03 0.973 5316.96
(pDem Rep × per gop) ×
wave lin
0.01 0.00 – 0.02 2.90 0.004 5582.82
(pDem Rep × per gop) ×
wave quad
0.01 0.00 – 0.01 2.67 0.008 5372.44
(pDem Rep × per gop) ×
wave cub
-0.01 -0.01 – 0.00 -1.62 0.106 5301.40
(pParty Ind × per gop) ×
wave lin
-0.00 -0.01 – 0.01 -0.37 0.709 5707.37
(pParty Ind × per gop) ×
wave quad
0.00 -0.01 – 0.01 0.14 0.890 5443.31
(pParty Ind × per gop) ×
wave cub
0.00 -0.01 – 0.01 0.04 0.965 5404.78
Random Effects
σ2 0.54
τ00 pid 0.66
ICC 0.55
N pid 2456
Observations 7616
Marginal R2 / Conditional R2 0.145 / 0.613

Party ID-specific Effects

PEL.m12.d <- lmer(voteconfidence ~ (pDem_R + pDem_I) * per_gop * (wave.lin + wave.quad + wave.cub) 
                  +  vs_age
                  +  vs_race
                  +  nonbinary_mf
                  +  male_female
                + (1 | pid), 
               data = d)
tab_model(PEL.m12.d, show.stat = T, show.df = T, df.method = "satterthwaite")
  voteconfidence
Predictors Estimates CI Statistic p df
(Intercept) 3.53 3.26 – 3.80 25.50 <0.001 2704.92
pDem R -0.48 -0.79 – -0.18 -3.11 0.002 3810.30
pDem I -0.65 -1.04 – -0.27 -3.32 0.001 5416.33
per gop -0.01 -0.01 – -0.00 -4.15 <0.001 2935.25
wave lin -0.19 -0.44 – 0.06 -1.47 0.142 5545.80
wave quad 0.03 -0.15 – 0.22 0.36 0.721 5364.27
wave cub 0.05 -0.18 – 0.27 0.43 0.668 5271.79
vs age 0.01 0.00 – 0.01 5.24 <0.001 2411.86
vs race [Black] -0.23 -0.35 – -0.11 -3.89 <0.001 2481.64
vs race [Hispanic] -0.04 -0.16 – 0.08 -0.61 0.541 2440.49
vs race [Other] -0.12 -0.26 – 0.02 -1.62 0.104 2383.97
nonbinary mf 0.52 0.07 – 0.98 2.25 0.024 2544.11
male female -0.37 -0.45 – -0.30 -9.62 <0.001 2391.69
pDem R × per gop 0.01 0.00 – 0.01 2.08 0.038 3705.64
pDem I × per gop 0.00 -0.00 – 0.01 0.92 0.356 5382.16
pDem R × wave lin 0.60 0.17 – 1.02 2.77 0.006 5592.23
pDem R × wave quad 0.11 -0.20 – 0.43 0.70 0.485 5376.19
pDem R × wave cub -0.34 -0.72 – 0.04 -1.74 0.082 5304.18
pDem I × wave lin 0.45 -0.15 – 1.06 1.47 0.142 5707.58
pDem I × wave quad 0.05 -0.40 – 0.50 0.21 0.831 5445.41
pDem I × wave cub -0.10 -0.65 – 0.44 -0.37 0.712 5394.95
per gop × wave lin -0.01 -0.01 – -0.00 -2.02 0.044 5535.20
per gop × wave quad -0.00 -0.01 – 0.00 -0.75 0.452 5360.04
per gop × wave cub 0.00 -0.00 – 0.01 1.25 0.213 5270.78
(pDem R × per gop) × wave
lin
0.01 0.00 – 0.02 2.90 0.004 5582.82
(pDem R × per gop) × wave
quad
0.01 0.00 – 0.01 2.67 0.008 5372.44
(pDem R × per gop) × wave
cub
-0.01 -0.01 – 0.00 -1.62 0.106 5301.40
(pDem I × per gop) × wave
lin
0.00 -0.01 – 0.02 0.63 0.528 5691.41
(pDem I × per gop) × wave
quad
0.00 -0.00 – 0.01 1.05 0.292 5437.07
(pDem I × per gop) × wave
cub
-0.00 -0.01 – 0.01 -0.52 0.607 5385.94
Random Effects
σ2 0.54
τ00 pid 0.66
ICC 0.55
N pid 2456
Observations 7616
Marginal R2 / Conditional R2 0.145 / 0.613
PEL.m12.r <- lmer(voteconfidence ~ (pRep_D + pRep_I) * per_gop * (wave.lin + wave.quad + wave.cub) 
                  +  vs_age
                  +  vs_race
                  +  nonbinary_mf
                  +  male_female
                + (1|pid), 
               data = d)
tab_model(PEL.m12.r, show.stat = T, show.df = T, df.method = "satterthwaite")
  voteconfidence
Predictors Estimates CI Statistic p df
(Intercept) 3.05 2.73 – 3.36 18.84 <0.001 3054.31
pRep D 0.48 0.18 – 0.79 3.11 0.002 3810.30
pRep I -0.17 -0.58 – 0.24 -0.81 0.417 5723.59
per gop -0.00 -0.01 – 0.00 -0.79 0.432 3346.63
wave lin 0.41 0.07 – 0.75 2.36 0.018 5599.78
wave quad 0.15 -0.11 – 0.40 1.13 0.258 5370.56
wave cub -0.29 -0.59 – 0.02 -1.85 0.065 5305.28
vs age 0.01 0.00 – 0.01 5.24 <0.001 2411.86
vs race [Black] -0.23 -0.35 – -0.11 -3.89 <0.001 2481.64
vs race [Hispanic] -0.04 -0.16 – 0.08 -0.61 0.541 2440.49
vs race [Other] -0.12 -0.26 – 0.02 -1.62 0.104 2383.97
nonbinary mf 0.52 0.07 – 0.98 2.25 0.024 2544.11
male female -0.37 -0.45 – -0.30 -9.62 <0.001 2391.69
pRep D × per gop -0.01 -0.01 – -0.00 -2.08 0.038 3705.64
pRep I × per gop -0.00 -0.01 – 0.01 -0.67 0.501 5701.75
pRep D × wave lin -0.60 -1.02 – -0.17 -2.77 0.006 5592.23
pRep D × wave quad -0.11 -0.43 – 0.20 -0.70 0.485 5376.19
pRep D × wave cub 0.34 -0.04 – 0.72 1.74 0.082 5304.18
pRep I × wave lin -0.14 -0.79 – 0.51 -0.43 0.666 5701.37
pRep I × wave quad -0.06 -0.54 – 0.42 -0.26 0.797 5441.40
pRep I × wave cub 0.23 -0.35 – 0.82 0.78 0.434 5407.28
per gop × wave lin 0.01 0.00 – 0.01 2.11 0.035 5597.04
per gop × wave quad 0.01 0.00 – 0.01 2.81 0.005 5368.47
per gop × wave cub -0.00 -0.01 – 0.00 -1.08 0.279 5304.53
(pRep D × per gop) × wave
lin
-0.01 -0.02 – -0.00 -2.90 0.004 5582.82
(pRep D × per gop) × wave
quad
-0.01 -0.01 – -0.00 -2.67 0.008 5372.44
(pRep D × per gop) × wave
cub
0.01 -0.00 – 0.01 1.62 0.106 5301.40
(pRep I × per gop) × wave
lin
-0.01 -0.02 – 0.00 -1.28 0.199 5695.45
(pRep I × per gop) × wave
quad
-0.00 -0.01 – 0.01 -0.75 0.455 5433.69
(pRep I × per gop) × wave
cub
0.00 -0.01 – 0.01 0.57 0.571 5399.65
Random Effects
σ2 0.54
τ00 pid 0.66
ICC 0.55
N pid 2456
Observations 7616
Marginal R2 / Conditional R2 0.145 / 0.613

Main Model centered at Wave 2 with by party ID-specific Effects

PEL.m12.w2 <- lmer(voteconfidence ~ (pDem_Rep + pParty_Ind) * per_gop * (wave2_1 + wave2_3 + wave2_4) 
                  +  vs_age
                  +  vs_race
                  +  nonbinary_mf
                  +  male_female
                  + (1|pid), 
               data = d)
tab_model(PEL.m12.w2, show.stat = T, show.df = T, df.method = "satterthwaite")
  voteconfidence
Predictors Estimates CI Statistic p df
(Intercept) 3.20 2.92 – 3.49 22.01 <0.001 3909.44
pDem Rep -0.41 -0.79 – -0.03 -2.10 0.036 6598.05
pParty Ind -0.49 -0.97 – 0.00 -1.95 0.051 7567.17
per gop -0.00 -0.01 – 0.00 -1.65 0.098 5680.62
wave2 1 -0.20 -0.41 – 0.00 -1.94 0.052 5486.30
wave2 3 -0.02 -0.24 – 0.21 -0.13 0.895 5347.11
wave2 4 0.01 -0.26 – 0.28 0.08 0.933 5452.44
vs age 0.01 0.00 – 0.01 5.24 <0.001 2411.86
vs race [Black] -0.23 -0.35 – -0.11 -3.89 <0.001 2481.64
vs race [Hispanic] -0.04 -0.16 – 0.08 -0.61 0.541 2440.49
vs race [Other] -0.12 -0.26 – 0.02 -1.62 0.104 2383.97
nonbinary mf 0.52 0.07 – 0.98 2.25 0.024 2544.11
male female -0.37 -0.45 – -0.30 -9.62 <0.001 2391.69
pDem Rep × per gop 0.01 0.00 – 0.02 2.75 0.006 6500.76
pParty Ind × per gop 0.00 -0.01 – 0.01 0.24 0.809 7564.57
pDem Rep × wave2 1 -0.51 -0.91 – -0.12 -2.56 0.010 5472.30
pDem Rep × wave2 3 -0.04 -0.45 – 0.38 -0.18 0.856 5294.31
pDem Rep × wave2 4 0.25 -0.23 – 0.73 1.03 0.304 5414.50
pParty Ind × wave2 1 0.02 -0.50 – 0.54 0.07 0.947 5618.41
pParty Ind × wave2 3 0.14 -0.44 – 0.73 0.48 0.631 5435.10
pParty Ind × wave2 4 0.14 -0.55 – 0.83 0.40 0.690 5499.67
per gop × wave2 1 -0.00 -0.01 – 0.00 -1.47 0.141 5471.25
per gop × wave2 3 -0.00 -0.00 – 0.00 -0.00 0.999 5337.03
per gop × wave2 4 -0.00 -0.01 – 0.00 -1.06 0.290 5448.07
(pDem Rep × per gop) ×
wave2 1
-0.02 -0.02 – -0.01 -4.08 <0.001 5462.69
(pDem Rep × per gop) ×
wave2 3
-0.00 -0.01 – 0.01 -0.01 0.994 5289.97
(pDem Rep × per gop) ×
wave2 4
-0.00 -0.01 – 0.01 -0.15 0.880 5410.01
(pParty Ind × per gop) ×
wave2 1
0.00 -0.01 – 0.01 0.02 0.981 5596.45
(pParty Ind × per gop) ×
wave2 3
-0.00 -0.01 – 0.01 -0.15 0.880 5423.28
(pParty Ind × per gop) ×
wave2 4
-0.00 -0.02 – 0.01 -0.32 0.749 5497.37
Random Effects
σ2 0.54
τ00 pid 0.66
ICC 0.55
N pid 2456
Observations 7616
Marginal R2 / Conditional R2 0.145 / 0.613
PEL.m12.w2.d <- lmer(voteconfidence ~ (pDem_R + pDem_I) * per_gop * (wave2_1 + wave2_3 + wave2_4) 
                  +  vs_age
                  +  vs_race
                  +  nonbinary_mf
                  +  male_female
                  + (1|pid), 
               data = d)
tab_model(PEL.m12.w2.d, show.stat = T, show.df = T, df.method = "satterthwaite")
  voteconfidence
Predictors Estimates CI Statistic p df
(Intercept) 3.57 3.26 – 3.87 22.87 <0.001 4110.65
pDem R -0.41 -0.79 – -0.03 -2.10 0.036 6598.05
pDem I -0.69 -1.20 – -0.18 -2.65 0.008 7482.89
per gop -0.01 -0.01 – -0.00 -3.68 <0.001 5665.29
wave2 1 0.05 -0.18 – 0.28 0.42 0.676 5438.64
wave2 3 -0.04 -0.29 – 0.20 -0.35 0.725 5239.14
wave2 4 -0.16 -0.45 – 0.13 -1.10 0.271 5378.10
vs age 0.01 0.00 – 0.01 5.24 <0.001 2411.86
vs race [Black] -0.23 -0.35 – -0.11 -3.89 <0.001 2481.64
vs race [Hispanic] -0.04 -0.16 – 0.08 -0.61 0.541 2440.49
vs race [Other] -0.12 -0.26 – 0.02 -1.62 0.104 2383.97
nonbinary mf 0.52 0.07 – 0.98 2.25 0.024 2544.11
male female -0.37 -0.45 – -0.30 -9.62 <0.001 2391.69
pDem R × per gop 0.01 0.00 – 0.02 2.75 0.006 6500.76
pDem I × per gop 0.01 -0.00 – 0.02 1.25 0.210 7471.88
pDem R × wave2 1 -0.51 -0.91 – -0.12 -2.56 0.010 5472.30
pDem R × wave2 3 -0.04 -0.45 – 0.38 -0.18 0.856 5294.31
pDem R × wave2 4 0.25 -0.23 – 0.73 1.03 0.304 5414.50
pDem I × wave2 1 -0.24 -0.77 – 0.29 -0.88 0.377 5600.64
pDem I × wave2 3 0.12 -0.48 – 0.72 0.41 0.684 5412.82
pDem I × wave2 4 0.27 -0.44 – 0.97 0.74 0.460 5489.29
per gop × wave2 1 0.01 0.00 – 0.01 2.04 0.041 5421.34
per gop × wave2 3 0.00 -0.00 – 0.01 0.12 0.904 5240.84
per gop × wave2 4 -0.00 -0.01 – 0.00 -0.58 0.562 5378.50
(pDem R × per gop) ×
wave2 1
-0.02 -0.02 – -0.01 -4.08 <0.001 5462.69
(pDem R × per gop) ×
wave2 3
-0.00 -0.01 – 0.01 -0.01 0.994 5289.97
(pDem R × per gop) ×
wave2 4
-0.00 -0.01 – 0.01 -0.15 0.880 5410.01
(pDem I × per gop) ×
wave2 1
-0.01 -0.02 – 0.00 -1.46 0.143 5575.09
(pDem I × per gop) ×
wave2 3
-0.00 -0.01 – 0.01 -0.15 0.881 5401.17
(pDem I × per gop) ×
wave2 4
-0.00 -0.02 – 0.01 -0.36 0.719 5485.47
Random Effects
σ2 0.54
τ00 pid 0.66
ICC 0.55
N pid 2456
Observations 7616
Marginal R2 / Conditional R2 0.145 / 0.613
PEL.m12.w2.r <- lmer(voteconfidence ~ (pRep_D + pRep_I) * per_gop * (wave2_1 + wave2_3 + wave2_4) 
                  +  vs_age
                  +  vs_race
                  +  nonbinary_mf
                  +  male_female
                  + (1|pid), 
               data = d)
tab_model(PEL.m12.w2.r, show.stat = T, show.df = T, df.method = "satterthwaite")
  voteconfidence
Predictors Estimates CI Statistic p df
(Intercept) 3.16 2.80 – 3.52 17.02 <0.001 4844.95
pRep D 0.41 0.03 – 0.79 2.10 0.036 6598.05
pRep I -0.28 -0.82 – 0.26 -1.02 0.306 7544.82
per gop 0.00 -0.00 – 0.01 0.47 0.639 6084.76
wave2 1 -0.46 -0.78 – -0.15 -2.89 0.004 5459.44
wave2 3 -0.08 -0.42 – 0.25 -0.48 0.629 5315.75
wave2 4 0.09 -0.29 – 0.48 0.46 0.644 5428.90
vs age 0.01 0.00 – 0.01 5.24 <0.001 2411.86
vs race [Black] -0.23 -0.35 – -0.11 -3.89 <0.001 2481.64
vs race [Hispanic] -0.04 -0.16 – 0.08 -0.61 0.541 2440.49
vs race [Other] -0.12 -0.26 – 0.02 -1.62 0.104 2383.97
nonbinary mf 0.52 0.07 – 0.98 2.25 0.024 2544.11
male female -0.37 -0.45 – -0.30 -9.62 <0.001 2391.69
pRep D × per gop -0.01 -0.02 – -0.00 -2.75 0.006 6500.76
pRep I × per gop -0.00 -0.01 – 0.01 -0.76 0.446 7539.08
pRep D × wave2 1 0.51 0.12 – 0.91 2.56 0.010 5472.30
pRep D × wave2 3 0.04 -0.38 – 0.45 0.18 0.856 5294.31
pRep D × wave2 4 -0.25 -0.73 – 0.23 -1.03 0.304 5414.50
pRep I × wave2 1 0.27 -0.30 – 0.85 0.94 0.349 5599.42
pRep I × wave2 3 0.16 -0.48 – 0.81 0.50 0.620 5425.13
pRep I × wave2 4 0.01 -0.74 – 0.77 0.04 0.971 5491.38
per gop × wave2 1 -0.01 -0.02 – -0.01 -3.60 <0.001 5459.04
per gop × wave2 3 0.00 -0.01 – 0.01 0.09 0.932 5311.98
per gop × wave2 4 -0.00 -0.01 – 0.00 -0.66 0.512 5426.13
(pRep D × per gop) ×
wave2 1
0.02 0.01 – 0.02 4.08 <0.001 5462.69
(pRep D × per gop) ×
wave2 3
0.00 -0.01 – 0.01 0.01 0.994 5289.97
(pRep D × per gop) ×
wave2 4
0.00 -0.01 – 0.01 0.15 0.880 5410.01
(pRep I × per gop) ×
wave2 1
0.01 -0.00 – 0.02 1.42 0.155 5583.80
(pRep I × per gop) ×
wave2 3
-0.00 -0.01 – 0.01 -0.14 0.892 5414.88
(pRep I × per gop) ×
wave2 4
-0.00 -0.02 – 0.01 -0.25 0.805 5490.36
Random Effects
σ2 0.54
τ00 pid 0.66
ICC 0.55
N pid 2456
Observations 7616
Marginal R2 / Conditional R2 0.145 / 0.613
PEL.m12.w1.r <- lmer(voteconfidence ~ (pRep_D + pRep_I) * per_gop * wave 
                  +  vs_age
                  +  vs_race
                  +  nonbinary_mf
                  +  male_female
                  + (1|pid), 
               data = d)
tab_model(PEL.m12.w1.r, show.stat = T, show.df = T, df.method = "satterthwaite")
  voteconfidence
Predictors Estimates CI Statistic p df
(Intercept) 2.70 2.33 – 3.06 14.58 <0.001 4650.47
pRep D 0.92 0.55 – 1.29 4.87 <0.001 6267.99
pRep I -0.01 -0.49 – 0.48 -0.03 0.978 7320.51
per gop -0.01 -0.02 – -0.00 -3.26 0.001 5796.36
wave [2] 0.46 0.15 – 0.78 2.89 0.004 5459.44
wave [3] 0.38 0.05 – 0.72 2.23 0.026 5507.50
wave [4] 0.56 0.17 – 0.94 2.80 0.005 5581.30
vs age 0.01 0.00 – 0.01 5.24 <0.001 2411.86
vs race [Black] -0.23 -0.35 – -0.11 -3.89 <0.001 2481.64
vs race [Hispanic] -0.04 -0.16 – 0.08 -0.61 0.541 2440.49
vs race [Other] -0.12 -0.26 – 0.02 -1.62 0.104 2383.97
nonbinary mf 0.52 0.07 – 0.98 2.25 0.024 2544.11
male female -0.37 -0.45 – -0.30 -9.62 <0.001 2391.69
pRep D × per gop 0.01 -0.00 – 0.01 1.48 0.140 6166.89
pRep I × per gop 0.00 -0.01 – 0.01 0.83 0.405 7319.19
pRep D × wave [2] -0.51 -0.91 – -0.12 -2.56 0.010 5472.30
pRep D × wave [3] -0.48 -0.89 – -0.06 -2.25 0.025 5511.36
pRep D × wave [4] -0.77 -1.25 – -0.28 -3.11 0.002 5588.22
pRep I × wave [2] -0.27 -0.85 – 0.30 -0.94 0.349 5599.42
pRep I × wave [3] -0.11 -0.73 – 0.51 -0.35 0.724 5640.53
pRep I × wave [4] -0.26 -1.00 – 0.48 -0.69 0.489 5678.41
per gop × wave [2] 0.01 0.01 – 0.02 3.60 <0.001 5459.04
per gop × wave [3] 0.01 0.00 – 0.02 3.46 0.001 5503.48
per gop × wave [4] 0.01 0.00 – 0.02 2.28 0.023 5580.93
(pRep D × per gop) × wave
[2]
-0.02 -0.02 – -0.01 -4.08 <0.001 5462.69
(pRep D × per gop) × wave
[3]
-0.02 -0.02 – -0.01 -3.87 <0.001 5501.94
(pRep D × per gop) × wave
[4]
-0.02 -0.03 – -0.01 -3.18 0.001 5580.23
(pRep I × per gop) × wave
[2]
-0.01 -0.02 – 0.00 -1.42 0.155 5583.80
(pRep I × per gop) × wave
[3]
-0.01 -0.02 – 0.00 -1.46 0.144 5625.56
(pRep I × per gop) × wave
[4]
-0.01 -0.02 – 0.00 -1.35 0.177 5673.77
Random Effects
σ2 0.54
τ00 pid 0.66
ICC 0.55
N pid 2456
Observations 7616
Marginal R2 / Conditional R2 0.145 / 0.613

