The data files are downloaded from LSEG terminal and stored locally. Due to large size, the data is split into multiple files. The following code reads the files and combines them into a single data set. The sample period is from 01/01/1994 to 03/31/2006. The data is stored in four separate files, each containing a portion of the data set. The files are named as follows:
# Read the data files stored as xlsx,
sdc_raw_zero <- read_csv("data/raw/sdc_1994_1996.csv")
sdc_raw_one <- read_csv("data/raw/sdc_1997_1999.csv")
sdc_raw_two <- read_csv("data/raw/sdc_2000_2002.csv")
sdc_raw_three <- read_csv("data/raw/sdc_2003_2006.csv")
# Append these dataset into one dataset
sdc_raw <- bind_rows(sdc_raw_zero, sdc_raw_one, sdc_raw_two, sdc_raw_three)
# Save as csv
write_csv(sdc_raw, "data/raw/sdc_raw_full.csv")
n<-as.character(nrow(sdc_raw))
# Write as gz as a compressed file for Github
gzip("data/raw/sdc_raw_full.csv", destname = "data/raw/sdc_raw_full.csv.gz", overwrite = TRUE)
# Deal status
# Read the raw data from the csv file
ma_type_raw_zero <- read_csv("data/raw/sdc_ma_type_1994_1996.csv")
ma_type_one <- read_csv("data/raw/sdc_ma_type_1997_1999.csv")
ma_type_two <- read_csv("data/raw/sdc_ma_type_2000_2002.csv")
ma_type_three <- read_csv("data/raw/sdc_ma_type_2003_2006.csv")
# Append these dataset into one dataset
ma_type_raw <- bind_rows(ma_type_raw_zero, ma_type_one, ma_type_two, ma_type_three)
ma_type_raw <- ma_type_raw %>%
rename_with(~ tolower(.x), everything()) %>%
rename_with(~ str_replace_all(.x, "\\.", "-"), everything())
ma_type_raw <- ma_type_raw %>%
rename(
da="date announced",
ma_type = "m&a type (code)",
deal_number = "sdc deal no",
deal_statis = "deal status") %>%
select(-"da")
# Save as csv
write_csv(ma_type_raw, "data/raw/sdc_ma_type_full.csv")
The raw variables name and their definition
## [1] "Date Announced"
## [2] "Date Originally Announced"
## [3] "Date Effective"
## [4] "Implied Deal Value (USD Millions)"
## [5] "Deal Value (USD Millions)"
## [6] "Acquiror Macro Industry"
## [7] "Target Macro Industry"
## [8] "Acquiror Total Assets Last 12 Months (USD Millions)...8"
## [9] "Acquiror 6-digit CUSIP"
## [10] "Acquiror Industry Group"
## [11] "Acquiror Industry Sector"
## [12] "Acquiror Total Assets Last 12 Months (USD Millions)...12"
## [13] "Percentage of Shares Held by Acquiror 6 Months Prior to Announcement"
## [14] "Percentage of Shares Acquired in Transaction"
## [15] "Percentage of Shares Owned after Transaction"
## [16] "SDC Deal Type"
## [17] "Acquiror Primary SIC (Code)"
## [18] "Target Primary SIC (Code)"
## [19] "Target 6-digit CUSIP"
## [20] "Deal Type"
## [21] "SDC Deal No"
The raw data contains 412655 observations. We now rename the variables for easier access.
DA: Date Announced
DOA: Date Orginally Announced
DE: Date Effective
IDV: Implied Deal Value
DV: Deal Value
ACQ_MACRO_IND: Macro Industry Code of the Acquirer
TAR_MACRO_IND: Macro Industry Code of the Target
TAR_CUSIP: Target's CUSIP
ACQ_TOTALASSET_12: Acquirer's Total Assets (12 months prior to the deal)
ACQ_CUSIP: Acquirer's CUSIP
ACQ_INDUSTRY: Acquirer's Industry Group
ACQ_SECTOR: Acquirer's Sector
ACQ_SIC: Acquirer's Primary SIC Code
TAR_SIC: Target's Primary SIC Code
DEAL_TYPE: Type of Deal
DEAL_NUMBER: SDC Deal Number
ACQ_PERCENTAGE_OWNED_AFTER: Percentage of Shares Owned by Acquirer After Transaction
ACQ_SHARE: Percentage of Shares Acquired in Transaction
ACQ_PERCENTAGE_OWNED_BEFORE: Percentage of Shares Held by Acquirer 6 Months Prior to Announcement
# Renaming the variables. First uncapitalize the names, remove the dots, and then rename them, remove space,
sdc <- sdc_raw %>%
rename_with(~ tolower(.x), everything()) %>%
rename_with(~ str_replace_all(.x, "\\.", "-"), everything())
# Drop acquiror total assets last 12 months (usd millions)---15 (duplication)
sdc <- sdc %>%
select(-"acquiror total assets last 12 months (usd millions)---12")
names(sdc)
## [1] "date announced"
## [2] "date originally announced"
## [3] "date effective"
## [4] "implied deal value (usd millions)"
## [5] "deal value (usd millions)"
## [6] "acquiror macro industry"
## [7] "target macro industry"
## [8] "acquiror total assets last 12 months (usd millions)---8"
## [9] "acquiror 6-digit cusip"
## [10] "acquiror industry group"
## [11] "acquiror industry sector"
## [12] "percentage of shares held by acquiror 6 months prior to announcement"
## [13] "percentage of shares acquired in transaction"
## [14] "percentage of shares owned after transaction"
## [15] "sdc deal type"
## [16] "acquiror primary sic (code)"
## [17] "target primary sic (code)"
## [18] "target 6-digit cusip"
## [19] "deal type"
## [20] "sdc deal no"
# renaming variable
sdc <- sdc %>%
rename(
da="date announced",
doa="date originally announced",
de="date effective",
idv="implied deal value (usd millions)",
dv="deal value (usd millions)",
acq_macro_ind = "acquiror macro industry",
tar_macro_ind = "target macro industry",
acq_totalasset= "acquiror total assets last 12 months (usd millions)---8",
acq_cusip = "acquiror 6-digit cusip",
tar_cusip = "target 6-digit cusip",
acq_ind = "acquiror industry group",
acq_sec = "acquiror industry sector",
acq_sic = "acquiror primary sic (code)",
tar_sic = "target primary sic (code)",
deal_type = "deal type",
deal_number = "sdc deal no",
acq_percentage_owned_after = "percentage of shares owned after transaction",
acq_share ="percentage of shares acquired in transaction",
acq_percentage_owned_before = "percentage of shares held by acquiror 6 months prior to announcement")
names(sdc)
## [1] "da" "doa"
## [3] "de" "idv"
## [5] "dv" "acq_macro_ind"
## [7] "tar_macro_ind" "acq_totalasset"
## [9] "acq_cusip" "acq_ind"
## [11] "acq_sec" "acq_percentage_owned_before"
## [13] "acq_share" "acq_percentage_owned_after"
## [15] "sdc deal type" "acq_sic"
## [17] "tar_sic" "tar_cusip"
## [19] "deal_type" "deal_number"
The data set contains all type of transactions. We only keep mergers
and acquisitions. The variable deal_status
contains
information on whether the transactions is completed or not. We only
care about completed transactions. The variable ma_type
is
an indicator whether the transaction is mergers or acquisitions. We will
filter out transactions that are not mergers or acquisitions. We only
keep transactions where the acquirer acquires a majority stake of the
target. The variable deal_number
is the unique identifier
for each transaction.
sdc %>%
count(deal_statis, name = "count") %>%
arrange(desc(count)) %>%
kable("html", col.names = c("Deal Number", "Count")) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
scroll_box(width = "100%", height = "500px")
Deal Number | Count |
---|---|
Completed | 310398 |
Pending | 41314 |
Intended | 16978 |
Status Unknown | 16033 |
Seeking Buyer | 13251 |
Withdrawn | 11258 |
Dismissed Rumor | 2207 |
Seeking Buyer Withdrawn | 753 |
Intent Withdrawn | 277 |
Unconditional | 176 |
NA | 64 |
Partially Completed | 1 |
Pending Regulatory | 1 |
We only keep completed transactions:
We have 310398transactions. We now look at the deal type. The
variable ma_type
contains the type of transaction. We only
keep mergers and acquisitions.