c. Media vs. Geography Comparison

PEL.m.normplot <- lmer(voteconfidence ~ party_factor * pollbias.z * wave * per_gop 
                   + pollAcc 
                   + pollFreq.c 
                   + vs_age 
                   + nonbinary_mf
                   + male_female
                   + vs_race
                   + (1|pid), 
               data = d)

ggplot(d[!is.na(d$party_factor),],
       aes(x = per_gop, 
                  y = voteconfidence, 
                  fill = party_factor,
                  color = party_factor)) +
  geom_smooth(method = "lm",
              fullrange = T) +
  facet_grid(~wave, labeller = as_labeller(wave_label)) +
  labs(x = "Percentage of County voting for Donald Trump",
       y = "Perceived Election Legitimacy") +
  scale_fill_manual("Participant
Partisan Identity", 
                    values = c("#1696d2","grey","#db2b27")) +
  scale_color_manual("Participant
Partisan Identity", 
                     values = c("#1696d2","grey","#db2b27")) +
  theme_bw() +
  coord_cartesian(ylim = c(1,5)) +
  scale_x_continuous(breaks = seq(from = 0, to = 90, length.out = 7))

Summary

In a model that tested both geographic and media-based social norms together, the effect of both polling bias (b = -0.72, 95% CI = [-1.35, -0.08], t(2192.9) = -2.21, p = .027) and Donald Trump’s vote share (b = -0.01, 95% CI = [-0.01, -0.001], t(2078.5) = -2.60, p = .009) remained significant. However, the higher-order interactions involving polling bias, partisan identity, and time were no longer significant, while the three-way interaction of Trump’s vote share, partisan identity, and change over quadratic time retained significance (b = 0.01, 95% CI = [0.001, 0.02], t(3654.0) = 2.44, p = .015). Again, this change primarily occurred from wave 1 to wave 2 (b = 0.02, 95% CI = [0.01, 0.03], t(3529.7) = 3.69, p < .001). This indicates that the effect of county-level partisan norms, along with their higher-order interactions, retained explanatory power when controlling for polling bias and its higher-order interactions, while this was less true for polling bias when controlling for county-level norms.

Models

Main Model

PEL.m16 <- lmer(voteconfidence ~ (pDem_Rep + pParty_Ind) * pollbias.z * per_gop * (wave.lin + wave.quad + wave.cub) 
                   + pollAcc 
                   + pollFreq.c 
                   + vs_age 
                   + nonbinary_mf
                   + male_female
                   + vs_race
                   + (pollAcc + pollFreq.c | pid), 
               data = d)
tab_model(PEL.m16, show.stat = T, show.df = T, df.method = "satterthwaite")
  voteconfidence
Predictors Estimates CI Statistic p df
(Intercept) 3.15 2.84 – 3.47 19.55 <0.001 1686.86
pDem Rep -0.36 -0.74 – 0.01 -1.92 0.055 2398.00
pParty Ind -0.17 -0.63 – 0.29 -0.73 0.466 4035.01
pollbias z -0.72 -1.35 – -0.08 -2.21 0.027 2192.92
per gop -0.01 -0.01 – -0.00 -2.60 0.009 2078.46
wave lin 0.15 -0.15 – 0.45 0.97 0.334 4077.70
wave quad 0.01 -0.20 – 0.23 0.11 0.912 3649.93
wave cub 0.01 -0.25 – 0.28 0.09 0.928 3718.87
pollAcc 0.08 0.06 – 0.11 7.11 <0.001 839.99
pollFreq c -0.02 -0.04 – -0.00 -2.23 0.026 911.08
vs age 0.01 0.00 – 0.01 4.34 <0.001 1529.28
nonbinary mf 0.96 0.36 – 1.56 3.16 0.002 1249.77
male female -0.37 -0.46 – -0.29 -8.50 <0.001 1511.51
vs race [Black] -0.25 -0.38 – -0.12 -3.78 <0.001 1544.66
vs race [Hispanic] -0.09 -0.23 – 0.05 -1.31 0.189 1472.33
vs race [Other] -0.15 -0.31 – 0.02 -1.76 0.078 1510.85
pDem Rep × pollbias z -0.20 -1.28 – 0.88 -0.37 0.715 2344.60
pParty Ind × pollbias z 0.16 -1.27 – 1.60 0.22 0.823 4062.53
pDem Rep × per gop 0.01 -0.00 – 0.01 1.45 0.147 2329.75
pParty Ind × per gop -0.00 -0.01 – 0.01 -0.54 0.587 3933.05
pollbias z × per gop 0.01 -0.01 – 0.02 1.15 0.251 2184.27
pDem Rep × wave lin 0.59 0.02 – 1.15 2.04 0.041 4078.28
pDem Rep × wave quad -0.07 -0.47 – 0.33 -0.33 0.743 3663.14
pDem Rep × wave cub -0.16 -0.65 – 0.32 -0.67 0.503 3748.78
pParty Ind × wave lin 0.19 -0.58 – 0.96 0.49 0.624 4116.25
pParty Ind × wave quad -0.11 -0.66 – 0.45 -0.37 0.710 3736.38
pParty Ind × wave cub 0.10 -0.58 – 0.79 0.29 0.773 3791.52
pollbias z × wave lin -0.08 -1.04 – 0.88 -0.17 0.864 4010.97
pollbias z × wave quad 0.13 -0.56 – 0.81 0.36 0.715 3697.03
pollbias z × wave cub -0.38 -1.21 – 0.44 -0.91 0.362 3751.48
per gop × wave lin 0.00 -0.01 – 0.01 0.20 0.839 4064.22
per gop × wave quad 0.00 -0.00 – 0.01 1.53 0.126 3659.16
per gop × wave cub -0.00 -0.01 – 0.00 -0.59 0.552 3720.26
(pDem Rep × pollbias z) ×
per gop
0.01 -0.02 – 0.03 0.51 0.612 2299.95
(pParty Ind × pollbias z)
× per gop
-0.00 -0.03 – 0.02 -0.32 0.745 3950.24
(pDem Rep × pollbias z) ×
wave lin
0.44 -1.17 – 2.06 0.54 0.591 4062.54
(pDem Rep × pollbias z) ×
wave quad
0.43 -0.72 – 1.58 0.73 0.466 3678.84
(pDem Rep × pollbias z) ×
wave cub
-1.18 -2.56 – 0.20 -1.67 0.094 3768.24
(pParty Ind × pollbias z)
× wave lin
-0.44 -2.96 – 2.09 -0.34 0.735 4062.41
(pParty Ind × pollbias z)
× wave quad
-1.60 -3.40 – 0.21 -1.73 0.084 3776.73
(pParty Ind × pollbias z)
× wave cub
0.78 -1.43 – 2.98 0.69 0.488 3819.52
(pDem Rep × per gop) ×
wave lin
0.01 -0.00 – 0.02 1.94 0.053 4026.72
(pDem Rep × per gop) ×
wave quad
0.01 0.00 – 0.02 2.44 0.015 3654.03
(pDem Rep × per gop) ×
wave cub
-0.01 -0.02 – 0.00 -1.59 0.113 3738.11
(pParty Ind × per gop) ×
wave lin
-0.00 -0.02 – 0.01 -0.49 0.626 4113.98
(pParty Ind × per gop) ×
wave quad
0.00 -0.01 – 0.01 0.47 0.641 3746.93
(pParty Ind × per gop) ×
wave cub
-0.00 -0.01 – 0.01 -0.10 0.924 3787.23
(pollbias z × per gop) ×
wave lin
0.01 -0.01 – 0.03 0.82 0.411 4023.78
(pollbias z × per gop) ×
wave quad
0.00 -0.01 – 0.02 0.26 0.792 3704.07
(pollbias z × per gop) ×
wave cub
0.01 -0.01 – 0.02 0.64 0.520 3747.40
(pDem Rep × pollbias z ×
per gop) × wave lin
-0.01 -0.04 – 0.02 -0.53 0.596 4013.35
(pDem Rep × pollbias z ×
per gop) × wave quad
-0.00 -0.03 – 0.02 -0.20 0.839 3670.38
(pDem Rep × pollbias z ×
per gop) × wave cub
0.02 -0.01 – 0.05 1.40 0.162 3758.51
(pParty Ind × pollbias z
× per gop) × wave lin
0.01 -0.04 – 0.07 0.55 0.584 4080.44
(pParty Ind × pollbias z
× per gop) × wave quad
0.03 -0.00 – 0.07 1.69 0.090 3785.53
(pParty Ind × pollbias z
× per gop) × wave cub
-0.01 -0.05 – 0.03 -0.45 0.650 3809.99
Random Effects
σ2 0.50
τ00 pid 0.50
τ11 pid.pollAcc 0.02
τ11 pid.pollFreq.c 0.01
ρ01 -0.23
0.17
ICC 0.54
N pid 1578
Observations 5428
Marginal R2 / Conditional R2 0.168 / 0.619