DI: Disclosed value; acquiror gains ≥50% or raises stake above 50%, or acquires remaining interest.
UN: Undisclosed value; acquiror gains ≥50% or raises stake above 50%, or acquires remaining interest.
SP: Minority stake acquired (≤49.99% or 50.1–99.9%).
RE: Repurchase program or share repurchase.
ST: Self-tender offer, recapitalization, or exchange offer.
sdc %>%
count(ma_type, name = "count") %>%
mutate(sample_percentage = count / sum(count)) %>%
arrange(desc(count)) %>%
kable("html", col.names = c("Deal Type", "Count", "%")) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
scroll_box(width = "100%", height = "500px")
Deal Type | Count | % |
---|---|---|
UN | 141157 | 0.4547613 |
DI | 110308 | 0.3553760 |
SP | 54574 | 0.1758194 |
RE | 3510 | 0.0113081 |
ST | 849 | 0.0027352 |
# only keep mergers and acquisitions
sdc <- sdc %>%
filter(ma_type %in% c("DI", "SP"))
# count
n_sdc_ma <- as.character(nrow(sdc))
sdc %>%
count(ma_type, name = "count") %>%
mutate(sample_percentage = count / sum(count)) %>%
arrange(desc(count)) %>%
kable("html", col.names = c("Deal Type", "Count", "%")) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
scroll_box(width = "100%", height = "500px")
Deal Type | Count | % |
---|---|---|
DI | 110308 | 0.6690118 |
SP | 54574 | 0.3309882 |
After dropping, we have 164882 transactions. We now only keep transactions where the acquirer purchases at least 50% of the target’s shares and where the acquirer’s post-merger ownership is at least 90%.
# Showing a distribution of post-merger ownership in before filtering
sdc %>%
ggplot(aes(x = acq_percentage_owned_after)) +
geom_histogram(binwidth = 0.05, fill = "blue", color = "black") +
labs(title = "Distribution of Post-Merger Ownership",
x = "Post-Merger Ownership",
y = "Count") +
theme_minimal()
# only restrict to post-merger ownership greater than 90\%
sdc <- sdc %>%
filter(acq_percentage_owned_after >= 90)
# count
sdc_post_ownership <- as.character(nrow(sdc))
After the drop, we have 93243 transactions. Here is the new distribution.
# Showing a distribution of post-merger ownership in before filtering
sdc %>%
ggplot(aes(x = acq_percentage_owned_after)) +
geom_histogram(binwidth = 0.05, fill = "blue", color = "black") +
labs(title = "Distribution of Post-Merger Ownership",
x = "Post-Merger Ownership",
y = "Count") +
theme_minimal()
We use SIC code to exclude banks and utility companies. Currently we have the following SIC codes. Banking SIC codes is between 6020 - 6099. Utilities SIC codes is between 4900-4999.
sdc %>%
count(acq_sic, name = "count") %>%
mutate(sample_percentage = count / sum(count)) %>%
arrange(desc(count)) %>%
kable("html", col.names = c("Deal Type", "Count", "%")) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
scroll_box(width = "100%", height = "500px")
Deal Type | Count | % |
---|---|---|
6799 | 13559 | 0.1454157 |
7372 | 3955 | 0.0424161 |
6798 | 3610 | 0.0387160 |
1311 | 2476 | 0.0265543 |
6021 | 1656 | 0.0177600 |
7375 | 1544 | 0.0165589 |
6552 | 1455 | 0.0156044 |
4813 | 1331 | 0.0142745 |
6000 | 1302 | 0.0139635 |
7011 | 1059 | 0.0113574 |
6311 | 1057 | 0.0113360 |
4911 | 1025 | 0.0109928 |
2834 | 1003 | 0.0107568 |
7373 | 976 | 0.0104673 |
1041 | 958 | 0.0102742 |
6282 | 869 | 0.0093197 |
3674 | 868 | 0.0093090 |
6022 | 751 | 0.0080542 |
7389 | 751 | 0.0080542 |
4832 | 742 | 0.0079577 |
4812 | 654 | 0.0070139 |
7379 | 617 | 0.0066171 |
5812 | 614 | 0.0065849 |
8711 | 587 | 0.0062954 |
6211 | 581 | 0.0062310 |
7371 | 548 | 0.0058771 |
6531 | 530 | 0.0056841 |
3714 | 497 | 0.0053302 |
4841 | 477 | 0.0051157 |
8742 | 473 | 0.0050728 |
3841 | 467 | 0.0050084 |
3661 | 445 | 0.0047725 |
7361 | 443 | 0.0047510 |
4953 | 439 | 0.0047081 |
3679 | 432 | 0.0046331 |
5411 | 425 | 0.0045580 |
4833 | 419 | 0.0044936 |
6726 | 413 | 0.0044293 |
3663 | 405 | 0.0043435 |
2836 | 389 | 0.0041719 |
7374 | 384 | 0.0041183 |
7376 | 362 | 0.0038823 |
2731 | 355 | 0.0038073 |
6512 | 350 | 0.0037536 |
2711 | 336 | 0.0036035 |
1522 | 332 | 0.0035606 |
3577 | 329 | 0.0035284 |
6141 | 315 | 0.0033783 |
5511 | 311 | 0.0033354 |
3089 | 306 | 0.0032817 |
8748 | 305 | 0.0032710 |
6035 | 303 | 0.0032496 |
4899 | 300 | 0.0032174 |
2082 | 299 | 0.0032067 |
2721 | 290 | 0.0031102 |
8099 | 290 | 0.0031102 |
3823 | 287 | 0.0030780 |
6411 | 283 | 0.0030351 |
3312 | 277 | 0.0029707 |
7999 | 275 | 0.0029493 |
8731 | 273 | 0.0029278 |
3845 | 270 | 0.0028957 |
8051 | 267 | 0.0028635 |
3842 | 263 | 0.0028206 |
2819 | 261 | 0.0027991 |
5045 | 254 | 0.0027241 |
3669 | 252 | 0.0027026 |
7311 | 252 | 0.0027026 |
7359 | 250 | 0.0026812 |
7812 | 250 | 0.0026812 |
3812 | 249 | 0.0026704 |
4724 | 244 | 0.0026168 |
4412 | 242 | 0.0025954 |
3571 | 239 | 0.0025632 |
5813 | 238 | 0.0025525 |
4941 | 235 | 0.0025203 |
1521 | 227 | 0.0024345 |
3711 | 227 | 0.0024345 |
3241 | 226 | 0.0024238 |
5065 | 221 | 0.0023702 |
1381 | 219 | 0.0023487 |