Main Model centered at Wave 2

PEL.m16.w2 <- lmer(voteconfidence ~ (pDem_Rep + pParty_Ind) * pollbias.z * per_gop * (wave2_1 + wave2_3 + wave2_4) 
                   + pollAcc 
                   + pollFreq.c 
                   + vs_age 
                   + nonbinary_mf
                   + male_female
                   + vs_race
                  + (pollAcc + pollFreq.c|pid), 
               data = d)
tab_model(PEL.m16.w2, show.stat = T, show.df = T, df.method = "satterthwaite")
  voteconfidence
Predictors Estimates CI Statistic p df
(Intercept) 3.12 2.76 – 3.47 17.20 <0.001 2526.09
pDem Rep -0.46 -0.93 – 0.00 -1.94 0.052 4099.64
pParty Ind -0.32 -0.95 – 0.31 -1.00 0.316 5146.64
pollbias z -0.44 -1.27 – 0.38 -1.05 0.294 4262.75
per gop -0.00 -0.01 – 0.00 -1.20 0.232 3979.30
wave2 1 -0.04 -0.30 – 0.22 -0.30 0.764 3577.67
wave2 3 0.09 -0.20 – 0.38 0.58 0.559 3957.17
wave2 4 0.10 -0.24 – 0.45 0.58 0.563 4011.19
pollAcc 0.08 0.06 – 0.11 7.11 <0.001 839.99
pollFreq c -0.02 -0.04 – -0.00 -2.23 0.026 911.08
vs age 0.01 0.00 – 0.01 4.34 <0.001 1529.28
nonbinary mf 0.96 0.36 – 1.56 3.16 0.002 1249.77
male female -0.37 -0.46 – -0.29 -8.50 <0.001 1511.51
vs race [Black] -0.25 -0.38 – -0.12 -3.78 <0.001 1544.66
vs race [Hispanic] -0.09 -0.23 – 0.05 -1.31 0.189 1472.33
vs race [Other] -0.15 -0.31 – 0.02 -1.76 0.078 1510.85
pDem Rep × pollbias z 0.49 -0.85 – 1.83 0.72 0.472 4027.91
pParty Ind × pollbias z -0.92 -2.94 – 1.11 -0.89 0.376 5059.22
pDem Rep × per gop 0.01 0.00 – 0.02 2.44 0.015 4065.70
pParty Ind × per gop 0.00 -0.01 – 0.01 0.01 0.989 5098.59
pollbias z × per gop 0.00 -0.01 – 0.02 0.44 0.661 4157.88
pDem Rep × wave2 1 -0.20 -0.70 – 0.29 -0.81 0.419 3539.83
pDem Rep × wave2 3 0.13 -0.40 – 0.66 0.47 0.636 3984.37
pDem Rep × wave2 4 0.47 -0.16 – 1.09 1.45 0.147 4066.38
pParty Ind × wave2 1 0.13 -0.55 – 0.81 0.38 0.701 3699.16
pParty Ind × wave2 3 0.20 -0.55 – 0.95 0.51 0.607 3974.53
pParty Ind × wave2 4 0.28 -0.62 – 1.17 0.60 0.547 4008.50
pollbias z × wave2 1 -0.39 -1.22 – 0.43 -0.94 0.348 3647.97
pollbias z × wave2 3 -0.43 -1.32 – 0.47 -0.93 0.353 3968.98
pollbias z × wave2 4 -0.29 -1.41 – 0.84 -0.50 0.618 4029.69
per gop × wave2 1 -0.00 -0.01 – 0.00 -1.77 0.076 3563.67
per gop × wave2 3 -0.00 -0.01 – 0.00 -0.44 0.663 3949.83
per gop × wave2 4 -0.00 -0.01 – 0.00 -0.93 0.352 4012.72
(pDem Rep × pollbias z) ×
per gop
-0.00 -0.03 – 0.02 -0.23 0.814 4023.73
(pParty Ind × pollbias z)
× per gop
0.01 -0.03 – 0.05 0.61 0.539 5002.02
(pDem Rep × pollbias z) ×
wave2 1
-1.42 -2.82 – -0.02 -1.99 0.046 3540.87
(pDem Rep × pollbias z) ×
wave2 3
-0.96 -2.46 – 0.55 -1.24 0.214 3972.08
(pDem Rep × pollbias z) ×
wave2 4
-0.39 -2.21 – 1.43 -0.42 0.673 4058.22
(pParty Ind × pollbias z)
× wave2 1
2.29 0.10 – 4.48 2.05 0.041 3783.60
(pParty Ind × pollbias z)
× wave2 3
0.56 -1.82 – 2.95 0.46 0.644 3989.77
(pParty Ind × pollbias z)
× wave2 4
1.46 -1.53 – 4.46 0.96 0.337 4036.77
(pDem Rep × per gop) ×
wave2 1
-0.02 -0.03 – -0.01 -3.69 <0.001 3529.73
(pDem Rep × per gop) ×
wave2 3
-0.00 -0.01 – 0.01 -0.42 0.674 3971.47
(pDem Rep × per gop) ×
wave2 4
-0.00 -0.02 – 0.01 -0.57 0.569 4058.57
(pParty Ind × per gop) ×
wave2 1
-0.00 -0.02 – 0.01 -0.32 0.749 3682.33
(pParty Ind × per gop) ×
wave2 3
-0.00 -0.02 – 0.01 -0.34 0.730 3976.81
(pParty Ind × per gop) ×
wave2 4
-0.01 -0.02 – 0.01 -0.62 0.534 4014.82
(pollbias z × per gop) ×
wave2 1
0.00 -0.02 – 0.02 0.02 0.986 3628.54
(pollbias z × per gop) ×
wave2 3
0.01 -0.01 – 0.03 1.05 0.294 3963.35
(pollbias z × per gop) ×
wave2 4
0.01 -0.02 – 0.03 0.48 0.628 4034.63
(pDem Rep × pollbias z ×
per gop) × wave2 1
0.02 -0.01 – 0.05 1.35 0.179 3532.89
(pDem Rep × pollbias z ×
per gop) × wave2 3
0.02 -0.01 – 0.05 0.99 0.320 3962.48
(pDem Rep × pollbias z ×
per gop) × wave2 4
0.00 -0.04 – 0.04 0.04 0.967 4055.26
(pParty Ind × pollbias z
× per gop) × wave2 1
-0.04 -0.09 – 0.00 -1.95 0.051 3766.50
(pParty Ind × pollbias z
× per gop) × wave2 3
-0.00 -0.05 – 0.04 -0.12 0.902 3988.34
(pParty Ind × pollbias z
× per gop) × wave2 4
-0.02 -0.08 – 0.04 -0.75 0.454 4044.09
Random Effects
σ2 0.50
τ00 pid 0.50
τ11 pid.pollAcc 0.02
τ11 pid.pollFreq.c 0.01
ρ01 -0.23
0.17
ICC 0.54
N pid 1578
Observations 5428
Marginal R2 / Conditional R2 0.168 / 0.619

4. Cognitive & Evaluative factors

a. Cognitive - Conspiracism and need for cognition

ggplot(d) +
  geom_smooth(aes(x = GCB,
                  y = voteconfidence,
                  fill = party_factor,
                  color = party_factor),
              method = "lm") +
  facet_grid(~wave, labeller = as_labeller(wave_label)) +
  theme_bw() +
  labs(x = "Generic Conspiracist Beliefs",
       y = "Perceived Election Legitimacy") +
  scale_fill_manual("Participant
Partisan Identity", 
                    values = c("#1696d2","grey","#db2b27")) +
  scale_color_manual("Participant
Partisan Identity", 
                     values = c("#1696d2","grey","#db2b27")) +
  coord_cartesian(ylim = c(1,5))

ggplot(d) +
  geom_smooth(aes(x = NFC,
                  y = voteconfidence,
                  fill = party_factor,
                  color = party_factor),
              method = "lm",
              fullrange = T) +
  facet_grid(~wave, labeller = as_labeller(wave_label)) +
  theme_bw() +
  labs(x = "Need for Cognition",
       y = "Perceived Election Legitimacy") +
  scale_fill_manual("Participant
Partisan Identity", 
                    values = c("#1696d2","grey","#db2b27")) +
  scale_color_manual("Participant
Partisan Identity", 
                     values = c("#1696d2","grey","#db2b27")) +
  coord_cartesian(ylim = c(1,5)) +
  scale_x_continuous(breaks = seq(-3,3,1))

PEL.m18.plot <- lmer(voteconfidence ~ party_factor * wave
                * GCB * NFC
                + vs_race + vs_age + male_female + nonbinary_mf 
                + (pDem_Rep + pParty_Ind | pid),
                data = d)

party_label <- c("party_factor = Democrat" = "Democrat", "party_factor = Independent" = "Independent","party_factor = Republican" = "Republican")

interact_plot(PEL.m18.plot, pred = GCB, modx = NFC, interval = T,
              legend.main = "Generic Conspiracist
Beliefs") +
  theme_bw() +
  coord_cartesian(ylim = c(1,5)) +
  scale_x_continuous(breaks = seq(-3,3,1)) +
  labs(x = "Need for Cognition",
       y = "Perceived Election Legitimacy")

Summary

Conspiracism negatively predicted (b = -0.28, 95% CI = [-0.33, -0.23], t(1085.6) = -11.63, p < .001) and need for cognition positively predicted (b = 0.09, 95% CI = [0.04, 0.15], t(754.5) = 3.27, p = .001) election legitimacy, collapsing across time and partisan identity. There was also an interaction of conspiracism and need for cognition (b = 0.09, 95% CI = [0.04, 0.15], t(483.0) = 3.47, p = .001), such that the need for cognition-perceived election legitimacy relationship becomes less positive as conspiracism increases.

In the context of the full model, there were higher-order interactions involving partisan identity, time, and both conspiracism (b = 0.28, 95% CI = [0.17, 0.39], t(5725.9) = 5.10, p < .001) and need for cognition (b = -0.12, 95% CI = [-0.21, -0.03], t(5549.7) = -2.52, p = .012). Specifically, conspiracism became slightly more predictive for Democrats (b = 0.09, 95% CI = [0.02, 0.15], t(5462.1) = 2.66, p = .008) and less negatively predictive for Republicans (b = -0.22, 95% CI = [-0.30, -0.14], t(5482.1) = -5.54, p < .001), from wave 1 to wave 2, while need for cognition attenuated somewhat in strength for Republicans (b = 0.13, 95% CI = [0.04, 0.22], t(5463.4) = 2.85, p = .004) and did not change in predictive strength for Democrats (p = .51) from wave 1 to wave 2; changes between other waves were not significant (all p’s > .10).

Models

Main Model

PEL.m18 <- lmer(voteconfidence ~ (pDem_Rep + pParty_Ind) * (wave.lin + wave.quad + wave.cub) 
                * GCB * NFC
                + vs_race + vs_age + male_female + nonbinary_mf 
                + (GCB + NFC | pid),
                data = d)
tab_model(PEL.m18, show.stat = T, show.df = T, df.method = "satterthwaite")
  voteconfidence
Predictors Estimates CI Statistic p df
(Intercept) 2.96 2.76 – 3.16 29.54 <0.001 2070.72
pDem Rep -0.11 -0.19 – -0.03 -2.81 0.005 2729.30
pParty Ind -0.38 -0.48 – -0.29 -7.82 <0.001 4898.55
wave lin 0.13 0.07 – 0.19 4.29 <0.001 5785.97
wave quad 0.21 0.17 – 0.26 9.26 <0.001 5592.24
wave cub -0.07 -0.13 – -0.02 -2.60 0.009 5562.74
GCB -0.28 -0.33 – -0.23 -11.63 <0.001 1085.62
NFC 0.09 0.04 – 0.15 3.27 0.001 754.54
vs race [Black] -0.17 -0.28 – -0.05 -2.84 0.005 2223.54
vs race [Hispanic] -0.03 -0.16 – 0.09 -0.56 0.578 2192.89
vs race [Other] -0.06 -0.20 – 0.08 -0.91 0.365 2042.41
vs age 0.01 0.00 – 0.01 4.58 <0.001 2079.49
male female -0.34 -0.42 – -0.27 -9.20 <0.001 2130.21
nonbinary mf 0.53 0.07 – 1.00 2.27 0.023 1820.05
pDem Rep × wave lin 1.15 1.04 – 1.25 21.49 <0.001 5752.91
pDem Rep × wave quad 0.52 0.44 – 0.59 12.96 <0.001 5574.29
pDem Rep × wave cub -0.63 -0.73 – -0.54 -13.21 <0.001 5534.67
pParty Ind × wave lin 0.04 -0.12 – 0.19 0.48 0.632 5853.78
pParty Ind × wave quad 0.03 -0.09 – 0.14 0.43 0.671 5679.30
pParty Ind × wave cub 0.12 -0.02 – 0.27 1.65 0.099 5645.34
pDem Rep × GCB 0.07 -0.01 – 0.15 1.71 0.088 1166.16
pParty Ind × GCB -0.10 -0.20 – 0.01 -1.71 0.087 1898.14
wave lin × GCB 0.09 0.03 – 0.16 2.87 0.004 5758.89
wave quad × GCB 0.05 -0.00 – 0.10 1.94 0.053 5557.68
wave cub × GCB -0.02 -0.08 – 0.04 -0.68 0.499 5559.25
pDem Rep × NFC 0.05 -0.05 – 0.14 0.97 0.333 804.40
pParty Ind × NFC -0.09 -0.21 – 0.03 -1.40 0.163 1610.51
wave lin × NFC -0.03 -0.11 – 0.04 -0.94 0.350 5733.05
wave quad × NFC -0.03 -0.09 – 0.02 -1.19 0.233 5615.94
wave cub × NFC 0.02 -0.05 – 0.09 0.58 0.565 5551.96
GCB × NFC 0.09 0.04 – 0.15 3.47 0.001 483.02
(pDem Rep × wave lin) ×
GCB
0.28 0.17 – 0.39 5.10 <0.001 5725.87
(pDem Rep × wave quad) ×
GCB
0.12 0.03 – 0.20 2.82 0.005 5571.44
(pDem Rep × wave cub) ×
GCB
-0.16 -0.26 – -0.06 -3.28 0.001 5529.16
(pParty Ind × wave lin) ×
GCB
0.03 -0.14 – 0.20 0.32 0.746 5799.91
(pParty Ind × wave quad)
× GCB
0.04 -0.09 – 0.17 0.60 0.551 5613.13
(pParty Ind × wave cub) ×
GCB
-0.01 -0.17 – 0.14 -0.18 0.860 5615.16
(pDem Rep × wave lin) ×
NFC
-0.11 -0.24 – 0.01 -1.77 0.077 5680.92
(pDem Rep × wave quad) ×
NFC
-0.12 -0.21 – -0.03 -2.52 0.012 5549.71
(pDem Rep × wave cub) ×
NFC
0.01 -0.10 – 0.12 0.20 0.839 5521.51
(pParty Ind × wave lin) ×
NFC
0.07 -0.12 – 0.27 0.77 0.442 5775.99
(pParty Ind × wave quad)
× NFC
0.02 -0.12 – 0.16 0.28 0.783 5686.53
(pParty Ind × wave cub) ×
NFC
0.07 -0.11 – 0.24 0.77 0.440 5614.65
(pDem Rep × GCB) × NFC -0.06 -0.14 – 0.03 -1.28 0.202 701.06
(pParty Ind × GCB) × NFC 0.03 -0.09 – 0.15 0.44 0.663 921.31
(wave lin × GCB) × NFC -0.04 -0.12 – 0.03 -1.08 0.282 5658.24
(wave quad × GCB) × NFC 0.03 -0.03 – 0.08 0.96 0.337 5595.32
(wave cub × GCB) × NFC -0.01 -0.08 – 0.05 -0.43 0.666 5604.11
(pDem Rep × wave lin ×
GCB) × NFC
-0.06 -0.18 – 0.06 -0.98 0.330 5676.04
(pDem Rep × wave quad ×
GCB) × NFC
0.02 -0.06 – 0.11 0.52 0.600 5564.42
(pDem Rep × wave cub ×
GCB) × NFC
0.09 -0.01 – 0.20 1.78 0.075 5530.62
(pParty Ind × wave lin ×
GCB) × NFC
-0.04 -0.25 – 0.17 -0.38 0.704 5520.34
(pParty Ind × wave quad ×
GCB) × NFC
-0.07 -0.22 – 0.07 -1.00 0.319 5618.16
(pParty Ind × wave cub ×
GCB) × NFC
-0.13 -0.31 – 0.04 -1.50 0.133 5620.60
Random Effects
σ2 0.54
τ00 pid 0.51
τ11 pid.GCB 0.04
τ11 pid.NFC 0.05
ρ01 0.51
-0.05
ICC 0.52
N pid 2249
Observations 7722
Marginal R2 / Conditional R2 0.204 / 0.621

Party ID-specific Effects Centered at Wave 2

PEL.m18.w2.d <- lmer(voteconfidence ~ (pDem_R + pDem_I) * (wave2_1 + wave2_3 + wave2_4) 
                * GCB * NFC
                + vs_race + vs_age + male_female + nonbinary_mf 
                + (GCB + NFC | pid),
                data = d)