5122 | 218 | 0.0023380 |
6331 | 215 | 0.0023058 |
3569 | 212 | 0.0022736 |
3829 | 207 | 0.0022200 |
2086 | 206 | 0.0022093 |
8062 | 204 | 0.0021878 |
2821 | 200 | 0.0021449 |
5311 | 199 | 0.0021342 |
3559 | 194 | 0.0020806 |
2099 | 192 | 0.0020591 |
6712 | 191 | 0.0020484 |
2621 | 188 | 0.0020162 |
4731 | 188 | 0.0020162 |
2899 | 186 | 0.0019948 |
1389 | 184 | 0.0019733 |
6722 | 184 | 0.0019733 |
8071 | 181 | 0.0019412 |
3672 | 175 | 0.0018768 |
2911 | 173 | 0.0018554 |
4213 | 171 | 0.0018339 |
5961 | 169 | 0.0018125 |
4922 | 166 | 0.0017803 |
3728 | 164 | 0.0017588 |
5912 | 163 | 0.0017481 |
2084 | 161 | 0.0017267 |
3533 | 160 | 0.0017159 |
6162 | 158 | 0.0016945 |
3651 | 156 | 0.0016730 |
2869 | 155 | 0.0016623 |
8011 | 155 | 0.0016623 |
6324 | 150 | 0.0016087 |
2671 | 148 | 0.0015873 |
1221 | 145 | 0.0015551 |
3572 | 141 | 0.0015122 |
7382 | 141 | 0.0015122 |
2844 | 137 | 0.0014693 |
1099 | 135 | 0.0014478 |
4011 | 134 | 0.0014371 |
4581 | 134 | 0.0014371 |
3585 | 131 | 0.0014049 |
5999 | 131 | 0.0014049 |
3825 | 129 | 0.0013835 |
5141 | 129 | 0.0013835 |
7363 | 129 | 0.0013835 |
1382 | 128 | 0.0013728 |
5047 | 128 | 0.0013728 |
8082 | 127 | 0.0013620 |
3949 | 126 | 0.0013513 |
8741 | 126 | 0.0013513 |
2752 | 125 | 0.0013406 |
3826 | 125 | 0.0013406 |
8093 | 125 | 0.0013406 |
2835 | 124 | 0.0013299 |
7353 | 123 | 0.0013191 |
6289 | 121 | 0.0012977 |
1021 | 120 | 0.0012870 |
4512 | 118 | 0.0012655 |
7312 | 117 | 0.0012548 |
7349 | 117 | 0.0012548 |
2851 | 116 | 0.0012441 |
3589 | 114 | 0.0012226 |
3944 | 113 | 0.0012119 |
5039 | 113 | 0.0012119 |
5063 | 111 | 0.0011904 |
8299 | 111 | 0.0011904 |
2741 | 109 | 0.0011690 |
5013 | 109 | 0.0011690 |
4931 | 107 | 0.0011475 |
5084 | 107 | 0.0011475 |
7381 | 107 | 0.0011475 |
7319 | 106 | 0.0011368 |
3541 | 105 | 0.0011261 |
8721 | 105 | 0.0011261 |
2841 | 104 | 0.0011154 |
3999 | 104 | 0.0011154 |
1499 | 103 | 0.0011046 |
3861 | 103 | 0.0011046 |
2299 | 102 | 0.0010939 |
1731 | 101 | 0.0010832 |
6159 | 99 | 0.0010617 |
8732 | 98 | 0.0010510 |
4923 | 97 | 0.0010403 |
6719 | 97 | 0.0010403 |
6036 | 96 | 0.0010296 |
3357 | 95 | 0.0010188 |
3731 | 95 | 0.0010188 |
4491 | 94 | 0.0010081 |
5051 | 94 | 0.0010081 |
3272 | 93 | 0.0009974 |
2051 | 92 | 0.0009867 |
3069 | 92 | 0.0009867 |
3317 | 92 | 0.0009867 |
2611 | 91 | 0.0009759 |
8743 | 91 | 0.0009759 |
2676 | 90 | 0.0009652 |
5112 | 90 | 0.0009652 |
3724 | 88 | 0.0009438 |
6513 | 86 | 0.0009223 |
2421 | 85 | 0.0009116 |
3443 | 83 | 0.0008901 |
2879 | 82 | 0.0008794 |
3011 | 82 | 0.0008794 |
4924 | 82 | 0.0008794 |
2026 | 81 | 0.0008687 |
1061 | 80 | 0.0008580 |
4212 | 80 | 0.0008580 |
2329 | 79 | 0.0008472 |
3721 | 78 | 0.0008365 |
5149 | 78 | 0.0008365 |
3593 | 77 | 0.0008258 |
4215 | 77 | 0.0008258 |
499A | 77 | 0.0008258 |
1541 | 76 | 0.0008151 |
7261 | 76 | 0.0008151 |
1531 | 75 | 0.0008043 |
5099 | 75 | 0.0008043 |
6371 | 75 | 0.0008043 |
2813 | 74 | 0.0007936 |
8059 | 74 | 0.0007936 |
2211 | 73 | 0.0007829 |
5031 | 73 | 0.0007829 |
5172 | 73 | 0.0007829 |
2033 | 72 | 0.0007722 |
2759 | 72 | 0.0007722 |
2041 | 71 | 0.0007615 |
2631 | 71 | 0.0007615 |
5093 | 71 | 0.0007615 |
0811 | 70 | 0.0007507 |
2011 | 70 | 0.0007507 |
3523 | 70 | 0.0007507 |
1611 | 69 | 0.0007400 |
1799 | 69 | 0.0007400 |
2013 | 69 | 0.0007400 |
3629 | 69 | 0.0007400 |
3827 | 69 | 0.0007400 |
5044 | 69 | 0.0007400 |
5074 | 69 | 0.0007400 |
6153 | 69 | 0.0007400 |
1081 | 68 | 0.0007293 |
3851 | 68 | 0.0007293 |
6099 | 68 | 0.0007293 |
3442 | 66 | 0.0007078 |
3621 | 66 | 0.0007078 |
2111 | 65 | 0.0006971 |
3491 | 65 | 0.0006971 |
8744 | 65 | 0.0006971 |
3325 | 64 | 0.0006864 |
3531 | 64 | 0.0006864 |
7331 | 64 | 0.0006864 |
1011 | 63 | 0.0006757 |
2064 | 63 | 0.0006757 |
3411 | 63 | 0.0006757 |
3612 | 63 | 0.0006757 |
3699 | 63 | 0.0006757 |
2679 | 62 | 0.0006649 |
2873 | 62 | 0.0006649 |
4111 | 60 | 0.0006435 |
2038 | 59 | 0.0006328 |
4612 | 59 | 0.0006328 |
7997 | 59 | 0.0006328 |
8734 | 59 | 0.0006328 |
1623 | 58 | 0.0006220 |
3535 | 58 | 0.0006220 |
3555 | 58 | 0.0006220 |
3271 | 57 | 0.0006113 |
6321 | 57 | 0.0006113 |
6351 | 57 | 0.0006113 |
6733 | 57 | 0.0006113 |
3492 | 56 | 0.0006006 |
5012 | 56 | 0.0006006 |
2891 | 55 | 0.0005899 |
7841 | 55 | 0.0005899 |
7996 | 55 | 0.0005899 |
0831 | 54 | 0.0005791 |
1629 | 54 | 0.0005791 |
2023 | 54 | 0.0005791 |
4725 | 54 | 0.0005791 |
7336 | 54 | 0.0005791 |
7941 | 54 | 0.0005791 |
8351 | 54 | 0.0005791 |
2066 | 53 | 0.0005684 |
3562 | 53 | 0.0005684 |
5137 | 53 | 0.0005684 |
5731 | 53 | 0.0005684 |
7819 | 53 | 0.0005684 |
7993 | 53 | 0.0005684 |
3511 | 52 | 0.0005577 |
3561 | 52 | 0.0005577 |
4226 | 52 | 0.0005577 |
7991 | 52 | 0.0005577 |
1542 | 51 | 0.0005470 |
2052 | 51 | 0.0005470 |
2085 | 51 | 0.0005470 |
2273 | 51 | 0.0005470 |
3643 | 51 | 0.0005470 |
3652 | 51 | 0.0005470 |
1044 | 50 | 0.0005362 |
2015 | 50 | 0.0005362 |
3429 | 50 | 0.0005362 |
3843 | 50 | 0.0005362 |
5191 | 50 | 0.0005362 |
6794 | 50 | 0.0005362 |
3565 | 49 | 0.0005255 |
3613 | 49 | 0.0005255 |
4141 | 49 | 0.0005255 |
7832 | 49 | 0.0005255 |
7948 | 49 | 0.0005255 |
2331 | 48 | 0.0005148 |
3086 | 48 | 0.0005148 |
3316 | 48 | 0.0005148 |
3334 | 48 | 0.0005148 |
5621 | 48 | 0.0005148 |
8999 | 48 | 0.0005148 |
2754 | 47 | 0.0005041 |
3499 | 47 | 0.0005041 |
3743 | 47 | 0.0005041 |
7922 | 47 | 0.0005041 |
8021 | 47 | 0.0005041 |
2511 | 46 | 0.0004933 |
2833 | 46 | 0.0004933 |
5023 | 46 | 0.0004933 |
5169 | 46 | 0.0004933 |
5734 | 46 | 0.0004933 |
9511 | 46 | 0.0004933 |
1711 | 45 | 0.0004826 |
3273 | 45 | 0.0004826 |
3564 | 45 | 0.0004826 |
5064 | 45 | 0.0004826 |
5531 | 45 | 0.0004826 |
6519 | 45 | 0.0004826 |
2048 | 44 | 0.0004719 |
2092 | 44 | 0.0004719 |
3545 | 44 | 0.0004719 |
3579 | 44 | 0.0004719 |
3751 | 44 | 0.0004719 |
5085 | 44 | 0.0004719 |
7521 | 44 | 0.0004719 |
1094 | 43 | 0.0004612 |
2076 | 43 | 0.0004612 |
3297 | 43 | 0.0004612 |
5211 | 43 | 0.0004612 |
2321 | 42 | 0.0004504 |
3251 | 42 | 0.0004504 |
3448 | 42 | 0.0004504 |
3084 | 41 | 0.0004397 |
3537 | 41 | 0.0004397 |
3578 | 41 | 0.0004397 |
3678 | 41 | 0.0004397 |
3691 | 41 | 0.0004397 |
5712 | 41 | 0.0004397 |
7514 | 41 | 0.0004397 |
2021 | 40 | 0.0004290 |
2087 | 40 | 0.0004290 |
3081 | 40 | 0.0004290 |
3321 | 40 | 0.0004290 |
5984 | 40 | 0.0004290 |
1031 | 39 | 0.0004183 |
2062 | 39 | 0.0004183 |
3441 | 39 | 0.0004183 |
3575 | 39 | 0.0004183 |
5072 | 39 | 0.0004183 |
8361 | 39 | 0.0004183 |
3211 | 38 | 0.0004075 |
3532 | 38 | 0.0004075 |
3631 | 38 | 0.0004075 |
4119 | 38 | 0.0004075 |
3433 | 37 | 0.0003968 |
5171 | 37 | 0.0003968 |
5199 | 37 | 0.0003968 |
5651 | 37 | 0.0003968 |
5735 | 37 | 0.0003968 |
6029 | 37 | 0.0003968 |
7342 | 37 | 0.0003968 |
7538 | 37 | 0.0003968 |
0181 | 36 | 0.0003861 |
2037 | 36 | 0.0003861 |
2079 | 36 | 0.0003861 |
3563 | 36 | 0.0003861 |
3634 | 36 | 0.0003861 |
5942 | 36 | 0.0003861 |
7323 | 36 | 0.0003861 |
2653 | 35 | 0.0003754 |
2842 | 35 | 0.0003754 |
3231 | 35 | 0.0003754 |
3568 | 35 | 0.0003754 |
4131 | 35 | 0.0003754 |
5611 | 35 | 0.0003754 |
8221 | 35 | 0.0003754 |
2024 | 34 | 0.0003646 |
3452 | 34 | 0.0003646 |
3556 | 34 | 0.0003646 |
3822 | 34 | 0.0003646 |
5142 | 34 | 0.0003646 |
5945 | 34 | 0.0003646 |
6361 | 33 | 0.0003539 |
2761 | 32 | 0.0003432 |
3291 | 32 | 0.0003432 |
3552 | 32 | 0.0003432 |
3641 | 32 | 0.0003432 |
5944 | 32 | 0.0003432 |
999E | 32 | 0.0003432 |
0273 | 31 | 0.0003325 |
2522 | 31 | 0.0003325 |
3255 | 31 | 0.0003325 |
3261 | 31 | 0.0003325 |
3339 | 31 | 0.0003325 |
3844 | 31 | 0.0003325 |
4789 | 31 | 0.0003325 |
5049 | 31 | 0.0003325 |
5331 | 31 | 0.0003325 |
7513 | 31 | 0.0003325 |
0139 | 30 | 0.0003217 |
3315 | 30 | 0.0003217 |
3469 | 30 | 0.0003217 |
3713 | 30 | 0.0003217 |
3911 | 30 | 0.0003217 |
3993 | 30 | 0.0003217 |
4225 | 30 | 0.0003217 |
4959 | 30 | 0.0003217 |
5032 | 30 | 0.0003217 |
5082 | 30 | 0.0003217 |
5661 | 30 | 0.0003217 |
7929 | 30 | 0.0003217 |
8063 | 30 | 0.0003217 |
1422 | 29 | 0.0003110 |
2095 | 29 | 0.0003110 |
2281 | 29 | 0.0003110 |
2431 | 29 | 0.0003110 |
2657 | 29 | 0.0003110 |
3498 | 29 | 0.0003110 |
3646 | 29 | 0.0003110 |
3732 | 29 | 0.0003110 |
5088 | 29 | 0.0003110 |
5094 | 29 | 0.0003110 |
5136 | 29 | 0.0003110 |
5148 | 29 | 0.0003110 |
7322 | 29 | 0.0003110 |
8069 | 29 | 0.0003110 |
999A | 29 | 0.0003110 |
2035 | 28 | 0.0003003 |
2311 | 28 | 0.0003003 |
2411 | 28 | 0.0003003 |
3351 | 28 | 0.0003003 |
3599 | 28 | 0.0003003 |
3648 | 28 | 0.0003003 |
4222 | 28 | 0.0003003 |
5599 | 28 | 0.0003003 |
2499 | 27 | 0.0002896 |
2515 | 27 | 0.0002896 |
2678 | 27 | 0.0002896 |
2812 | 27 | 0.0002896 |
2865 | 27 | 0.0002896 |
2952 | 27 | 0.0002896 |
3253 | 27 | 0.0002896 |
3423 | 27 | 0.0002896 |
3462 | 27 | 0.0002896 |
3482 | 27 | 0.0002896 |
3675 | 27 | 0.0002896 |
3695 | 27 | 0.0002896 |
4822 | 27 | 0.0002896 |
5033 | 27 | 0.0002896 |
5091 | 27 | 0.0002896 |
5399 | 27 | 0.0002896 |
5541 | 27 | 0.0002896 |
5722 | 27 | 0.0002896 |
7699 | 27 | 0.0002896 |
3149 | 26 | 0.0002788 |
3399 | 26 | 0.0002788 |
3536 | 26 | 0.0002788 |
3554 | 26 | 0.0002788 |
3625 | 26 | 0.0002788 |
3873 | 26 | 0.0002788 |
5941 | 26 | 0.0002788 |
7299 | 26 | 0.0002788 |
7383 | 26 | 0.0002788 |
7549 | 26 | 0.0002788 |
8092 | 26 | 0.0002788 |
2032 | 25 | 0.0002681 |
3444 | 25 | 0.0002681 |
6231 | 25 | 0.0002681 |
7377 | 25 | 0.0002681 |
1481 | 24 | 0.0002574 |
2221 | 24 | 0.0002574 |
3143 | 24 | 0.0002574 |
3421 | 24 | 0.0002574 |
3567 | 24 | 0.0002574 |
3645 | 24 | 0.0002574 |
3677 | 24 | 0.0002574 |
5943 | 24 | 0.0002574 |
2075 | 23 | 0.0002467 |
2599 | 23 | 0.0002467 |
2673 | 23 | 0.0002467 |
3021 | 23 | 0.0002467 |
3398 | 23 | 0.0002467 |
3446 | 23 | 0.0002467 |
3496 | 23 | 0.0002467 |
4513 | 23 | 0.0002467 |
5147 | 23 | 0.0002467 |
7992 | 23 | 0.0002467 |
0241 | 22 | 0.0002359 |
1622 | 22 | 0.0002359 |
2043 | 22 | 0.0002359 |
2253 | 22 | 0.0002359 |