tab_model(PEL.m18.w2.d, show.stat = T, show.df = T, df.method = "satterthwaite")
  voteconfidence
Predictors Estimates CI Statistic p df
(Intercept) 3.13 2.93 – 3.33 30.44 <0.001 2243.32
pDem R 0.18 0.08 – 0.27 3.66 <0.001 5191.37
pDem I -0.35 -0.49 – -0.21 -4.95 <0.001 7174.94
wave2 1 0.32 0.26 – 0.38 9.96 <0.001 5473.63
wave2 3 -0.02 -0.09 – 0.04 -0.73 0.466 5551.72
wave2 4 -0.24 -0.31 – -0.16 -6.00 <0.001 5699.57
GCB -0.31 -0.38 – -0.25 -9.70 <0.001 2226.70
NFC 0.11 0.03 – 0.19 2.83 0.005 1793.35
vs race [Black] -0.17 -0.28 – -0.05 -2.84 0.005 2223.54
vs race [Hispanic] -0.03 -0.16 – 0.09 -0.56 0.578 2192.89
vs race [Other] -0.06 -0.20 – 0.08 -0.91 0.364 2042.41
vs age 0.01 0.00 – 0.01 4.58 <0.001 2079.49
male female -0.34 -0.42 – -0.27 -9.20 <0.001 2130.21
nonbinary mf 0.53 0.07 – 1.00 2.27 0.023 1820.04
pDem R × wave2 1 -1.28 -1.38 – -1.18 -25.42 <0.001 5491.23
pDem R × wave2 3 -0.06 -0.16 – 0.04 -1.18 0.239 5561.61
pDem R × wave2 4 0.19 0.07 – 0.30 3.07 0.002 5709.67
pDem I × wave2 1 -0.58 -0.74 – -0.43 -7.34 <0.001 5620.17
pDem I × wave2 3 0.11 -0.06 – 0.28 1.30 0.192 5678.30
pDem I × wave2 4 0.13 -0.06 – 0.31 1.34 0.180 5793.38
pDem R × GCB 0.14 0.04 – 0.23 2.74 0.006 2562.25
pDem I × GCB -0.01 -0.16 – 0.15 -0.10 0.922 3973.88
wave2 1 × GCB 0.09 0.02 – 0.15 2.66 0.008 5462.11
wave2 3 × GCB 0.04 -0.03 – 0.10 1.10 0.271 5539.41
wave2 4 × GCB -0.00 -0.08 – 0.08 -0.07 0.948 5688.83
pDem R × NFC 0.01 -0.11 – 0.12 0.15 0.880 1809.10
pDem I × NFC -0.12 -0.29 – 0.05 -1.44 0.150 2967.74
wave2 1 × NFC -0.03 -0.10 – 0.05 -0.67 0.506 5472.45
wave2 3 × NFC -0.01 -0.09 – 0.07 -0.28 0.782 5512.58
wave2 4 × NFC -0.02 -0.12 – 0.07 -0.52 0.600 5653.94
GCB × NFC 0.14 0.07 – 0.21 3.99 <0.001 1007.75
(pDem R × wave2 1) × GCB -0.31 -0.41 – -0.21 -5.96 <0.001 5486.85
(pDem R × wave2 3) × GCB -0.02 -0.13 – 0.08 -0.39 0.696 5551.60
(pDem R × wave2 4) × GCB 0.06 -0.07 – 0.18 0.88 0.377 5695.24
(pDem I × wave2 1) × GCB -0.21 -0.38 – -0.04 -2.48 0.013 5568.71
(pDem I × wave2 3) × GCB -0.01 -0.19 – 0.17 -0.12 0.908 5659.30
(pDem I × wave2 4) × GCB 0.01 -0.19 – 0.21 0.06 0.950 5720.02
(pDem R × wave2 1) × NFC 0.16 0.04 – 0.27 2.59 0.010 5475.42
(pDem R × wave2 3) × NFC -0.04 -0.17 – 0.08 -0.72 0.472 5525.94
(pDem R × wave2 4) × NFC 0.04 -0.10 – 0.18 0.53 0.597 5653.65
(pDem I × wave2 1) × NFC 0.09 -0.09 – 0.27 0.98 0.329 5617.29
(pDem I × wave2 3) × NFC 0.08 -0.12 – 0.29 0.82 0.411 5641.28
(pDem I × wave2 4) × NFC 0.07 -0.15 – 0.30 0.62 0.532 5747.61
(pDem R × GCB) × NFC -0.08 -0.18 – 0.03 -1.42 0.155 1480.89
(pDem I × GCB) × NFC 0.03 -0.13 – 0.18 0.34 0.732 1089.66
(wave2 1 × GCB) × NFC -0.05 -0.12 – 0.02 -1.49 0.136 5472.53
(wave2 3 × GCB) × NFC -0.02 -0.09 – 0.05 -0.46 0.642 5503.14
(wave2 4 × GCB) × NFC -0.04 -0.13 – 0.04 -0.99 0.321 5645.28
(pDem R × wave2 1 × GCB)
× NFC
0.06 -0.05 – 0.17 1.13 0.259 5493.61
(pDem R × wave2 3 × GCB)
× NFC
0.06 -0.05 – 0.18 1.15 0.250 5519.94
(pDem R × wave2 4 × GCB)
× NFC
-0.04 -0.18 – 0.09 -0.63 0.526 5656.10
(pDem I × wave2 1 × GCB)
× NFC
0.01 -0.15 – 0.18 0.18 0.857 5521.96
(pDem I × wave2 3 × GCB)
× NFC
-0.12 -0.32 – 0.08 -1.20 0.231 5332.29
(pDem I × wave2 4 × GCB)
× NFC
-0.01 -0.25 – 0.23 -0.09 0.925 5698.79
Random Effects
σ2 0.54
τ00 pid 0.51
τ11 pid.GCB 0.04
τ11 pid.NFC 0.05
ρ01 0.51
-0.05
ICC 0.52
N pid 2249
Observations 7722
Marginal R2 / Conditional R2 0.204 / 0.621
PEL.m18.w2.r <- lmer(voteconfidence ~ (pRep_D + pRep_I) * (wave2_1 + wave2_3 + wave2_4) 
                * GCB * NFC
                + vs_race + vs_age + male_female + nonbinary_mf 
                + (GCB + NFC | pid),
                data = d)

tab_model(PEL.m18.w2.r, show.stat = T, show.df = T, df.method = "satterthwaite")
  voteconfidence
Predictors Estimates CI Statistic p df
(Intercept) 3.31 3.10 – 3.51 31.31 <0.001 2328.75
pRep D -0.18 -0.27 – -0.08 -3.66 <0.001 5191.44
pRep I -0.53 -0.68 – -0.39 -7.18 <0.001 6772.24
wave2 1 -0.96 -1.03 – -0.88 -24.88 <0.001 5479.49
wave2 3 -0.09 -0.16 – -0.01 -2.16 0.031 5557.01
wave2 4 -0.05 -0.14 – 0.04 -1.11 0.268 5706.75
GCB -0.18 -0.25 – -0.10 -4.57 <0.001 2299.69
NFC 0.12 0.03 – 0.21 2.65 0.008 1414.70
vs race [Black] -0.17 -0.28 – -0.05 -2.84 0.005 2223.53
vs race [Hispanic] -0.03 -0.16 – 0.09 -0.56 0.578 2192.87
vs race [Other] -0.06 -0.20 – 0.08 -0.91 0.365 2042.40
vs age 0.01 0.00 – 0.01 4.58 <0.001 2079.47
male female -0.34 -0.42 – -0.27 -9.20 <0.001 2130.20
nonbinary mf 0.53 0.07 – 1.00 2.27 0.023 1820.04
pRep D × wave2 1 1.28 1.18 – 1.38 25.42 <0.001 5491.23
pRep D × wave2 3 0.06 -0.04 – 0.16 1.18 0.239 5561.62
pRep D × wave2 4 -0.19 -0.30 – -0.07 -3.07 0.002 5709.67
pRep I × wave2 1 0.70 0.53 – 0.86 8.47 <0.001 5616.70
pRep I × wave2 3 0.17 0.00 – 0.34 1.97 0.049 5666.48
pRep I × wave2 4 -0.06 -0.25 – 0.13 -0.61 0.541 5792.84
pRep D × GCB -0.14 -0.23 – -0.04 -2.74 0.006 2562.18
pRep I × GCB -0.14 -0.30 – 0.01 -1.78 0.076 4041.13
wave2 1 × GCB -0.22 -0.30 – -0.14 -5.54 <0.001 5482.07
wave2 3 × GCB 0.02 -0.06 – 0.10 0.39 0.694 5549.77
wave2 4 × GCB 0.05 -0.04 – 0.15 1.09 0.274 5694.61
pRep D × NFC -0.01 -0.12 – 0.11 -0.15 0.880 1809.03
pRep I × NFC -0.13 -0.31 – 0.04 -1.49 0.138 2688.62
wave2 1 × NFC 0.13 0.04 – 0.22 2.85 0.004 5463.43
wave2 3 × NFC -0.06 -0.15 – 0.04 -1.18 0.237 5525.65
wave2 4 × NFC 0.01 -0.09 – 0.12 0.24 0.807 5649.29
GCB × NFC 0.06 -0.02 – 0.15 1.46 0.143 1184.58
(pRep D × wave2 1) × GCB 0.31 0.21 – 0.41 5.96 <0.001 5486.86
(pRep D × wave2 3) × GCB 0.02 -0.08 – 0.13 0.39 0.696 5551.61
(pRep D × wave2 4) × GCB -0.06 -0.18 – 0.07 -0.88 0.377 5695.25
(pRep I × wave2 1) × GCB 0.10 -0.08 – 0.27 1.10 0.269 5579.76
(pRep I × wave2 3) × GCB 0.01 -0.18 – 0.20 0.11 0.914 5651.17
(pRep I × wave2 4) × GCB -0.05 -0.26 – 0.16 -0.46 0.642 5725.02
(pRep D × wave2 1) × NFC -0.16 -0.27 – -0.04 -2.59 0.010 5475.43
(pRep D × wave2 3) × NFC 0.04 -0.08 – 0.17 0.72 0.472 5525.95
(pRep D × wave2 4) × NFC -0.04 -0.18 – 0.10 -0.53 0.597 5653.66
(pRep I × wave2 1) × NFC -0.06 -0.25 – 0.12 -0.68 0.497 5599.44
(pRep I × wave2 3) × NFC 0.13 -0.08 – 0.34 1.22 0.222 5637.45
(pRep I × wave2 4) × NFC 0.03 -0.20 – 0.27 0.29 0.773 5744.36
(pRep D × GCB) × NFC 0.08 -0.03 – 0.18 1.42 0.155 1480.86
(pRep I × GCB) × NFC 0.11 -0.06 – 0.27 1.26 0.209 1250.71
(wave2 1 × GCB) × NFC 0.01 -0.07 – 0.09 0.23 0.816 5486.84
(wave2 3 × GCB) × NFC 0.05 -0.04 – 0.13 1.11 0.268 5525.69
(wave2 4 × GCB) × NFC -0.09 -0.19 – 0.02 -1.64 0.101 5663.59
(pRep D × wave2 1 × GCB)
× NFC
-0.06 -0.17 – 0.05 -1.13 0.259 5493.62
(pRep D × wave2 3 × GCB)
× NFC
-0.06 -0.18 – 0.05 -1.15 0.250 5519.95
(pRep D × wave2 4 × GCB)
× NFC
0.04 -0.09 – 0.18 0.63 0.526 5656.10
(pRep I × wave2 1 × GCB)
× NFC
-0.05 -0.21 – 0.12 -0.55 0.580 5531.56
(pRep I × wave2 3 × GCB)
× NFC
-0.19 -0.39 – 0.02 -1.79 0.073 5371.87
(pRep I × wave2 4 × GCB)
× NFC
0.03 -0.22 – 0.28 0.25 0.801 5698.76
Random Effects
σ2 0.54
τ00 pid 0.51
τ11 pid.GCB 0.04
τ11 pid.NFC 0.05
ρ01 0.51
-0.05
ICC 0.52
N pid 2249
Observations 7722
Marginal R2 / Conditional R2 0.204 / 0.621

b. Elite Representativeness

ggplot(d[!is.na(d$party_factor),], aes(x=representation_Dem, fill = party_factor)) +
  geom_density(color="black", alpha=0.5, position = 'identity') +
  theme_bw() +
  scale_fill_manual("Participant Party ID",
                    values = c("#1696d2","grey","#db2b27")) +
  labs(x = "Representation (Democratic elites)") +
  scale_x_continuous(breaks = seq(1,7,1)) 

ggplot(d[!is.na(d$party_factor),], aes(x=representation_Rep, fill = party_factor)) +
  geom_density(color="black", alpha=0.5, position = 'identity') +
  theme_bw() +
  scale_fill_manual("Participant Party ID",
                    values = c("#1696d2","grey","#db2b27")) +
  labs(x = "Representation (Republican elites)") +
  scale_x_continuous(breaks = seq(1,7,1)) 

ggplot(d[!is.na(d$party_factor),], 
       aes(x = representation_Rep,
           y = representation_Dem)) +
  geom_jitter(size = .2, alpha = .3) +
  geom_smooth(method = "lm", color = "#69b3a2") +
  theme_bw() +
  labs(x = "Representation (Republican elites)",
       y = "Representation (Democratic elites)") +
  scale_x_continuous(breaks = seq(1,5,1)) +
  scale_y_continuous(breaks = seq(1,5,1)) +
  coord_cartesian(ylim = c(1,5)) +
  facet_wrap(~party_factor)

ggplot(d[!is.na(d$party_factor),],
       aes(x = representation_Dem, 
                  y = voteconfidence, 
                  fill = party_factor,
                  color = party_factor)) +
  geom_jitter(size = .2, alpha = .4) +
  geom_smooth(method = "lm", se = F) +
  labs(x = "Representation (Democratic elites)",
       y = "Perceived Election Legitimacy") +
  scale_fill_manual("Participant Party ID", 
                    values = c("#1696d2","black","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","black","#db2b27")) +
  theme_bw() +
  coord_cartesian(ylim = c(1,5), xlim = c(1,5)) +
  scale_x_continuous(breaks = seq(1,5,1)) 

ggplot(d[!is.na(d$party_factor),]) +
  geom_smooth(aes(x = representation_Dem, 
                  y = voteconfidence, 
                  fill = party_factor,
                  color = party_factor),
              method = "lm") +
  facet_wrap(~wave, labeller = as_labeller(wave_label)) +
  labs(x = "Representation (Democratic elites)",
       y = "Perceived Election Legitimacy") +
  scale_fill_manual("Participant Party ID", 
                    values = c("#1696d2","grey","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","grey","#db2b27")) +
  theme_bw() +
  coord_cartesian(ylim = c(1,5)) +
  scale_x_continuous(breaks = seq(1,7,1))

ggplot(d[!is.na(d$party_factor),],
       aes(x = representation_Dem, 
           y = voteconfidence, 
           fill = party_factor,
           color = party_factor)) +
  geom_jitter(height = .2, width =.2, alpha=0.4, size = .2, show.legend = F ) +
  geom_smooth(method = "lm", se = F) +
  facet_wrap(~wave, labeller = as_labeller(wave_label)) +
  labs(x = "Representation (Democratic elites)",
       y = "Perceived Election Legitimacy") +
  scale_fill_manual("Participant Party ID", 
                    values = c("#1696d2","grey","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","grey","#db2b27")) +
  theme_bw() +
  coord_cartesian(ylim = c(1,5)) +
  scale_x_continuous(breaks = seq(1,7,1))

ggplot(d[!is.na(d$party_factor),],
       aes(x = representation_Rep, 
                  y = voteconfidence, 
                  fill = party_factor,
                  color = party_factor)) +
  geom_jitter(size = .2, alpha = .4) +
  geom_smooth(method = "lm", se = F) +
  labs(x = "Representation (Republican elites)",
       y = "Perceived Election Legitimacy") +
  scale_fill_manual("Participant Party ID", 
                    values = c("#1696d2","black","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","black","#db2b27")) +
  theme_bw() +
  coord_cartesian(ylim = c(1,5), xlim = c(1,5)) +
  scale_x_continuous(breaks = seq(1,5,1)) 

ggplot(d[!is.na(d$party_factor),]) +
  geom_smooth(aes(x = representation_Rep, 
                  y = voteconfidence, 
                  fill = party_factor,
                  color = party_factor),
              method = "lm") +
  facet_wrap(~wave, labeller = as_labeller(wave_label)) +
  labs(x = "Representation (Republican elites)",
       y = "Perceived Election Legitimacy") +
  scale_fill_manual("Participant Party ID", 
                    values = c("#1696d2","grey","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","grey","#db2b27")) +
  theme_bw() +
  coord_cartesian(ylim = c(1,5)) +
  scale_x_continuous(breaks = seq(1,7,1))

ggplot(d[!is.na(d$party_factor),],
       aes(x = representation_Rep, 
           y = voteconfidence, 
           fill = party_factor,
           color = party_factor)) +
  geom_jitter(height = .2, width =.2, alpha=0.4, size = .2, show.legend = F ) +
  geom_smooth(method = "lm", se = F) +
  facet_wrap(~wave, labeller = as_labeller(wave_label)) +
  labs(x = "Representation (Republican elites)",
       y = "Perceived Election Legitimacy") +
  scale_fill_manual("Participant Party ID", 
                    values = c("#1696d2","grey","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","grey","#db2b27")) +
  theme_bw() +
  coord_cartesian(ylim = c(1,5)) +
  scale_x_continuous(breaks = seq(1,7,1))

Summary

The extent to which participants perceived Democratic and Republican partisan elites as representing their constituency differentially predicted perceived election legitimacy over the course of the study. Collapsing across partisan identity and time, Democratic elite representativeness positively predicted perceived election legitimacy (b = 0.18, 95% CI = [0.13, 0.23], t(1934.1) = 6.92, p < .001). The strength of this relationship changed over linear time (b = -0.10, 95% CI = [-0.16, -0.04], t(3812.3) = -3.13, p = .002), and there were differences in quadratic change over time for Democrats and Republicans (b = -0.13, 95% CI = [-0.21, -0.06], t(3775.5) = -3.48, p = .001).

The Democratic elite representativeness-perceived election legitimacy relationship weakened linearly for Democrats (b = -0.12, 95% CI = [-0.18, -0.05], t(3772.6) = -3.49, p < .001) and for Republicans (b = -0.14, 95% CI = [-0.21, -0.07], t(3778.2) = -4.12, p < .001).

Republican elite representativeness was not predictive of perceived election legitimacy when collapsing across time and partisan identity (p = .06), but the overall relationship became more predictive over linear time (b = 0.15, 95% CI = [0.10, 0.21], t(3809.6) = 5.28, p < .001). This change primarily occurred from wave 1 to wave 2 (b = 0.09, 95% CI = [0.04, 0.13], t(3775.8) = 3.56, p < .001), where Republican representativeness was predictive of perceived election legitimacy for Republicans (b = 0.15, 95% CI = [0.08, 0.21], t(3405.8) = 4.30, p < .001), though not for Democrats (p = .89).