2519 | 22 | 0.0002359 |
3221 | 22 | 0.0002359 |
3229 | 22 | 0.0002359 |
3275 | 22 | 0.0002359 |
3353 | 22 | 0.0002359 |
3356 | 22 | 0.0002359 |
3465 | 22 | 0.0002359 |
3494 | 22 | 0.0002359 |
4499 | 22 | 0.0002359 |
5092 | 22 | 0.0002359 |
5146 | 22 | 0.0002359 |
8713 | 22 | 0.0002359 |
2083 | 21 | 0.0002252 |
2231 | 21 | 0.0002252 |
2892 | 21 | 0.0002252 |
3542 | 21 | 0.0002252 |
3639 | 21 | 0.0002252 |
5043 | 21 | 0.0002252 |
5113 | 21 | 0.0002252 |
5153 | 21 | 0.0002252 |
5192 | 21 | 0.0002252 |
7213 | 21 | 0.0002252 |
7822 | 21 | 0.0002252 |
1442 | 20 | 0.0002145 |
2022 | 20 | 0.0002145 |
2091 | 20 | 0.0002145 |
2434 | 20 | 0.0002145 |
2677 | 20 | 0.0002145 |
3341 | 20 | 0.0002145 |
3534 | 20 | 0.0002145 |
3692 | 20 | 0.0002145 |
3821 | 20 | 0.0002145 |
4142 | 20 | 0.0002145 |
4925 | 20 | 0.0002145 |
8052 | 20 | 0.0002145 |
999B | 20 | 0.0002145 |
1222 | 19 | 0.0002038 |
1411 | 19 | 0.0002038 |
2992 | 19 | 0.0002038 |
3479 | 19 | 0.0002038 |
3592 | 19 | 0.0002038 |
3761 | 19 | 0.0002038 |
4522 | 19 | 0.0002038 |
4785 | 19 | 0.0002038 |
5143 | 19 | 0.0002038 |
5182 | 19 | 0.0002038 |
5699 | 19 | 0.0002038 |
5962 | 19 | 0.0002038 |
7335 | 19 | 0.0002038 |
7384 | 19 | 0.0002038 |
8049 | 19 | 0.0002038 |
8072 | 19 | 0.0002038 |
8244 | 19 | 0.0002038 |
2339 | 18 | 0.0001930 |
2399 | 18 | 0.0001930 |
2512 | 18 | 0.0001930 |
2771 | 18 | 0.0001930 |
3363 | 18 | 0.0001930 |
3519 | 18 | 0.0001930 |
3548 | 18 | 0.0001930 |
3824 | 18 | 0.0001930 |
4424 | 18 | 0.0001930 |
4481 | 18 | 0.0001930 |
4932 | 18 | 0.0001930 |
7021 | 18 | 0.0001930 |
7218 | 18 | 0.0001930 |
8249 | 18 | 0.0001930 |
1241 | 17 | 0.0001823 |
2435 | 17 | 0.0001823 |
2451 | 17 | 0.0001823 |
3432 | 17 | 0.0001823 |
3544 | 17 | 0.0001823 |
3581 | 17 | 0.0001823 |
3624 | 17 | 0.0001823 |
4449 | 17 | 0.0001823 |
5131 | 17 | 0.0001823 |
5261 | 17 | 0.0001823 |
7352 | 17 | 0.0001823 |
8712 | 17 | 0.0001823 |
2096 | 16 | 0.0001716 |
2335 | 16 | 0.0001716 |
2452 | 16 | 0.0001716 |
2732 | 16 | 0.0001716 |
3111 | 16 | 0.0001716 |
3324 | 16 | 0.0001716 |
3354 | 16 | 0.0001716 |
3431 | 16 | 0.0001716 |
3671 | 16 | 0.0001716 |
3942 | 16 | 0.0001716 |
4493 | 16 | 0.0001716 |
5111 | 16 | 0.0001716 |
5162 | 16 | 0.0001716 |
6163 | 16 | 0.0001716 |
999C | 16 | 0.0001716 |
2436 | 15 | 0.0001609 |
2514 | 15 | 0.0001609 |
3199 | 15 | 0.0001609 |
3313 | 15 | 0.0001609 |
3524 | 15 | 0.0001609 |
3632 | 15 | 0.0001609 |
3694 | 15 | 0.0001609 |
5551 | 15 | 0.0001609 |
5713 | 15 | 0.0001609 |
6221 | 15 | 0.0001609 |
7378 | 15 | 0.0001609 |
0191 | 14 | 0.0001501 |
0751 | 14 | 0.0001501 |
2269 | 14 | 0.0001501 |
2326 | 14 | 0.0001501 |
2392 | 14 | 0.0001501 |
2893 | 14 | 0.0001501 |
3052 | 14 | 0.0001501 |
3369 | 14 | 0.0001501 |
3633 | 14 | 0.0001501 |
4613 | 14 | 0.0001501 |
5052 | 14 | 0.0001501 |
5139 | 14 | 0.0001501 |
5521 | 14 | 0.0001501 |
5719 | 14 | 0.0001501 |
5995 | 14 | 0.0001501 |
6553 | 14 | 0.0001501 |
7231 | 14 | 0.0001501 |
8243 | 14 | 0.0001501 |
0179 | 13 | 0.0001394 |
1791 | 13 | 0.0001394 |
2097 | 13 | 0.0001394 |
2098 | 13 | 0.0001394 |
2131 | 13 | 0.0001394 |
2241 | 13 | 0.0001394 |
2389 | 13 | 0.0001394 |
2824 | 13 | 0.0001394 |
3053 | 13 | 0.0001394 |
3365 | 13 | 0.0001394 |
3546 | 13 | 0.0001394 |
3715 | 13 | 0.0001394 |
4489 | 13 | 0.0001394 |
5193 | 13 | 0.0001394 |
5251 | 13 | 0.0001394 |
7033 | 13 | 0.0001394 |
7334 | 13 | 0.0001394 |
7629 | 13 | 0.0001394 |
8111 | 13 | 0.0001394 |
0921 | 12 | 0.0001287 |
1479 | 12 | 0.0001287 |
2077 | 12 | 0.0001287 |
2541 | 12 | 0.0001287 |
2655 | 12 | 0.0001287 |
2874 | 12 | 0.0001287 |
3085 | 12 | 0.0001287 |
3088 | 12 | 0.0001287 |
3281 | 12 | 0.0001287 |
3495 | 12 | 0.0001287 |
3594 | 12 | 0.0001287 |
3644 | 12 | 0.0001287 |
3795 | 12 | 0.0001287 |
4939 | 12 | 0.0001287 |
5714 | 12 | 0.0001287 |
5963 | 12 | 0.0001287 |
6399 | 12 | 0.0001287 |
7032 | 12 | 0.0001287 |
0912 | 11 | 0.0001180 |
2034 | 11 | 0.0001180 |
2046 | 11 | 0.0001180 |
2047 | 11 | 0.0001180 |
2061 | 11 | 0.0001180 |
2426 | 11 | 0.0001180 |
2591 | 11 | 0.0001180 |
2822 | 11 | 0.0001180 |
3262 | 11 | 0.0001180 |
3269 | 11 | 0.0001180 |
3292 | 11 | 0.0001180 |
3366 | 11 | 0.0001180 |
3449 | 11 | 0.0001180 |
3471 | 11 | 0.0001180 |
3931 | 11 | 0.0001180 |
4214 | 11 | 0.0001180 |
4482 | 11 | 0.0001180 |
5083 | 11 | 0.0001180 |
5499 | 11 | 0.0001180 |
5992 | 11 | 0.0001180 |
8211 | 11 | 0.0001180 |
8322 | 11 | 0.0001180 |
8611 | 11 | 0.0001180 |
1474 | 10 | 0.0001072 |
1761 | 10 | 0.0001072 |
2251 | 10 | 0.0001072 |
2252 | 10 | 0.0001072 |
2295 | 10 | 0.0001072 |
2337 | 10 | 0.0001072 |
2341 | 10 | 0.0001072 |
2493 | 10 | 0.0001072 |
2796 | 10 | 0.0001072 |
2816 | 10 | 0.0001072 |
3061 | 10 | 0.0001072 |
3451 | 10 | 0.0001072 |
3549 | 10 | 0.0001072 |
3596 | 10 | 0.0001072 |
3676 | 10 | 0.0001072 |
3799 | 10 | 0.0001072 |
4121 | 10 | 0.0001072 |
4151 | 10 | 0.0001072 |
4729 | 10 | 0.0001072 |
4783 | 10 | 0.0001072 |