Models

Main Model

PEL.m10 <- lmer(voteconfidence ~ (pDem_Rep + pParty_Ind) * (representation_Dem + representation_Rep) * (wave.lin + wave.quad + wave.cub) 
                + vs_race + vs_age + male_female + nonbinary_mf
                + (1|pid), 
               data = d)
tab_model(PEL.m10, show.stat = T, show.df = T, df.method = "satterthwaite")
  voteconfidence
Predictors Estimates CI Statistic p df
(Intercept) 2.41 2.10 – 2.72 15.27 <0.001 1275.39
pDem Rep -0.33 -0.63 – -0.03 -2.16 0.031 2237.66
pParty Ind -0.34 -0.64 – -0.03 -2.15 0.032 3778.53
representation Dem 0.18 0.13 – 0.23 6.92 <0.001 1934.13
representation Rep 0.05 -0.00 – 0.09 1.87 0.061 1817.89
wave lin 0.04 -0.13 – 0.21 0.45 0.656 3781.08
wave quad 0.36 0.22 – 0.50 5.15 <0.001 3778.23
wave cub -0.22 -0.40 – -0.05 -2.51 0.012 3771.77
vs race [Black] -0.38 -0.54 – -0.22 -4.63 <0.001 1265.11
vs race [Hispanic] 0.03 -0.14 – 0.20 0.37 0.715 1249.14
vs race [Other] -0.09 -0.27 – 0.10 -0.94 0.349 1250.01
vs age 0.01 0.00 – 0.01 4.10 <0.001 1257.07
male female -0.34 -0.44 – -0.24 -6.67 <0.001 1247.49
nonbinary mf 0.20 -0.46 – 0.86 0.60 0.550 1250.28
pDem Rep × representation
Dem
-0.01 -0.09 – 0.07 -0.26 0.793 1895.91
pDem Rep × representation
Rep
0.05 -0.02 – 0.13 1.35 0.178 2010.67
pParty Ind ×
representation Dem
0.11 -0.00 – 0.23 1.93 0.054 4136.04
pParty Ind ×
representation Rep
-0.09 -0.20 – 0.01 -1.72 0.086 3938.19
pDem Rep × wave lin 1.10 0.74 – 1.45 6.06 <0.001 3791.59
pDem Rep × wave quad 0.63 0.35 – 0.91 4.40 <0.001 3783.47
pDem Rep × wave cub -0.59 -0.94 – -0.24 -3.27 0.001 3778.80
pParty Ind × wave lin -0.25 -0.68 – 0.17 -1.17 0.242 3841.39
pParty Ind × wave quad 0.24 -0.10 – 0.58 1.39 0.165 3832.37
pParty Ind × wave cub 0.09 -0.34 – 0.52 0.41 0.683 3815.34
representation Dem × wave
lin
-0.10 -0.16 – -0.04 -3.13 0.002 3812.25
representation Dem × wave
quad
-0.10 -0.15 – -0.05 -3.99 <0.001 3801.24
representation Dem × wave
cub
0.07 0.01 – 0.13 2.17 0.030 3818.47
representation Rep × wave
lin
0.15 0.10 – 0.21 5.28 <0.001 3809.58
representation Rep × wave
quad
0.05 0.00 – 0.09 2.07 0.038 3793.85
representation Rep × wave
cub
-0.02 -0.08 – 0.03 -0.86 0.390 3796.36
(pDem Rep ×
representation Dem) ×
wave lin
-0.02 -0.12 – 0.07 -0.49 0.626 3779.68
(pDem Rep ×
representation Dem) ×
wave quad
-0.13 -0.21 – -0.06 -3.48 0.001 3775.50
(pDem Rep ×
representation Dem) ×
wave cub
0.07 -0.02 – 0.16 1.48 0.139 3775.37
(pDem Rep ×
representation Rep) ×
wave lin
0.00 -0.09 – 0.09 0.01 0.992 3786.85
(pDem Rep ×
representation Rep) ×
wave quad
0.08 0.01 – 0.16 2.30 0.021 3779.18
(pDem Rep ×
representation Rep) ×
wave cub
-0.06 -0.15 – 0.03 -1.38 0.167 3775.03
(pParty Ind ×
representation Dem) ×
wave lin
0.09 -0.08 – 0.26 1.07 0.284 3848.67
(pParty Ind ×
representation Dem) ×
wave quad
-0.13 -0.26 – 0.00 -1.96 0.051 3828.93
(pParty Ind ×
representation Dem) ×
wave cub
-0.01 -0.18 – 0.16 -0.09 0.929 3861.28
(pParty Ind ×
representation Rep) ×
wave lin
0.06 -0.09 – 0.21 0.74 0.457 3848.80
(pParty Ind ×
representation Rep) ×
wave quad
0.06 -0.06 – 0.18 1.05 0.295 3833.79
(pParty Ind ×
representation Rep) ×
wave cub
0.03 -0.12 – 0.18 0.40 0.691 3829.33
Random Effects
σ2 0.52
τ00 pid 0.64
ICC 0.55
N pid 1265
Observations 5060
Marginal R2 / Conditional R2 0.173 / 0.627

Main Model with by party ID-specific Effects

PEL.m10.d <- lmer(voteconfidence ~ (pDem_R + pDem_I) * (representation_Dem + representation_Rep) * (wave.lin + wave.quad + wave.cub)
                   + vs_race + vs_age + male_female + nonbinary_mf
                   + (1 | pid), 
               data = d)
tab_model(PEL.m10.d, show.stat = T, show.df = T, df.method = "satterthwaite")
  voteconfidence
Predictors Estimates CI Statistic p df
(Intercept) 2.68 2.35 – 3.02 15.77 <0.001 1389.38
pDem R -0.33 -0.63 – -0.03 -2.16 0.031 2237.66
pDem I -0.50 -0.84 – -0.16 -2.92 0.003 3394.82
representation Dem 0.15 0.09 – 0.21 4.86 <0.001 1586.98
representation Rep 0.05 -0.00 – 0.10 1.83 0.068 1530.61
wave lin -0.43 -0.66 – -0.19 -3.54 <0.001 3777.62
wave quad -0.03 -0.22 – 0.15 -0.35 0.726 3778.54
wave cub 0.04 -0.19 – 0.28 0.35 0.727 3773.04
vs race [Black] -0.38 -0.54 – -0.22 -4.63 <0.001 1265.11
vs race [Hispanic] 0.03 -0.14 – 0.20 0.37 0.715 1249.14
vs race [Other] -0.09 -0.27 – 0.10 -0.94 0.349 1250.01
vs age 0.01 0.00 – 0.01 4.10 <0.001 1257.07
male female -0.34 -0.44 – -0.24 -6.67 <0.001 1247.49
nonbinary mf 0.20 -0.46 – 0.86 0.60 0.550 1250.28
pDem R × representation
Dem
-0.01 -0.09 – 0.07 -0.26 0.793 1895.91
pDem R × representation
Rep
0.05 -0.02 – 0.13 1.35 0.178 2010.67
pDem I × representation
Dem
0.11 -0.02 – 0.23 1.71 0.087 3664.72
pDem I × representation
Rep
-0.07 -0.18 – 0.05 -1.15 0.249 3599.22
pDem R × wave lin 1.10 0.74 – 1.45 6.06 <0.001 3791.59
pDem R × wave quad 0.63 0.35 – 0.91 4.40 <0.001 3783.47
pDem R × wave cub -0.59 -0.94 – -0.24 -3.27 0.001 3778.80
pDem I × wave lin 0.29 -0.16 – 0.75 1.28 0.202 3829.90
pDem I × wave quad 0.55 0.19 – 0.91 3.01 0.003 3826.05
pDem I × wave cub -0.20 -0.66 – 0.25 -0.88 0.380 3809.71
representation Dem × wave
lin
-0.12 -0.18 – -0.05 -3.49 <0.001 3772.57
representation Dem × wave
quad
0.01 -0.04 – 0.06 0.40 0.692 3770.73
representation Dem × wave
cub
0.04 -0.03 – 0.10 1.08 0.280 3771.28
representation Rep × wave
lin
0.13 0.07 – 0.19 4.50 <0.001 3773.81
representation Rep × wave
quad
-0.02 -0.06 – 0.03 -0.71 0.477 3770.43
representation Rep × wave
cub
-0.00 -0.06 – 0.05 -0.09 0.929 3767.99
(pDem R × representation
Dem) × wave lin
-0.02 -0.12 – 0.07 -0.49 0.626 3779.68
(pDem R × representation
Dem) × wave quad
-0.13 -0.21 – -0.06 -3.48 0.001 3775.50
(pDem R × representation
Dem) × wave cub
0.07 -0.02 – 0.16 1.48 0.139 3775.37
(pDem R × representation
Rep) × wave lin
0.00 -0.09 – 0.09 0.01 0.992 3786.85
(pDem R × representation
Rep) × wave quad
0.08 0.01 – 0.16 2.30 0.021 3779.18
(pDem R × representation
Rep) × wave cub
-0.06 -0.15 – 0.03 -1.38 0.167 3775.03
(pDem I × representation
Dem) × wave lin
0.08 -0.09 – 0.25 0.90 0.367 3839.49
(pDem I × representation
Dem) × wave quad
-0.20 -0.34 – -0.06 -2.83 0.005 3821.80
(pDem I × representation
Dem) × wave cub
0.03 -0.15 – 0.20 0.31 0.759 3853.90
(pDem I × representation
Rep) × wave lin
0.06 -0.10 – 0.21 0.73 0.467 3842.68
(pDem I × representation
Rep) × wave quad
0.11 -0.02 – 0.23 1.70 0.089 3829.18
(pDem I × representation
Rep) × wave cub
-0.00 -0.16 – 0.15 -0.02 0.982 3824.52
Random Effects
σ2 0.52
τ00 pid 0.64
ICC 0.55
N pid 1265
Observations 5060
Marginal R2 / Conditional R2 0.173 / 0.627
PEL.m10.r <- lmer(voteconfidence ~ (pRep_D + pRep_I) * (representation_Dem + representation_Rep) * (wave.lin + wave.quad + wave.cub)
                   + vs_race + vs_age + male_female + nonbinary_mf
                   + (1 | pid), 
               data = d)
tab_model(PEL.m10.r, show.stat = T, show.df = T, df.method = "satterthwaite")
  voteconfidence
Predictors Estimates CI Statistic p df
(Intercept) 2.36 2.00 – 2.72 12.82 <0.001 1489.77
pRep D 0.33 0.03 – 0.63 2.16 0.031 2237.66
pRep I -0.17 -0.52 – 0.17 -0.97 0.330 3487.80
representation Dem 0.14 0.08 – 0.20 4.45 <0.001 1633.04
representation Rep 0.10 0.04 – 0.16 3.28 0.001 1767.24
wave lin 0.67 0.41 – 0.94 4.97 <0.001 3791.75
wave quad 0.59 0.39 – 0.80 5.59 <0.001 3776.84
wave cub -0.55 -0.81 – -0.28 -4.08 <0.001 3775.35
vs race [Black] -0.38 -0.54 – -0.22 -4.63 <0.001 1265.11
vs race [Hispanic] 0.03 -0.14 – 0.20 0.37 0.715 1249.14
vs race [Other] -0.09 -0.27 – 0.10 -0.94 0.349 1250.01
vs age 0.01 0.00 – 0.01 4.10 <0.001 1257.07
male female -0.34 -0.44 – -0.24 -6.67 <0.001 1247.49
nonbinary mf 0.20 -0.46 – 0.86 0.60 0.550 1250.28
pRep D × representation
Dem
0.01 -0.07 – 0.09 0.26 0.793 1895.91
pRep D × representation
Rep
-0.05 -0.13 – 0.02 -1.35 0.178 2010.67
pRep I × representation
Dem
0.12 -0.00 – 0.24 1.93 0.054 4015.06
pRep I × representation
Rep
-0.12 -0.23 – -0.01 -2.05 0.040 3721.63
pRep D × wave lin -1.10 -1.45 – -0.74 -6.06 <0.001 3791.59
pRep D × wave quad -0.63 -0.91 – -0.35 -4.40 <0.001 3783.47
pRep D × wave cub 0.59 0.24 – 0.94 3.27 0.001 3778.80
pRep I × wave lin -0.80 -1.27 – -0.33 -3.35 0.001 3837.84
pRep I × wave quad -0.07 -0.45 – 0.30 -0.39 0.697 3824.49
pRep I × wave cub 0.38 -0.09 – 0.86 1.59 0.111 3810.44
representation Dem × wave
lin
-0.14 -0.21 – -0.07 -4.12 <0.001 3778.16
representation Dem × wave
quad
-0.12 -0.17 – -0.07 -4.49 <0.001 3772.44
representation Dem × wave
cub
0.11 0.04 – 0.17 3.13 0.002 3773.10
representation Rep × wave
lin
0.13 0.06 – 0.20 3.69 <0.001 3785.13
representation Rep × wave
quad
0.07 0.01 – 0.12 2.40 0.017 3776.89
representation Rep × wave
cub
-0.07 -0.14 – 0.00 -1.87 0.062 3774.48
(pRep D × representation
Dem) × wave lin
0.02 -0.07 – 0.12 0.49 0.626 3779.68
(pRep D × representation
Dem) × wave quad
0.13 0.06 – 0.21 3.48 0.001 3775.50
(pRep D × representation
Dem) × wave cub
-0.07 -0.16 – 0.02 -1.48 0.139 3775.37
(pRep D × representation
Rep) × wave lin
-0.00 -0.09 – 0.09 -0.01 0.992 3786.85
(pRep D × representation
Rep) × wave quad
-0.08 -0.16 – -0.01 -2.30 0.021 3779.18
(pRep D × representation
Rep) × wave cub
0.06 -0.03 – 0.15 1.38 0.167 3775.03
(pRep I × representation
Dem) × wave lin
0.10 -0.07 – 0.28 1.16 0.246 3847.78
(pRep I × representation
Dem) × wave quad
-0.07 -0.20 – 0.07 -0.94 0.345 3828.29
(pRep I × representation
Dem) × wave cub
-0.04 -0.22 – 0.13 -0.48 0.633 3856.57
(pRep I × representation
Rep) × wave lin
0.06 -0.10 – 0.22 0.70 0.486 3844.50
(pRep I × representation
Rep) × wave quad
0.02 -0.10 – 0.15 0.33 0.741 3829.21
(pRep I × representation
Rep) × wave cub
0.06 -0.10 – 0.22 0.77 0.442 3824.98
Random Effects
σ2 0.52
τ00 pid 0.64
ICC 0.55
N pid 1265
Observations 5060
Marginal R2 / Conditional R2 0.173 / 0.627

Main Model centered at Wave 1

PEL.m10.w1 <- lmer(voteconfidence ~ (pDem_Rep) * (representation_Dem + representation_Rep) * wave 
                   + vs_race + vs_age + male_female + nonbinary_mf
                   + (1 | pid), 
               data = d)
tab_model(PEL.m10.w1, show.stat = T, show.df = T, df.method = "satterthwaite")
  voteconfidence
Predictors Estimates CI Statistic p df
(Intercept) 2.14 1.81 – 2.47 12.84 <0.001 1569.42
pDem Rep -1.33 -1.71 – -0.94 -6.71 <0.001 4241.59
representation Dem 0.27 0.22 – 0.33 10.33 <0.001 2750.14
representation Rep -0.01 -0.06 – 0.04 -0.44 0.660 2765.06
wave [2] 0.53 0.35 – 0.70 5.88 <0.001 3771.05
wave [3] 0.36 0.19 – 0.54 4.03 <0.001 3772.36
wave [4] 0.22 0.04 – 0.39 2.42 0.016 3775.39
vs race [Black] -0.38 -0.54 – -0.22 -4.62 <0.001 1267.54
vs race [Hispanic] 0.02 -0.15 – 0.20 0.28 0.777 1249.79
vs race [Other] -0.10 -0.28 – 0.09 -1.01 0.312 1251.76
vs age 0.01 0.00 – 0.01 4.07 <0.001 1259.18
male female -0.34 -0.44 – -0.24 -6.57 <0.001 1249.26
nonbinary mf 0.21 -0.46 – 0.87 0.61 0.543 1248.43
pDem Rep × representation
Dem
0.05 -0.05 – 0.16 0.95 0.340 3784.58
pDem Rep × representation
Rep
0.03 -0.07 – 0.12 0.51 0.611 3970.33
pDem Rep × wave [2] 1.33 0.94 – 1.73 6.61 <0.001 3790.80
pDem Rep × wave [3] 1.29 0.90 – 1.69 6.40 <0.001 3794.46
pDem Rep × wave [4] 1.39 1.00 – 1.79 6.86 <0.001 3806.76
representation Dem × wave
[2]
-0.15 -0.20 – -0.10 -5.98 <0.001 3774.34
representation Dem × wave
[3]
-0.15 -0.20 – -0.10 -5.75 <0.001 3774.29
representation Dem × wave
[4]
-0.16 -0.21 – -0.11 -6.28 <0.001 3776.98
representation Rep × wave
[2]
0.09 0.04 – 0.13 3.56 <0.001 3775.77
representation Rep × wave
[3]
0.12 0.07 – 0.17 4.93 <0.001 3776.39
representation Rep × wave
[4]
0.16 0.11 – 0.20 6.49 <0.001 3778.95
(pDem Rep ×
representation Dem) ×
wave [2]
-0.19 -0.29 – -0.08 -3.53 <0.001 3790.77
(pDem Rep ×
representation Dem) ×
wave [3]
-0.12 -0.22 – -0.01 -2.17 0.030 3787.91
(pDem Rep ×
representation Dem) ×
wave [4]
-0.06 -0.16 – 0.04 -1.13 0.260 3794.15
(pDem Rep ×
representation Rep) ×
wave [2]
0.13 0.03 – 0.23 2.55 0.011 3791.15
(pDem Rep ×
representation Rep) ×
wave [3]
0.06 -0.04 – 0.16 1.10 0.273 3791.58
(pDem Rep ×
representation Rep) ×
wave [4]
0.04 -0.07 – 0.14 0.69 0.488 3800.96
Random Effects
σ2 0.52
τ00 pid 0.65
ICC 0.55
N pid 1265
Observations 5060
Marginal R2 / Conditional R2 0.164 / 0.627