5075 | 10 | 0.0001072 |
5181 | 10 | 0.0001072 |
5198 | 10 | 0.0001072 |
5641 | 10 | 0.0001072 |
5921 | 10 | 0.0001072 |
619A | 10 | 0.0001072 |
999D | 10 | 0.0001072 |
0172 | 9 | 0.0000965 |
0742 | 9 | 0.0000965 |
1459 | 9 | 0.0000965 |
2045 | 9 | 0.0000965 |
2284 | 9 | 0.0000965 |
2297 | 9 | 0.0000965 |
2672 | 9 | 0.0000965 |
2861 | 9 | 0.0000965 |
3083 | 9 | 0.0000965 |
3484 | 9 | 0.0000965 |
3914 | 9 | 0.0000965 |
3995 | 9 | 0.0000965 |
4492 | 9 | 0.0000965 |
5021 | 9 | 0.0000965 |
5159 | 9 | 0.0000965 |
5461 | 9 | 0.0000965 |
6081 | 9 | 0.0000965 |
619B | 9 | 0.0000965 |
6514 | 9 | 0.0000965 |
7215 | 9 | 0.0000965 |
7515 | 9 | 0.0000965 |
8733 | 9 | 0.0000965 |
0212 | 8 | 0.0000858 |
0711 | 8 | 0.0000858 |
0781 | 8 | 0.0000858 |
1446 | 8 | 0.0000858 |
2063 | 8 | 0.0000858 |
2261 | 8 | 0.0000858 |
2342 | 8 | 0.0000858 |
2387 | 8 | 0.0000858 |
2491 | 8 | 0.0000858 |
2652 | 8 | 0.0000858 |
3082 | 8 | 0.0000858 |
3331 | 8 | 0.0000858 |
3497 | 8 | 0.0000858 |
3553 | 8 | 0.0000858 |
3716 | 8 | 0.0000858 |
3951 | 8 | 0.0000858 |
3965 | 8 | 0.0000858 |
5571 | 8 | 0.0000858 |
5932 | 8 | 0.0000858 |
5946 | 8 | 0.0000858 |
5983 | 8 | 0.0000858 |
7221 | 8 | 0.0000858 |
7623 | 8 | 0.0000858 |
7833 | 8 | 0.0000858 |
7933 | 8 | 0.0000858 |
8042 | 8 | 0.0000858 |
8331 | 8 | 0.0000858 |
9223 | 8 | 0.0000858 |
9621 | 8 | 0.0000858 |
0721 | 7 | 0.0000751 |
0762 | 7 | 0.0000751 |
0782 | 7 | 0.0000751 |
1321 | 7 | 0.0000751 |
1751 | 7 | 0.0000751 |
2067 | 7 | 0.0000751 |
2121 | 7 | 0.0000751 |
2396 | 7 | 0.0000751 |
2439 | 7 | 0.0000751 |
2448 | 7 | 0.0000751 |
2675 | 7 | 0.0000751 |
2782 | 7 | 0.0000751 |
2951 | 7 | 0.0000751 |
3144 | 7 | 0.0000751 |
3274 | 7 | 0.0000751 |
3296 | 7 | 0.0000751 |
3299 | 7 | 0.0000751 |
3355 | 7 | 0.0000751 |
5736 | 7 | 0.0000751 |
6111 | 7 | 0.0000751 |
6515 | 7 | 0.0000751 |
6732 | 7 | 0.0000751 |
7211 | 7 | 0.0000751 |
7291 | 7 | 0.0000751 |
0133 | 6 | 0.0000643 |
0174 | 6 | 0.0000643 |
0271 | 6 | 0.0000643 |
0851 | 6 | 0.0000643 |
2999 | 6 | 0.0000643 |
3087 | 6 | 0.0000643 |
3171 | 6 | 0.0000643 |
3264 | 6 | 0.0000643 |
3412 | 6 | 0.0000643 |
3586 | 6 | 0.0000643 |
3647 | 6 | 0.0000643 |
3996 | 6 | 0.0000643 |
4221 | 6 | 0.0000643 |
5015 | 6 | 0.0000643 |
5048 | 6 | 0.0000643 |
5087 | 6 | 0.0000643 |
5154 | 6 | 0.0000643 |
5194 | 6 | 0.0000643 |
5947 | 6 | 0.0000643 |
7829 | 6 | 0.0000643 |
8422 | 6 | 0.0000643 |
0119 | 5 | 0.0000536 |
0161 | 5 | 0.0000536 |
0171 | 5 | 0.0000536 |
0211 | 5 | 0.0000536 |
0724 | 5 | 0.0000536 |
1429 | 5 | 0.0000536 |
1796 | 5 | 0.0000536 |
2044 | 5 | 0.0000536 |
2322 | 5 | 0.0000536 |
2353 | 5 | 0.0000536 |
2385 | 5 | 0.0000536 |
2449 | 5 | 0.0000536 |
2521 | 5 | 0.0000536 |
2843 | 5 | 0.0000536 |
3151 | 5 | 0.0000536 |
3259 | 5 | 0.0000536 |
3295 | 5 | 0.0000536 |
3493 | 5 | 0.0000536 |
3955 | 5 | 0.0000536 |
3991 | 5 | 0.0000536 |
5451 | 5 | 0.0000536 |
5632 | 5 | 0.0000536 |
6011 | 5 | 0.0000536 |
7536 | 5 | 0.0000536 |
8699 | 5 | 0.0000536 |
0173 | 4 | 0.0000429 |
0219 | 4 | 0.0000429 |
0251 | 4 | 0.0000429 |
0252 | 4 | 0.0000429 |
0254 | 4 | 0.0000429 |
0722 | 4 | 0.0000429 |
1423 | 4 | 0.0000429 |
1742 | 4 | 0.0000429 |
1752 | 4 | 0.0000429 |
1771 | 4 | 0.0000429 |
1781 | 4 | 0.0000429 |
2258 | 4 | 0.0000429 |
2262 | 4 | 0.0000429 |
2296 | 4 | 0.0000429 |
2298 | 4 | 0.0000429 |
2325 | 4 | 0.0000429 |
2391 | 4 | 0.0000429 |
2531 | 4 | 0.0000429 |
2542 | 4 | 0.0000429 |
2875 | 4 | 0.0000429 |
2895 | 4 | 0.0000429 |
3131 | 4 | 0.0000429 |
3364 | 4 | 0.0000429 |
3463 | 4 | 0.0000429 |
3566 | 4 | 0.0000429 |
3582 | 4 | 0.0000429 |
3792 | 4 | 0.0000429 |
3952 | 4 | 0.0000429 |
4231 | 4 | 0.0000429 |
4619 | 4 | 0.0000429 |
4741 | 4 | 0.0000429 |
5144 | 4 | 0.0000429 |
5561 | 4 | 0.0000429 |
6792 | 4 | 0.0000429 |
7216 | 4 | 0.0000429 |
7313 | 4 | 0.0000429 |
7338 | 4 | 0.0000429 |
7519 | 4 | 0.0000429 |
7542 | 4 | 0.0000429 |
8399 | 4 | 0.0000429 |
9532 | 4 | 0.0000429 |
9611 | 4 | 0.0000429 |
9631 | 4 | 0.0000429 |
0131 | 3 | 0.0000322 |
0175 | 3 | 0.0000322 |
0182 | 3 | 0.0000322 |
0259 | 3 | 0.0000322 |
0723 | 3 | 0.0000322 |
0783 | 3 | 0.0000322 |
1475 | 3 | 0.0000322 |
2323 | 3 | 0.0000322 |
2369 | 3 | 0.0000322 |
2381 | 3 | 0.0000322 |
2656 | 3 | 0.0000322 |
2823 | 3 | 0.0000322 |
3161 | 3 | 0.0000322 |
3263 | 3 | 0.0000322 |
3322 | 3 | 0.0000322 |
3466 | 3 | 0.0000322 |
3483 | 3 | 0.0000322 |
3489 | 3 | 0.0000322 |
3764 | 3 | 0.0000322 |
3769 | 3 | 0.0000322 |
4952 | 3 | 0.0000322 |
5421 | 3 | 0.0000322 |
5948 | 3 | 0.0000322 |
5994 | 3 | 0.0000322 |
6061 | 3 | 0.0000322 |
6082 | 3 | 0.0000322 |
7219 | 3 | 0.0000322 |
7539 | 3 | 0.0000322 |
8621 | 3 | 0.0000322 |
8641 | 3 | 0.0000322 |
9199 | 3 | 0.0000322 |
9411 | 3 | 0.0000322 |
0111 | 2 | 0.0000214 |
0272 | 2 | 0.0000214 |
0291 | 2 | 0.0000214 |
0752 | 2 | 0.0000214 |
1231 | 2 | 0.0000214 |
1455 | 2 | 0.0000214 |
1741 | 2 | 0.0000214 |
1794 | 2 | 0.0000214 |
2053 | 2 | 0.0000214 |
2068 | 2 | 0.0000214 |
2074 | 2 | 0.0000214 |
2259 | 2 | 0.0000214 |
2282 | 2 | 0.0000214 |
2361 | 2 | 0.0000214 |
2371 | 2 | 0.0000214 |
2386 | 2 | 0.0000214 |
2394 | 2 | 0.0000214 |
2791 | 2 | 0.0000214 |
3172 | 2 | 0.0000214 |
3547 | 2 | 0.0000214 |
3635 | 2 | 0.0000214 |
4961 | 2 | 0.0000214 |
5014 | 2 | 0.0000214 |
5046 | 2 | 0.0000214 |
5078 | 2 | 0.0000214 |
5441 | 2 | 0.0000214 |
5949 | 2 | 0.0000214 |
6091 | 2 | 0.0000214 |
6541 | 2 | 0.0000214 |
7041 | 2 | 0.0000214 |
7212 | 2 | 0.0000214 |
7251 | 2 | 0.0000214 |
7369 | 2 | 0.0000214 |
7532 | 2 | 0.0000214 |
7534 | 2 | 0.0000214 |
7694 | 2 | 0.0000214 |
8031 | 2 | 0.0000214 |
8651 | 2 | 0.0000214 |
8661 | 2 | 0.0000214 |
9121 | 2 | 0.0000214 |
9512 | 2 | 0.0000214 |
9651 | 2 | 0.0000214 |
9661 | 2 | 0.0000214 |
0116 | 1 | 0.0000107 |
0132 | 1 | 0.0000107 |
0213 | 1 | 0.0000107 |
0214 | 1 | 0.0000107 |
0253 | 1 | 0.0000107 |
0279 | 1 | 0.0000107 |
0913 | 1 | 0.0000107 |
1721 | 1 | 0.0000107 |
1793 | 1 | 0.0000107 |
1795 | 1 | 0.0000107 |
2141 | 1 | 0.0000107 |
2254 | 1 | 0.0000107 |
2257 | 1 | 0.0000107 |
2384 | 1 | 0.0000107 |
2393 | 1 | 0.0000107 |
2674 | 1 | 0.0000107 |
2789 | 1 | 0.0000107 |
3142 | 1 | 0.0000107 |
3425 | 1 | 0.0000107 |
3953 | 1 | 0.0000107 |
3961 | 1 | 0.0000107 |
4013 | 1 | 0.0000107 |
4432 | 1 | 0.0000107 |
4971 | 1 | 0.0000107 |
5145 | 1 | 0.0000107 |
5271 | 1 | 0.0000107 |
5431 | 1 | 0.0000107 |
7217 | 1 | 0.0000107 |
7533 | 1 | 0.0000107 |
7622 | 1 | 0.0000107 |
7692 | 1 | 0.0000107 |
8231 | 1 | 0.0000107 |
8412 | 1 | 0.0000107 |
8631 | 1 | 0.0000107 |
9221 | 1 | 0.0000107 |
9224 | 1 | 0.0000107 |
9431 | 1 | 0.0000107 |
9531 | 1 | 0.0000107 |
9641 | 1 | 0.0000107 |
999G | 1 | 0.0000107 |
sdc %>%
count(tar_sic, name = "count") %>%
mutate(sample_percentage = count / sum(count)) %>%
arrange(desc(count)) %>%
kable("html", col.names = c("Deal Type", "Count", "%")) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
scroll_box(width = "100%", height = "500px")
Deal Type | Count | % |
---|---|---|
7372 | 4489 | 0.0481430 |
6512 | 4098 | 0.0439497 |
1311 | 2667 | 0.0286027 |
7011 | 2353 | 0.0252351 |
7375 | 2112 | 0.0226505 |
6799 | 1678 | 0.0179960 |
4813 | 1347 | 0.0144461 |
6021 | 1144 | 0.0122690 |
7389 | 1095 | 0.0117435 |
6311 | 1022 | 0.0109606 |
6552 | 1020 | 0.0109392 |
7379 | 975 | 0.0104565 |
2834 | 972 | 0.0104244 |
6000 | 956 | 0.0102528 |
4911 | 947 | 0.0101563 |
7373 | 895 | 0.0095986 |
1041 | 879 | 0.0094270 |
4832 | 848 | 0.0090945 |
6022 | 813 | 0.0087192 |
5812 | 806 | 0.0086441 |
3674 | 772 | 0.0082794 |
4812 | 692 | 0.0074215 |
8711 | 655 | 0.0070247 |
6282 | 629 | 0.0067458 |
6211 | 620 | 0.0066493 |
8742 | 598 | 0.0064134 |
4841 | 590 | 0.0063276 |
8748 | 550 | 0.0058986 |
3714 | 545 | 0.0058449 |
6035 | 540 | 0.0057913 |
7371 | 539 | 0.0057806 |
6798 | 515 | 0.0055232 |
5411 | 503 | 0.0053945 |
6531 | 487 | 0.0052229 |
7361 | 467 | 0.0050084 |
3841 | 464 | 0.0049762 |
4953 | 463 | 0.0049655 |
6141 | 446 | 0.0047832 |
3089 | 445 | 0.0047725 |
4833 | 433 | 0.0046438 |
3679 | 418 | 0.0044829 |
5045 | 404 | 0.0043328 |
8731 | 391 | 0.0041933 |
3661 | 388 | 0.0041612 |
6411 | 383 | 0.0041075 |
2731 | 377 | 0.0040432 |
5511 | 375 | 0.0040217 |
3663 | 367 | 0.0039360 |
6513 | 367 | 0.0039360 |
7999 | 352 | 0.0037751 |
3577 | 351 | 0.0037644 |
2721 | 350 | 0.0037536 |
2836 | 347 | 0.0037215 |
7359 | 334 | 0.0035820 |
8099 | 332 | 0.0035606 |
5813 | 322 | 0.0034533 |
2711 | 320 | 0.0034319 |
2821 | 317 | 0.0033997 |
7311 | 297 | 0.0031852 |
5122 | 296 | 0.0031745 |
4412 | 294 | 0.0031531 |
5999 | 288 | 0.0030887 |
8051 | 288 | 0.0030887 |
1521 | 285 | 0.0030565 |
7374 | 285 | 0.0030565 |
4213 | 283 | 0.0030351 |
3312 | 282 | 0.0030244 |
8062 | 281 | 0.0030136 |
4724 | 272 | 0.0029171 |
3845 | 269 | 0.0028849 |
5065 | 269 | 0.0028849 |
7812 | 264 | 0.0028313 |
8011 | 254 | 0.0027241 |
6726 | 249 | 0.0026704 |
3842 | 244 | 0.0026168 |
5311 | 244 | 0.0026168 |
2819 | 243 | 0.0026061 |
2621 | 241 | 0.0025846 |
3669 | 239 | 0.0025632 |
6162 | 238 | 0.0025525 |
2082 | 234 | 0.0025096 |
3559 | 232 | 0.0024881 |
4899 | 232 | 0.0024881 |
2086 | 228 | 0.0024452 |
4922 | 226 | 0.0024238 |
1522 | 223 | 0.0023916 |
2099 | 220 | 0.0023594 |
4941 | 216 | 0.0023165 |
3571 | 214 | 0.0022951 |
2899 | 213 | 0.0022844 |
8741 | 213 | 0.0022844 |
8071 | 211 | 0.0022629 |
3823 | 209 | 0.0022415 |
5047 | 208 | 0.0022307 |
1381 | 204 | 0.0021878 |
1221 | 203 | 0.0021771 |
2844 | 202 | 0.0021664 |
5912 | 202 | 0.0021664 |
3829 | 200 | 0.0021449 |
5961 | 197 | 0.0021128 |
7382 | 197 | 0.0021128 |
2084 | 190 | 0.0020377 |
3241 | 182 | 0.0019519 |
1389 | 179 | 0.0019197 |
3949 | 178 | 0.0019090 |
4225 | 175 | 0.0018768 |
3569 | 173 | 0.0018554 |
1731 | 172 | 0.0018446 |
2869 | 172 | 0.0018446 |
4731 | 172 | 0.0018446 |
3711 | 171 | 0.0018339 |
3812 | 169 | 0.0018125 |
3672 | 168 | 0.0018017 |