Main Model centered at Wave 2, with by party ID-specific Effects

PEL.m10.w2.r <- lmer(voteconfidence ~ (pRep_D) * (representation_Dem + representation_Rep) * (wave2_1 + wave2_3 + wave2_4)  
                   + vs_race + vs_age + male_female + nonbinary_mf
                   + (1 | pid), 
               data = d)
tab_model(PEL.m10.w2.r, show.stat = T, show.df = T, df.method = "satterthwaite")
  voteconfidence
Predictors Estimates CI Statistic p df
(Intercept) 2.61 2.25 – 2.97 14.16 <0.001 1905.82
pRep D 0.15 -0.19 – 0.49 0.85 0.393 4419.89
representation Dem 0.06 -0.01 – 0.13 1.78 0.075 3265.63
representation Rep 0.15 0.08 – 0.21 4.30 <0.001 3405.83
wave2 1 -0.86 -1.10 – -0.62 -7.07 <0.001 3783.91
wave2 3 -0.17 -0.41 – 0.07 -1.40 0.162 3780.16
wave2 4 -0.35 -0.59 – -0.11 -2.90 0.004 3789.58
vs race [Black] -0.40 -0.56 – -0.24 -4.84 <0.001 1266.66
vs race [Hispanic] 0.02 -0.15 – 0.19 0.26 0.795 1249.98
vs race [Other] -0.10 -0.28 – 0.09 -1.03 0.303 1252.59
vs age 0.01 0.00 – 0.01 4.23 <0.001 1260.42
male female -0.34 -0.44 – -0.24 -6.66 <0.001 1249.75
nonbinary mf 0.21 -0.45 – 0.87 0.63 0.532 1248.74
pRep D × representation
Dem
0.09 -0.01 – 0.19 1.82 0.069 3847.09
pRep D × representation
Rep
-0.13 -0.23 – -0.04 -2.88 0.004 4014.36
pRep D × wave2 1 1.03 0.68 – 1.39 5.68 <0.001 3797.65
pRep D × wave2 3 0.00 -0.36 – 0.36 0.00 0.997 3790.97
pRep D × wave2 4 0.07 -0.28 – 0.43 0.40 0.690 3804.94
representation Dem ×
wave2 1
0.24 0.17 – 0.31 6.91 <0.001 3787.02
representation Dem ×
wave2 3
0.04 -0.03 – 0.11 1.23 0.220 3779.16
representation Dem ×
wave2 4
0.06 -0.01 – 0.13 1.68 0.092 3780.21
representation Rep ×
wave2 1
-0.21 -0.28 – -0.15 -6.31 <0.001 3787.30
representation Rep ×
wave2 3
-0.00 -0.07 – 0.06 -0.09 0.928 3780.15
representation Rep ×
wave2 4
0.04 -0.03 – 0.11 1.21 0.225 3789.40
(pRep D × representation
Dem) × wave2 1
-0.20 -0.30 – -0.10 -3.82 <0.001 3793.67
(pRep D × representation
Dem) × wave2 3
-0.07 -0.17 – 0.04 -1.28 0.201 3784.74
(pRep D × representation
Dem) × wave2 4
-0.15 -0.25 – -0.05 -2.86 0.004 3785.22
(pRep D × representation
Rep) × wave2 1
0.19 0.10 – 0.29 4.11 <0.001 3795.33
(pRep D × representation
Rep) × wave2 3
0.07 -0.03 – 0.16 1.40 0.162 3783.17
(pRep D × representation
Rep) × wave2 4
0.07 -0.02 – 0.17 1.55 0.121 3795.82
Random Effects
σ2 0.53
τ00 pid 0.64
ICC 0.55
N pid 1265
Observations 5060
Marginal R2 / Conditional R2 0.166 / 0.622
PEL.m10.w2.d <- lmer(voteconfidence ~ (pDem_R) * (representation_Dem + representation_Rep) * (wave2_1 + wave2_3 + wave2_4) 
                   + vs_race + vs_age + male_female + nonbinary_mf
                   + (1 | pid), 
               data = d)
tab_model(PEL.m10.w2.d, show.stat = T, show.df = T, df.method = "satterthwaite")
  voteconfidence
Predictors Estimates CI Statistic p df
(Intercept) 2.62 2.27 – 2.97 14.77 <0.001 1779.20
pDem R 0.20 -0.15 – 0.56 1.12 0.261 4436.59
representation Dem 0.20 0.14 – 0.27 6.03 <0.001 3218.31
representation Rep -0.00 -0.07 – 0.06 -0.13 0.893 3135.68
wave2 1 -0.20 -0.42 – 0.02 -1.80 0.072 3784.92
wave2 3 -0.15 -0.37 – 0.07 -1.32 0.188 3776.33
wave2 4 -0.36 -0.59 – -0.14 -3.23 0.001 3779.81
vs race [Black] -0.35 -0.51 – -0.18 -4.18 <0.001 1266.97
vs race [Hispanic] 0.04 -0.14 – 0.21 0.40 0.687 1250.61
vs race [Other] -0.08 -0.27 – 0.11 -0.86 0.392 1251.64
vs age 0.01 0.00 – 0.01 3.91 <0.001 1261.43
male female -0.33 -0.43 – -0.23 -6.36 <0.001 1249.47
nonbinary mf 0.16 -0.51 – 0.83 0.48 0.632 1249.75
pDem R × representation
Dem
-0.15 -0.25 – -0.05 -3.02 0.003 4096.19
pDem R × representation
Rep
0.14 0.04 – 0.23 2.75 0.006 4148.93
pDem R × wave2 1 -0.97 -1.35 – -0.60 -5.12 <0.001 3798.71
pDem R × wave2 3 -0.06 -0.43 – 0.31 -0.32 0.750 3788.19
pDem R × wave2 4 0.14 -0.23 – 0.51 0.76 0.447 3799.34
representation Dem ×
wave2 1
0.14 0.08 – 0.21 4.38 <0.001 3784.50
representation Dem ×
wave2 3
-0.03 -0.09 – 0.04 -0.86 0.389 3778.37
representation Dem ×
wave2 4
-0.06 -0.12 – 0.01 -1.73 0.085 3779.52
representation Rep ×
wave2 1
-0.03 -0.09 – 0.03 -1.07 0.282 3784.07
representation Rep ×
wave2 3
0.07 0.01 – 0.13 2.36 0.018 3774.89
representation Rep ×
wave2 4
0.11 0.05 – 0.17 3.75 <0.001 3777.71
(pDem R × representation
Dem) × wave2 1
0.09 -0.01 – 0.19 1.83 0.067 3797.74
(pDem R × representation
Dem) × wave2 3
0.07 -0.03 – 0.17 1.29 0.197 3787.54
(pDem R × representation
Dem) × wave2 4
0.10 -0.00 – 0.20 1.95 0.052 3787.20
(pDem R × representation
Rep) × wave2 1
-0.12 -0.22 – -0.02 -2.32 0.021 3796.32
(pDem R × representation
Rep) × wave2 3
-0.07 -0.17 – 0.03 -1.44 0.150 3784.67
(pDem R × representation
Rep) × wave2 4
-0.10 -0.20 – -0.00 -1.97 0.049 3792.17
Random Effects
σ2 0.53
τ00 pid 0.66
ICC 0.55
N pid 1265
Observations 5060
Marginal R2 / Conditional R2 0.154 / 0.622

5. Emotions

Emotions were measured with the following question:

How much do you feel each of the following emotions right now? (1 = Not at all, 5 = Very much)

1 = Fear

2 = Anger

3 = Hope

4 = Pride

(5 = Disgust)

a. Emotions Over Time

Both over time

d.emo <- d %>% 
  pivot_longer(cols = c(Pos_Emo, Neg_Emo),
               names_to = "Emotion_Valence",
               values_to = "emotion")

ggplot(d.emo[!is.na(d.emo$party_factor),], 
       aes(x = wave, 
           y = emotion, 
           color = Emotion_Valence,
           group = Emotion_Valence,
           fill = Emotion_Valence)) +
  geom_jitter(height = .15, width = .3,alpha = .2, size = .2) +
   stat_summary(geom = "path", fun = "mean", color = "black", linetype = "dashed") +
   stat_summary(geom = "errorbar", color = "black", width = .1) +
   stat_summary(geom = "point", fun = "mean") +
   facet_wrap(~party_factor) +
   labs(x = "Wave",
        y = "Self-Reported Emotion") +
  scale_color_manual("Emotion Valence",
                     values = c("#172869FF","#F28A8AFF"),
                     labels = c("Negative","Positive")) +
  scale_fill_manual("Emotion Valence",
                     values = c("#172869FF","#F28A8AFF"),
                     labels = c("Negative","Positive")) +
  theme_bw() 

emo.wave_label <- c("Neg_Emo" = "Negative", "Pos_Emo" = "Positive", 
                      `1` = "Wave 1", `2` = "Wave 2", `3` = "Wave 3", `4` = "Wave 4")

d.emo$Emotion_Valence <- factor(d.emo$Emotion_Valence, levels = c("Pos_Emo","Neg_Emo"))

Positive Emotions

ggplot(d[!is.na(d$party_factor),], 
       aes(x = Pos_Emo, 
           y = voteconfidence, 
           fill = party_factor,
           color = party_factor)) +
   geom_smooth(method = "lm") +
   facet_grid(~wave, labeller = as_labeller(wave_label)) +
#  geom_text(data = na.omit(n_bins_govtrust), aes(label = paste0("n = ", n)),
#            x = 1.4, y = 1.2, 
#            size = 3,
#            inherit.aes = FALSE) +
   labs(x = "Positive Emotions",
        y = "Perceived Election Legitimacy") +
  scale_fill_manual("Participant Party ID", 
                     values = c("#1696d2","grey","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","grey","#db2b27")) +
   coord_cartesian(ylim = c(1,5)) +
   scale_y_continuous(breaks = seq(1,5,1)) +
  theme_bw()

party.wave_label <- c("Democrat" = "Democrat", "Independent" = "Independent", "Republican" = "Republican",
                      `1` = "Wave 1", `2` = "Wave 2", `3` = "Wave 3", `4` = "Wave 4")

Negative Emotions

ggplot(d, aes(x=Neg_Emo, y = voteconfidence)) +
  geom_smooth(method="lm", color="#69b3a2") +
  theme_bw() +
  labs(x = "Negative Emotions",
       y = "Perceived Election Legitimacy") +
  coord_cartesian(ylim = c(1,5))

ggplot(d[!is.na(d$party_factor),], 
       aes(x = Neg_Emo, 
           y = voteconfidence, 
           fill = party_factor,
           color = party_factor)) +
   geom_smooth(method = "lm") +
   facet_grid(~wave, labeller = as_labeller(wave_label)) +
#  geom_text(data = na.omit(n_bins_govtrust), aes(label = paste0("n = ", n)),
#            x = 1.4, y = 1.2, 
#            size = 3,
#            inherit.aes = FALSE) +
   labs(x = "Negative Emotions",
        y = "Perceived Election Legitimacy") +
  scale_fill_manual("Participant Party ID", 
                     values = c("#1696d2","grey","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","grey","#db2b27")) +
   coord_cartesian(ylim = c(1,5)) +
   scale_y_continuous(breaks = seq(1,5,1)) +
  theme_bw()

Summary

Emotions over time unfold in the expected direction: Democrats experienced a sharp decrease in positive emotions (b = -0.76, 95% CI = [-0.84, -0.69], t(6055.0) = -19.94, p < .001) and increase in negative emotions over time (b = 0.85, 95% CI = [0.78, 0.93], t(6024.0) = 23.14, p < .001), with the steepest change in both positive (b = -0.89, 95% CI = [-0.96, -0.82], t(5862.4) = -25.15, p < .001) and negative (b = 0.94, 95% CI = [0.87, 1.01], t(5846.5) = 27.46, p < .001) emotions occurring from wave 1 to wave 2. Republicans showed the opposite pattern for both positive (b = 0.41, 95% CI = [0.33, 0.50], t(6030.5) = 9.74, p < .001) and negative (b = -0.50, 95% CI = [-0.59, -0.42], t(6000.1) = -12.27, p < .001) emotions over time, with the steepest changes also occurring between wave 1 and wave 2 for both positive (b = 0.90, 95% CI = [0.82, 0.98], t(5794.7) = 22.61, p < .001) and negative (b = -0.77, 95% CI = [-0.70, -0.85], t(5781.8) = -20.17, p < .001) emotions.

Relative to partisans, Independents expressed lower levels of positive (b = -0.43, 95% CI = [-0.53, -0.33], t(5927.9) = -8.72, p < .001), but not negative (p = .29), affect collapsing across time. Positive emotions trended down linearly for Independents (b = -0.33, 95% CI = [-0.48, -0.17], t(6214.9) = -4.17, p < .001), and negative emotions also decreased linearly over time (b = -0.50, 95% CI = [-0.59, -0.42], t(6000.1) = -12.27, p < .001).

Models

Main Models

posemo.m1 <- lmer(Pos_Emo ~ (pDem_Rep + pParty_Ind) * (wave.lin + wave.quad + wave.cub) 
                  + vs_race + vs_age + male_female + nonbinary_mf
                  + (1 | pid),
              data = d)
tab_model(posemo.m1, show.stat = T, show.df = T, df.method = "satterthwaite")
  Pos_Emo
Predictors Estimates CI Statistic p df
(Intercept) 1.79 1.60 – 1.98 18.21 <0.001 2648.28
pDem Rep 1.04 0.96 – 1.12 26.85 <0.001 3616.85
pParty Ind -0.43 -0.53 – -0.33 -8.72 <0.001 5927.91
wave lin -0.23 -0.29 – -0.16 -6.96 <0.001 6116.97
wave quad 0.02 -0.02 – 0.07 1.00 0.317 5814.35
wave cub 0.01 -0.05 – 0.07 0.36 0.717 5704.81
vs race [Black] 0.53 0.42 – 0.65 9.21 <0.001 2626.79
vs race [Hispanic] 0.40 0.28 – 0.52 6.60 <0.001 2613.67
vs race [Other] -0.03 -0.17 – 0.11 -0.39 0.697 2524.15
vs age 0.01 0.01 – 0.01 7.93 <0.001 2556.40
male female -0.04 -0.11 – 0.03 -1.03 0.301 2532.99
nonbinary mf 0.66 0.22 – 1.11 2.94 0.003 2687.20
pDem Rep × wave lin 1.17 1.06 – 1.29 20.54 <0.001 6053.20
pDem Rep × wave quad 0.92 0.83 – 1.00 21.44 <0.001 5793.99
pDem Rep × wave cub -0.77 -0.87 – -0.67 -14.95 <0.001 5684.42
pParty Ind × wave lin -0.16 -0.32 – 0.01 -1.85 0.064 6216.29
pParty Ind × wave quad 0.00 -0.12 – 0.13 0.05 0.963 5931.10
pParty Ind × wave cub 0.12 -0.03 – 0.28 1.56 0.118 5804.93
Random Effects
σ2 0.71
τ00 pid 0.60
ICC 0.46
N pid 2606
Observations 8079
Marginal R2 / Conditional R2 0.226 / 0.580
negemo.m1 <- lmer(Neg_Emo ~ (pDem_Rep + pParty_Ind) * (wave.lin + wave.quad + wave.cub) 
                  + vs_race + vs_age + male_female + nonbinary_mf
                  + (1 | pid),
              data = d)
tab_model(negemo.m1, show.stat = T, show.df = T, df.method = "satterthwaite")
  Neg_Emo
Predictors Estimates CI Statistic p df
(Intercept) 3.06 2.87 – 3.25 31.28 <0.001 2649.65
pDem Rep -1.20 -1.27 – -1.12 -31.14 <0.001 3684.13
pParty Ind -0.05 -0.15 – 0.04 -1.07 0.285 6090.63
wave lin 0.22 0.16 – 0.28 6.94 <0.001 6083.34
wave quad -0.10 -0.15 – -0.06 -4.35 <0.001 5795.54
wave cub -0.14 -0.19 – -0.08 -4.68 <0.001 5689.86
vs race [Black] -0.39 -0.51 – -0.28 -6.78 <0.001 2632.33
vs race [Hispanic] -0.07 -0.18 – 0.05 -1.08 0.278 2615.48
vs race [Other] -0.08 -0.23 – 0.06 -1.17 0.242 2530.14
vs age -0.01 -0.01 – -0.00 -5.06 <0.001 2560.42
male female 0.18 0.10 – 0.25 4.75 <0.001 2538.07
nonbinary mf -1.00 -1.44 – -0.56 -4.43 <0.001 2686.98
pDem Rep × wave lin -1.36 -1.47 – -1.25 -24.55 <0.001 6021.66
pDem Rep × wave quad -0.74 -0.82 – -0.66 -17.84 <0.001 5775.02
pDem Rep × wave cub 0.85 0.75 – 0.95 17.00 <0.001 5670.17
pParty Ind × wave lin 0.13 -0.03 – 0.29 1.57 0.116 6177.55
pParty Ind × wave quad -0.13 -0.26 – -0.01 -2.17 0.030 5905.50
pParty Ind × wave cub -0.02 -0.17 – 0.13 -0.25 0.804 5783.76
Random Effects
σ2 0.66
τ00 pid 0.61
ICC 0.48
N pid 2606
Observations 8079
Marginal R2 / Conditional R2 0.250 / 0.609

Main Models with by party ID Effects

posemo.m1.d <- lmer(Pos_Emo ~ (pDem_R + pDem_I) * (wave.lin + wave.quad + wave.cub) 
                  + vs_race + vs_age + male_female + nonbinary_mf
                  + (1 | pid),
              data = d)
tab_model(posemo.m1.d, show.stat = T, show.df = T, df.method = "satterthwaite")
  Pos_Emo
Predictors Estimates CI Statistic p df
(Intercept) 1.41 1.22 – 1.61 14.20 <0.001 2674.24
pDem R 1.04 0.96 – 1.12 26.85 <0.001 3616.85
pDem I 0.09 -0.01 – 0.19 1.69 0.092 5609.27
wave lin -0.76 -0.84 – -0.69 -19.94 <0.001 6055.02
wave quad -0.43 -0.49 – -0.38 -15.22 <0.001 5793.98
wave cub 0.36 0.29 – 0.42 10.30 <0.001 5674.49
vs race [Black] 0.53 0.42 – 0.65 9.21 <0.001 2626.79
vs race [Hispanic] 0.40 0.28 – 0.52 6.60 <0.001 2613.67
vs race [Other] -0.03 -0.17 – 0.11 -0.39 0.697 2524.15
vs age 0.01 0.01 – 0.01 7.93 <0.001 2556.40
male female -0.04 -0.11 – 0.03 -1.03 0.301 2532.99
nonbinary mf 0.66 0.22 – 1.11 2.94 0.003 2687.20
pDem R × wave lin 1.17 1.06 – 1.29 20.54 <0.001 6053.20
pDem R × wave quad 0.92 0.83 – 1.00 21.44 <0.001 5793.99
pDem R × wave cub -0.77 -0.87 – -0.67 -14.95 <0.001 5684.42
pDem I × wave lin 0.43 0.26 – 0.60 4.89 <0.001 6203.37
pDem I × wave quad 0.46 0.33 – 0.59 6.91 <0.001 5917.81
pDem I × wave cub -0.26 -0.42 – -0.10 -3.20 0.001 5797.95
Random Effects
σ2 0.71
τ00 pid 0.60
ICC 0.46
N pid 2606
Observations 8079
Marginal R2 / Conditional R2 0.226 / 0.580
posemo.m1.r <- lmer(Pos_Emo ~ (pRep_D + pRep_I) * (wave.lin + wave.quad + wave.cub) 
                  + vs_race + vs_age + male_female + nonbinary_mf
                  + (1 | pid),
              data = d)
tab_model(posemo.m1.r, show.stat = T, show.df = T, df.method = "satterthwaite")
  Pos_Emo
Predictors Estimates CI Statistic p df
(Intercept) 2.45 2.25 – 2.65 24.22 <0.001 2698.83
pRep D -1.04 -1.12 – -0.96 -26.85 <0.001 3616.85
pRep I -0.95 -1.06 – -0.85 -17.62 <0.001 5547.74
wave lin 0.41 0.33 – 0.50 9.74 <0.001 6030.49
wave quad 0.48 0.42 – 0.54 15.18 <0.001 5772.86
wave cub -0.42 -0.49 – -0.34 -10.88 <0.001 5667.11
vs race [Black] 0.53 0.42 – 0.65 9.21 <0.001 2626.79
vs race [Hispanic] 0.40 0.28 – 0.52 6.60 <0.001 2613.67
vs race [Other] -0.03 -0.17 – 0.11 -0.39 0.697 2524.15
vs age 0.01 0.01 – 0.01 7.93 <0.001 2556.40
male female -0.04 -0.11 – 0.03 -1.03 0.301 2532.99
nonbinary mf 0.66 0.22 – 1.11 2.94 0.003 2687.20
pRep D × wave lin -1.17 -1.29 – -1.06 -20.54 <0.001 6053.20
pRep D × wave quad -0.92 -1.00 – -0.83 -21.44 <0.001 5793.99
pRep D × wave cub 0.77 0.67 – 0.87 14.95 <0.001 5684.42
pRep I × wave lin -0.74 -0.92 – -0.57 -8.26 <0.001 6195.80
pRep I × wave quad -0.46 -0.59 – -0.32 -6.68 <0.001 5916.84
pRep I × wave cub 0.51 0.35 – 0.67 6.08 <0.001 5788.66
Random Effects
σ2 0.71
τ00 pid 0.60
ICC 0.46
N pid 2606
Observations 8079
Marginal R2 / Conditional R2 0.226 / 0.580
negemo.m1.d <- lmer(Neg_Emo ~ (pDem_R + pDem_I) * (wave.lin + wave.quad + wave.cub) 
                  + vs_race + vs_age + male_female + nonbinary_mf
                  + (1 | pid),
              data = d)
tab_model(negemo.m1.d, show.stat = T, show.df = T, df.method = "satterthwaite")
  Neg_Emo
Predictors Estimates CI Statistic p df
(Intercept) 3.68 3.48 – 3.87 37.08 <0.001 2676.63
pDem R -1.20 -1.27 – -1.12 -31.14 <0.001 3684.13
pDem I -0.65 -0.75 – -0.55 -12.61 <0.001 5756.66
wave lin 0.85 0.78 – 0.93 23.14 <0.001 6024.02
wave quad 0.31 0.26 – 0.36 11.26 <0.001 5775.62
wave cub -0.55 -0.62 – -0.49 -16.56 <0.001 5661.03
vs race [Black] -0.39 -0.51 – -0.28 -6.78 <0.001 2632.33
vs race [Hispanic] -0.07 -0.18 – 0.05 -1.08 0.278 2615.48
vs race [Other] -0.08 -0.23 – 0.06 -1.17 0.242 2530.14
vs age -0.01 -0.01 – -0.00 -5.06 <0.001 2560.42
male female 0.18 0.10 – 0.25 4.75 <0.001 2538.07
nonbinary mf -1.00 -1.44 – -0.56 -4.43 <0.001 2686.98
pDem R × wave lin -1.36 -1.47 – -1.25 -24.55 <0.001 6021.66
pDem R × wave quad -0.74 -0.82 – -0.66 -17.84 <0.001 5775.02
pDem R × wave cub 0.85 0.75 – 0.95 17.00 <0.001 5670.17
pDem I × wave lin -0.55 -0.72 – -0.38 -6.46 <0.001 6165.17
pDem I × wave quad -0.50 -0.63 – -0.38 -7.80 <0.001 5892.94
pDem I × wave cub 0.41 0.25 – 0.56 5.11 <0.001 5777.20
Random Effects
σ2 0.66
τ00 pid 0.61
ICC 0.48
N pid 2606
Observations 8079
Marginal R2 / Conditional R2 0.250 / 0.609
negemo.m1.r <- lmer(Neg_Emo ~ (pRep_D + pRep_I) * (wave.lin + wave.quad + wave.cub) 
                  + vs_race + vs_age + male_female + nonbinary_mf
                  + (1 | pid),
              data = d)
tab_model(negemo.m1.r, show.stat = T, show.df = T, df.method = "satterthwaite")
  Neg_Emo
Predictors Estimates CI Statistic p df
(Intercept) 2.48 2.28 – 2.68 24.60 <0.001 2702.54
pRep D 1.20 1.12 – 1.27 31.14 <0.001 3684.13
pRep I 0.55 0.44 – 0.65 10.26 <0.001 5695.34
wave lin -0.50 -0.59 – -0.42 -12.27 <0.001 6000.09
wave quad -0.43 -0.49 – -0.37 -13.90 <0.001 5754.68
wave cub 0.30 0.22 – 0.37 7.99 <0.001 5653.87
vs race [Black] -0.39 -0.51 – -0.28 -6.78 <0.001 2632.33
vs race [Hispanic] -0.07 -0.18 – 0.05 -1.08 0.278 2615.48
vs race [Other] -0.08 -0.23 – 0.06 -1.17 0.242 2530.14
vs age -0.01 -0.01 – -0.00 -5.06 <0.001 2560.42
male female 0.18 0.10 – 0.25 4.75 <0.001 2538.07
nonbinary mf -1.00 -1.44 – -0.56 -4.43 <0.001 2686.98
pRep D × wave lin 1.36 1.25 – 1.47 24.55 <0.001 6021.66
pRep D × wave quad 0.74 0.66 – 0.82 17.84 <0.001 5775.02
pRep D × wave cub -0.85 -0.95 – -0.75 -17.00 <0.001 5670.17
pRep I × wave lin 0.81 0.64 – 0.98 9.27 <0.001 6158.01
pRep I × wave quad 0.23 0.10 – 0.36 3.55 <0.001 5891.85
pRep I × wave cub -0.44 -0.60 – -0.28 -5.48 <0.001 5768.42
Random Effects
σ2 0.66
τ00 pid 0.61
ICC 0.48
N pid 2606
Observations 8079
Marginal R2 / Conditional R2 0.250 / 0.609

By-party ID Main Models centered at Wave 2

posemo.m1.w2.d <- lmer(Pos_Emo ~ (pDem_R + pDem_I) * (wave2_1 + wave2_3 + wave2_4) 
                     + vs_race + vs_age + male_female + nonbinary_mf
                     + (1 | pid),
              data = d)
tab_model(posemo.m1.w2.d, show.stat = T, show.df = T, df.method = "satterthwaite")
  Pos_Emo
Predictors Estimates CI Statistic p df
(Intercept) 1.21 1.01 – 1.41 11.86 <0.001 2914.08
pDem R 1.59 1.49 – 1.69 31.67 <0.001 6940.29
pDem I 0.34 0.20 – 0.49 4.60 <0.001 8026.81
wave2 1 0.89 0.82 – 0.96 25.20 <0.001 5860.70
wave2 3 -0.02 -0.10 – 0.05 -0.64 0.520 5647.20
wave2 4 -0.05 -0.13 – 0.04 -1.06 0.287 5836.92
vs race [Black] 0.53 0.42 – 0.65 9.21 <0.001 2626.79
vs race [Hispanic] 0.40 0.28 – 0.52 6.60 <0.001 2613.67
vs race [Other] -0.03 -0.17 – 0.11 -0.39 0.697 2524.15
vs age 0.01 0.01 – 0.01 7.93 <0.001 2556.40
male female -0.04 -0.11 – 0.03 -1.03 0.301 2532.99
nonbinary mf 0.66 0.22 – 1.11 2.94 0.003 2687.21
pDem R × wave2 1 -1.79 -1.89 – -1.68 -33.56 <0.001 5844.87
pDem R × wave2 3 -0.19 -0.30 – -0.07 -3.29 0.001 5662.79
pDem R × wave2 4 -0.23 -0.36 – -0.10 -3.47 0.001 5853.73
pDem I × wave2 1 -0.77 -0.93 – -0.60 -9.29 <0.001 6046.57
pDem I × wave2 3 -0.05 -0.23 – 0.13 -0.52 0.600 5798.00
pDem I × wave2 4 -0.20 -0.40 – -0.00 -1.99 0.047 5948.95
Random Effects
σ2 0.71
τ00 pid 0.60
ICC 0.46
N pid 2606
Observations 8079
Marginal R2 / Conditional R2 0.226 / 0.580
posemo.m1.w2.r <- lmer(Pos_Emo ~ (pRep_D + pRep_I) * (wave2_1 + wave2_3 + wave2_4) 
                     + vs_race + vs_age + male_female + nonbinary_mf
                     + (1 | pid),
              data = d)
tab_model(posemo.m1.w2.r, show.stat = T, show.df = T, df.method = "satterthwaite")
  Pos_Emo
Predictors Estimates CI Statistic p df
(Intercept) 2.80 2.59 – 3.00 26.95 <0.001 2973.35
pRep D -1.59 -1.69 – -1.49 -31.67 <0.001 6940.29
pRep I -1.25 -1.40 – -1.10 -16.40 <0.001 8014.47
wave2 1 -0.90 -0.98 – -0.82 -22.61 <0.001 5794.70
wave2 3 -0.21 -0.29 – -0.13 -5.03 <0.001 5657.62
wave2 4 -0.27 -0.37 – -0.18 -5.66 <0.001 5854.10
vs race [Black] 0.53 0.42 – 0.65 9.21 <0.001 2626.79
vs race [Hispanic] 0.40 0.28 – 0.52 6.60 <0.001 2613.67
vs race [Other] -0.03 -0.17 – 0.11 -0.39 0.697 2524.15
vs age 0.01 0.01 – 0.01 7.93 <0.001 2556.40
male female -0.04 -0.11 – 0.03 -1.03 0.301 2532.99
nonbinary mf 0.66 0.22 – 1.11 2.94 0.003 2687.20
pRep D × wave2 1 1.79 1.68 – 1.89 33.56 <0.001 5844.87
pRep D × wave2 3 0.19 0.07 – 0.30 3.29 0.001 5662.79
pRep D × wave2 4 0.23 0.10 – 0.36 3.47 0.001 5853.73
pRep I × wave2 1 1.02 0.86 – 1.19 12.11 <0.001 6031.64
pRep I × wave2 3 0.14 -0.04 – 0.32 1.49 0.137 5789.58
pRep I × wave2 4 0.02 -0.18 – 0.23 0.24 0.814 5953.56
Random Effects
σ2 0.71
τ00 pid 0.60
ICC 0.46
N pid 2606
Observations 8079
Marginal R2 / Conditional R2 0.226 / 0.580
negemo.m1.w2.d <- lmer(Neg_Emo ~ (pDem_R + pDem_I) * (wave2_1 + wave2_3 + wave2_4)  
                     + vs_race + vs_age + male_female + nonbinary_mf
                     + (1 | pid),
              data = d)
tab_model(negemo.m1.w2.d, show.stat = T, show.df = T, df.method = "satterthwaite")
  Neg_Emo
Predictors Estimates CI Statistic p df
(Intercept) 3.89 3.70 – 4.09 38.46 <0.001 2902.63
pDem R -1.65 -1.75 – -1.55 -33.45 <0.001 6894.36
pDem I -0.97 -1.11 – -0.82 -13.30 <0.001 8032.30
wave2 1 -0.94 -1.01 – -0.87 -27.46 <0.001 5846.51
wave2 3 -0.13 -0.20 – -0.06 -3.48 0.001 5634.47
wave2 4 0.19 0.11 – 0.28 4.49 <0.001 5811.68
vs race [Black] -0.39 -0.51 – -0.28 -6.78 <0.001 2632.33
vs race [Hispanic] -0.07 -0.18 – 0.05 -1.08 0.278 2615.48
vs race [Other] -0.08 -0.23 – 0.06 -1.17 0.242 2530.14
vs age -0.01 -0.01 – -0.00 -5.06 <0.001 2560.42
male female 0.18 0.10 – 0.25 4.75 <0.001 2538.07
nonbinary mf -1.00 -1.44 – -0.56 -4.43 <0.001 2686.98
pDem R × wave2 1 1.71 1.61 – 1.81 33.25 <0.001 5830.03
pDem R × wave2 3 0.17 0.06 – 0.28 3.13 0.002 5649.20
pDem R × wave2 4 -0.07 -0.19 – 0.05 -1.10 0.272 5827.59
pDem I × wave2 1 0.94 0.79 – 1.10 11.84 <0.001 6022.96
pDem I × wave2 3 0.13 -0.04 – 0.30 1.48 0.138 5776.70
pDem I × wave2 4 0.19 -0.00 – 0.39 1.93 0.054 5918.42
Random Effects
σ2 0.66
τ00 pid 0.61
ICC 0.48
N pid 2606
Observations 8079
Marginal R2 / Conditional R2 0.250 / 0.609
negemo.m1.w2.r <- lmer(Neg_Emo ~ (pRep_D + pRep_I) * (wave2_1 + wave2_3 + wave2_4)  
                     + vs_race + vs_age + male_female + nonbinary_mf
                     + (1 | pid),
              data = d)
tab_model(negemo.m1.w2.r, show.stat = T, show.df = T, df.method = "satterthwaite")
  Neg_Emo
Predictors Estimates CI Statistic p df
(Intercept) 2.25 2.04 – 2.45 21.75 <0.001 2961.13
pRep D 1.65 1.55 – 1.75 33.45 <0.001 6894.36
pRep I 0.68 0.54 – 0.83 9.18 <0.001 8020.85
wave2 1 0.77 0.70 – 0.85 20.17 <0.001 5781.80
wave2 3 0.04 -0.04 – 0.12 1.07 0.284 5644.46
wave2 4 0.12 0.03 – 0.21 2.59 0.010 5828.07
vs race [Black] -0.39 -0.51 – -0.28 -6.78 <0.001 2632.33
vs race [Hispanic] -0.07 -0.18 – 0.05 -1.08 0.278 2615.48
vs race [Other] -0.08 -0.23 – 0.06 -1.17 0.242 2530.14
vs age -0.01 -0.01 – -0.00 -5.06 <0.001 2560.42
male female 0.18 0.10 – 0.25 4.75 <0.001 2538.07
nonbinary mf -1.00 -1.44 – -0.56 -4.43 <0.001 2686.98
pRep D × wave2 1 -1.71 -1.81 – -1.61 -33.25 <0.001 5830.03
pRep D × wave2 3 -0.17 -0.28 – -0.06 -3.13 0.002 5649.20
pRep D × wave2 4 0.07 -0.05 – 0.19 1.10 0.272 5827.59
pRep I × wave2 1 -0.77 -0.93 – -0.61 -9.41 <0.001 6008.21
pRep I × wave2 3 -0.04 -0.21 – 0.14 -0.44 0.657 5768.80
pRep I × wave2 4 0.26 0.06 – 0.46 2.58 0.010 5922.91
Random Effects
σ2 0.66
τ00 pid 0.61
ICC 0.48
N pid 2606
Observations 8079
Marginal R2 / Conditional R2 0.250 / 0.609

Effects for Independents

posemo.m1.i <- lmer(Pos_Emo ~ (pRep_D + pRep_I) * (wave.lin + wave.quad + wave.cub)  
                     + vs_race + vs_age + male_female + nonbinary_mf
                     + (1 | pid),
              data = d)
tab_model(posemo.m1.i, show.stat = T, show.df = T, df.method = "satterthwaite")
  Pos_Emo
Predictors Estimates CI Statistic p df
(Intercept) 2.45 2.25 – 2.65 24.22 <0.001 2698.83
pRep D -1.04 -1.12 – -0.96 -26.85 <0.001 3616.85
pRep I -0.95 -1.06 – -0.85 -17.62 <0.001 5547.74
wave lin 0.41 0.33 – 0.50 9.74 <0.001 6030.49
wave quad 0.48 0.42 – 0.54 15.18 <0.001 5772.86
wave cub -0.42 -0.49 – -0.34 -10.88 <0.001 5667.11
vs race [Black] 0.53 0.42 – 0.65 9.21 <0.001 2626.79
vs race [Hispanic] 0.40 0.28 – 0.52 6.60 <0.001 2613.67
vs race [Other] -0.03 -0.17 – 0.11 -0.39 0.697 2524.15
vs age 0.01 0.01 – 0.01 7.93 <0.001 2556.40
male female -0.04 -0.11 – 0.03 -1.03 0.301 2532.99
nonbinary mf 0.66 0.22 – 1.11 2.94 0.003 2687.20
pRep D × wave lin -1.17 -1.29 – -1.06 -20.54 <0.001 6053.20
pRep D × wave quad -0.92 -1.00 – -0.83 -21.44 <0.001 5793.99
pRep D × wave cub 0.77 0.67 – 0.87 14.95 <0.001 5684.42
pRep I × wave lin -0.74 -0.92 – -0.57 -8.26 <0.001 6195.80
pRep I × wave quad -0.46 -0.59 – -0.32 -6.68 <0.001 5916.84
pRep I × wave cub 0.51 0.35 – 0.67 6.08 <0.001 5788.66
Random Effects
σ2 0.71
τ00 pid 0.60
ICC 0.46
N pid 2606
Observations 8079
Marginal R2 / Conditional R2 0.226 / 0.580
negemo.m1.i <- lmer(Neg_Emo ~ (pRep_D + pRep_I) * (wave.lin + wave.quad + wave.cub)  
                     + vs_race + vs_age + male_female + nonbinary_mf
                     + (1 | pid),
              data = d)
tab_model(negemo.m1.i, show.stat = T, show.df = T, df.method = "satterthwaite")
  Neg_Emo
Predictors Estimates CI Statistic p df
(Intercept) 2.48 2.28 – 2.68 24.60 <0.001 2702.54
pRep D 1.20 1.12 – 1.27 31.14 <0.001 3684.13
pRep I 0.55 0.44 – 0.65 10.26 <0.001 5695.34
wave lin -0.50 -0.59 – -0.42 -12.27 <0.001 6000.09
wave quad -0.43 -0.49 – -0.37 -13.90 <0.001 5754.68
wave cub 0.30 0.22 – 0.37 7.99 <0.001 5653.87
vs race [Black] -0.39 -0.51 – -0.28 -6.78 <0.001 2632.33
vs race [Hispanic] -0.07 -0.18 – 0.05 -1.08 0.278 2615.48
vs race [Other] -0.08 -0.23 – 0.06 -1.17 0.242 2530.14
vs age -0.01 -0.01 – -0.00 -5.06 <0.001 2560.42
male female 0.18 0.10 – 0.25 4.75 <0.001 2538.07
nonbinary mf -1.00 -1.44 – -0.56 -4.43 <0.001 2686.98
pRep D × wave lin 1.36 1.25 – 1.47 24.55 <0.001 6021.66
pRep D × wave quad 0.74 0.66 – 0.82 17.84 <0.001 5775.02
pRep D × wave cub -0.85 -0.95 – -0.75 -17.00 <0.001 5670.17
pRep I × wave lin 0.81 0.64 – 0.98 9.27 <0.001 6158.01
pRep I × wave quad 0.23 0.10 – 0.36 3.55 <0.001 5891.85
pRep I × wave cub -0.44 -0.60 – -0.28 -5.48 <0.001 5768.42
Random Effects
σ2 0.66
τ00 pid 0.61
ICC 0.48
N pid 2606
Observations 8079
Marginal R2 / Conditional R2 0.250 / 0.609

b. Emotions as predictor of PEL

ggplot(d.emo[!is.na(d.emo$party_factor),], 
       aes(x = emotion, 
           y = voteconfidence, 
           fill = party_factor,
           color = party_factor)) +
   geom_smooth(method = "lm") +
   facet_grid(Emotion_Valence~wave, labeller = as_labeller(emo.wave_label)) +
   labs(x = "Emotions",
        y = "Perceived Election Legitimacy") +
  scale_fill_manual("Participant Partisan 
Identity", 
                     values = c("#1696d2","grey","#db2b27")) +
  scale_color_manual("Participant Partisan 
Identity", 
                     values = c("#1696d2","grey","#db2b27")) +
   coord_cartesian(ylim = c(1,5)) +
   scale_y_continuous(breaks = seq(1,5,1)) +
  theme_bw()

Summary

The impact of emotions on perceived election legitimacy also follows the hypothesized directions. Positive emotions are positively related to perceived election legitimacy (b = 0.22, p < .001), though more strongly for Republicans than for Democrats (b = 0.06, p = .008). The positive emotions-perceived election legitimacy relationship does not change linearly over time, though there is a 3-way interaction of positive emotions, party ID (Dem vs. Rep), and quadratic time (b = 0.08, p = .016), such that the emotions-perceived election legitimacy slope is more similar for Republicans and Democrats in waves 1 and 4 than in waves 2 and 3.

Negative emotions are negatively related to perceived election legitimacy (b = -0.13, p < .001), though more strongly for Democrats than for Republicans (b = -0.07, p = .002). The negative emotions-perceived election legitimacy relationship does not change linearly over time, but there is a 3-way interaction of negative emotions, party ID (Dem vs. Rep), and linear time (b = 0.25, p < .001), such that the emotions-perceived election legitimacy slopes for Democrats and Republicans become more similar over time.

Models

Main Models

Positive Emotions

PEL.m3 <- lmer(voteconfidence ~ (pDem_Rep + pParty_Ind) * (wave.lin + wave.quad + wave.cub) * Pos_Emo 
               + vs_age + vs_race + nonbinary_mf +  
    male_female
    + (1 | pid),
              data = d)
tab_model(PEL.m3, show.stat = T, show.df = T, df.method = "satterthwaite")
  voteconfidence
Predictors Estimates CI Statistic p df
(Intercept) 2.51 2.31 – 2.70 25.18 <0.001 2900.82
pDem Rep -0.57 -0.70 – -0.43 -8.18 <0.001 7885.84
pParty Ind -0.27 -0.45 – -0.10 -3.13 0.002 8044.98
wave lin 0.19 0.06 – 0.33 2.82 0.005 6150.41
wave quad 0.12 0.02 – 0.22 2.30 0.022 5942.05
wave cub -0.01 -0.14 – 0.11 -0.22 0.822 5890.54
Pos Emo 0.22 0.19 – 0.24 16.91 <0.001 7833.08
vs age 0.00 0.00 – 0.01 3.71 <0.001 2577.83
vs race [Black] -0.32 -0.43 – -0.21 -5.63 <0.001 2693.71
vs race [Hispanic] -0.10 -0.22 – 0.02 -1.70 0.089 2625.13
vs race [Other] -0.08 -0.22 – 0.06 -1.18 0.239 2526.89
nonbinary mf 0.37 -0.07 – 0.80 1.65 0.099 2665.81
male female -0.37 -0.45 – -0.30 -10.16 <0.001 2533.45
pDem Rep × wave lin 1.24 0.98 – 1.50 9.41 <0.001 6155.45
pDem Rep × wave quad 0.11 -0.09 – 0.30 1.09 0.274 6015.22
pDem Rep × wave cub -0.45 -0.69 – -0.21 -3.74 <0.001 5888.76
pParty Ind × wave lin -0.59 -0.94 – -0.25 -3.40 0.001 6212.11
pParty Ind × wave quad -0.06 -0.32 – 0.19 -0.48 0.630 5978.96
pParty Ind × wave cub -0.02 -0.33 – 0.29 -0.12 0.901 5946.64
pDem Rep × Pos Emo 0.06 0.01 – 0.10 2.65 0.008 7743.08
pParty Ind × Pos Emo -0.00 -0.07 – 0.06 -0.06 0.954 7687.80
wave lin × Pos Emo 0.02 -0.03 – 0.07 0.84 0.401 6178.76
wave quad × Pos Emo 0.03 -0.01 – 0.07 1.69 0.091 5984.28
wave cub × Pos Emo -0.03 -0.08 – 0.02 -1.21 0.225 5953.83
(pDem Rep × wave lin) ×
Pos Emo
-0.08 -0.16 – 0.01 -1.73 0.084 6203.44
(pDem Rep × wave quad) ×
Pos Emo
0.07 0.01 – 0.14 2.28 0.023 6034.77
(pDem Rep × wave cub) ×
Pos Emo
0.02 -0.06 – 0.10 0.50 0.615 5914.29
(pParty Ind × wave lin) ×
Pos Emo
0.26 0.12 – 0.40 3.64 <0.001 6209.64
(pParty Ind × wave quad)
× Pos Emo
0.05 -0.05 – 0.15 0.96 0.336 6018.18
(pParty Ind × wave cub) ×
Pos Emo
0.03 -0.09 – 0.16 0.54 0.588 5997.04
Random Effects
σ2 0.51
τ00 pid 0.64
ICC 0.56
N pid 2606
Observations 8079
Marginal R2 / Conditional R2 0.184 / 0.640

Negative Emotions

# Negative Emotions
PEL.m4 <- lmer(voteconfidence ~ (pDem_Rep + pParty_Ind) * (wave.lin + wave.quad + wave.cub) * Neg_Emo 
               + vs_age + vs_race + nonbinary_mf +  
    male_female
    + (1 | pid),
              data = d)
tab_model(PEL.m4, show.stat = T, show.df = T, df.method = "satterthwaite")
  voteconfidence
Predictors Estimates CI Statistic p df
(Intercept) 3.28 3.08 – 3.49 31.46 <0.001 3131.72
pDem Rep -0.22 -0.35 – -0.09 -3.34 0.001 7627.98
pParty Ind -0.56 -0.72 – -0.39 -6.57 <0.001 8048.78
wave lin 0.28 0.15 – 0.41 4.27 <0.001 6151.86
wave quad 0.26 0.16 – 0.35 5.25 <0.001 5894.52
wave cub -0.23 -0.34 – -0.11 -3.92 <0.001 5837.68
Neg Emo -0.13 -0.15 – -0.10 -10.07 <0.001 7831.34
vs age 0.01 0.00 – 0.01 4.66 <0.001 2553.75
vs race [Black] -0.26 -0.38 – -0.15 -4.53 <0.001 2647.64
vs race [Hispanic] -0.03 -0.15 – 0.09 -0.51 0.610 2592.45
vs race [Other] -0.10 -0.24 – 0.04 -1.38 0.167 2518.12
nonbinary mf 0.41 -0.03 – 0.85 1.81 0.070 2663.72
male female -0.36 -0.43 – -0.28 -9.54 <0.001 2531.67
pDem Rep × wave lin 0.46 0.22 – 0.70 3.81 <0.001 6106.44
pDem Rep × wave quad 0.59 0.42 – 0.77 6.65 <0.001 5911.01
pDem Rep × wave cub -0.52 -0.73 – -0.31 -4.83 <0.001 5829.81
pParty Ind × wave lin 0.18 -0.15 – 0.52 1.06 0.288 6207.15
pParty Ind × wave quad 0.05 -0.20 – 0.29 0.40 0.691 5941.01
pParty Ind × wave cub 0.18 -0.11 – 0.48 1.22 0.224 5902.97
pDem Rep × Neg Emo -0.07 -0.12 – -0.03 -3.11 0.002 7659.23
pParty Ind × Neg Emo 0.07 0.01 – 0.13 2.43 0.015 7668.92
wave lin × Neg Emo -0.02 -0.07 – 0.03 -0.82 0.414 6244.14
wave quad × Neg Emo -0.03 -0.07 – 0.01 -1.69 0.092 5967.79
wave cub × Neg Emo 0.06 0.01 – 0.11 2.55 0.011 5884.01
(pDem Rep × wave lin) ×
Neg Emo
0.25 0.16 – 0.35 5.07 <0.001 6197.11
(pDem Rep × wave quad) ×
Neg Emo
-0.08 -0.15 – -0.00 -2.03 0.042 6017.66
(pDem Rep × wave cub) ×
Neg Emo
0.05 -0.04 – 0.14 1.01 0.311 5893.99
(pParty Ind × wave lin) ×
Neg Emo
-0.10 -0.23 – 0.03 -1.57 0.116 6314.73
(pParty Ind × wave quad)
× Neg Emo
0.00 -0.09 – 0.10 0.08 0.936 6001.01
(pParty Ind × wave cub) ×
Neg Emo
-0.05 -0.17 – 0.07 -0.82 0.411 5930.62
Random Effects
σ2 0.52
τ00 pid 0.66
ICC 0.56
N pid 2606
Observations 8079
Marginal R2 / Conditional R2 0.157 / 0.628