5084 | 164 | 0.0017588 |
2752 | 161 | 0.0017267 |
5063 | 161 | 0.0017267 |
4512 | 156 | 0.0016730 |
8732 | 155 | 0.0016623 |
4581 | 154 | 0.0016516 |
2741 | 153 | 0.0016409 |
6331 | 152 | 0.0016301 |
7997 | 152 | 0.0016301 |
8721 | 151 | 0.0016194 |
2051 | 148 | 0.0015873 |
2759 | 148 | 0.0015873 |
7363 | 147 | 0.0015765 |
3651 | 145 | 0.0015551 |
1021 | 144 | 0.0015444 |
1499 | 142 | 0.0015229 |
6036 | 142 | 0.0015229 |
5013 | 140 | 0.0015015 |
2911 | 139 | 0.0014907 |
7353 | 137 | 0.0014693 |
5149 | 136 | 0.0014586 |
2671 | 135 | 0.0014478 |
2851 | 135 | 0.0014478 |
6159 | 135 | 0.0014478 |
6324 | 135 | 0.0014478 |
7381 | 135 | 0.0014478 |
3585 | 134 | 0.0014371 |
2835 | 133 | 0.0014264 |
3728 | 133 | 0.0014264 |
4011 | 131 | 0.0014049 |
7941 | 131 | 0.0014049 |
7349 | 127 | 0.0013620 |
8299 | 127 | 0.0013620 |
1541 | 124 | 0.0013299 |
8082 | 124 | 0.0013299 |
3069 | 122 | 0.0013084 |
3825 | 121 | 0.0012977 |
5141 | 121 | 0.0012977 |
3731 | 120 | 0.0012870 |
4491 | 120 | 0.0012870 |
2299 | 119 | 0.0012762 |
3357 | 118 | 0.0012655 |
3699 | 118 | 0.0012655 |
7261 | 118 | 0.0012655 |
7312 | 117 | 0.0012548 |
3999 | 116 | 0.0012441 |
5734 | 116 | 0.0012441 |
2833 | 115 | 0.0012333 |
3826 | 114 | 0.0012226 |
5093 | 113 | 0.0012119 |
5169 | 112 | 0.0012012 |
3827 | 109 | 0.0011690 |
1629 | 108 | 0.0011583 |
3531 | 108 | 0.0011583 |
3944 | 108 | 0.0011583 |
7832 | 108 | 0.0011583 |
8059 | 108 | 0.0011583 |
8734 | 108 | 0.0011583 |
3533 | 107 | 0.0011475 |
7376 | 106 | 0.0011368 |
1382 | 105 | 0.0011261 |
3272 | 105 | 0.0011261 |
1099 | 104 | 0.0011154 |
1623 | 103 | 0.0011046 |
5099 | 103 | 0.0011046 |
6153 | 102 | 0.0010939 |
2891 | 101 | 0.0010832 |
5051 | 101 | 0.0010832 |
6099 | 101 | 0.0010832 |
2033 | 100 | 0.0010725 |
2329 | 100 | 0.0010725 |
5541 | 100 | 0.0010725 |
3572 | 99 | 0.0010617 |
4212 | 99 | 0.0010617 |
2011 | 98 | 0.0010510 |
5112 | 98 | 0.0010510 |
8093 | 98 | 0.0010510 |
1799 | 97 | 0.0010403 |
2211 | 97 | 0.0010403 |
1061 | 96 | 0.0010296 |
3589 | 96 | 0.0010296 |
3541 | 95 | 0.0010188 |
2841 | 94 | 0.0010081 |
5172 | 94 | 0.0010081 |
3442 | 93 | 0.0009974 |
1711 | 92 | 0.0009867 |
7319 | 92 | 0.0009867 |
3429 | 91 | 0.0009759 |
4111 | 91 | 0.0009759 |
1611 | 90 | 0.0009652 |
2064 | 90 | 0.0009652 |
4923 | 88 | 0.0009438 |
7992 | 88 | 0.0009438 |
7521 | 87 | 0.0009330 |
5012 | 86 | 0.0009223 |
5031 | 86 | 0.0009223 |
7996 | 86 | 0.0009223 |
3443 | 85 | 0.0009116 |
3621 | 84 | 0.0009009 |
3861 | 84 | 0.0009009 |
5085 | 84 | 0.0009009 |
6321 | 83 | 0.0008901 |
2048 | 82 | 0.0008794 |
3325 | 82 | 0.0008794 |
2026 | 81 | 0.0008687 |
4215 | 81 | 0.0008687 |
7991 | 81 | 0.0008687 |
9511 | 81 | 0.0008687 |
0811 | 80 | 0.0008580 |
3625 | 80 | 0.0008580 |
3433 | 79 | 0.0008472 |
3561 | 79 | 0.0008472 |
4924 | 79 | 0.0008472 |
5074 | 79 | 0.0008472 |
6722 | 79 | 0.0008472 |
3499 | 78 | 0.0008365 |
5199 | 78 | 0.0008365 |
8069 | 78 | 0.0008365 |
2421 | 77 | 0.0008258 |
2879 | 77 | 0.0008258 |
499A | 77 | 0.0008258 |
7514 | 77 | 0.0008258 |
2511 | 76 | 0.0008151 |
4226 | 76 | 0.0008151 |
5039 | 75 | 0.0008043 |
5712 | 75 | 0.0008043 |
6519 | 75 | 0.0008043 |
2679 | 74 | 0.0007936 |
5044 | 74 | 0.0007936 |
5621 | 74 | 0.0007936 |
7948 | 74 | 0.0007936 |
8021 | 74 | 0.0007936 |
2611 | 73 | 0.0007829 |
2754 | 73 | 0.0007829 |
4612 | 73 | 0.0007829 |
7819 | 73 | 0.0007829 |
7993 | 73 | 0.0007829 |
3081 | 72 | 0.0007722 |
3629 | 72 | 0.0007722 |
5072 | 72 | 0.0007722 |
5941 | 70 | 0.0007507 |
7336 | 70 | 0.0007507 |
2013 | 69 | 0.0007400 |
3086 | 69 | 0.0007400 |
3575 | 69 | 0.0007400 |
6712 | 69 | 0.0007400 |
3523 | 68 | 0.0007293 |
3851 | 66 | 0.0007078 |
5182 | 66 | 0.0007078 |
6289 | 66 | 0.0007078 |
3496 | 65 | 0.0006971 |
3724 | 65 | 0.0006971 |
8351 | 65 | 0.0006971 |
3469 | 64 | 0.0006864 |
3511 | 64 | 0.0006864 |
3491 | 63 | 0.0006757 |
3564 | 63 | 0.0006757 |
5211 | 63 | 0.0006757 |
8743 | 63 | 0.0006757 |
2431 | 62 | 0.0006649 |
3444 | 62 | 0.0006649 |
1081 | 61 | 0.0006542 |
3634 | 61 | 0.0006542 |
3743 | 61 | 0.0006542 |
5611 | 61 | 0.0006542 |
8744 | 61 | 0.0006542 |
1011 | 60 | 0.0006435 |
2041 | 60 | 0.0006435 |
3273 | 60 | 0.0006435 |
3317 | 60 | 0.0006435 |
3613 | 60 | 0.0006435 |
3751 | 60 | 0.0006435 |
5735 | 60 | 0.0006435 |
3721 | 59 | 0.0006328 |
8361 | 59 | 0.0006328 |
1031 | 58 | 0.0006220 |
2676 | 58 | 0.0006220 |
5191 | 58 | 0.0006220 |
7331 | 58 | 0.0006220 |
3321 | 57 | 0.0006113 |
3843 | 57 | 0.0006113 |
4931 | 57 | 0.0006113 |
5731 | 57 | 0.0006113 |
2653 | 56 | 0.0006006 |
2873 | 56 | 0.0006006 |
3545 | 56 | 0.0006006 |
3599 | 56 | 0.0006006 |
3844 | 56 | 0.0006006 |
4222 | 56 | 0.0006006 |
4789 | 56 | 0.0006006 |
7922 | 56 | 0.0006006 |
3462 | 55 | 0.0005899 |
3822 | 55 | 0.0005899 |
5023 | 55 | 0.0005899 |
6794 | 55 | 0.0005899 |
2331 | 54 | 0.0005791 |
3532 | 54 | 0.0005791 |
3652 | 54 | 0.0005791 |
5091 | 54 | 0.0005791 |
7841 | 54 | 0.0005791 |
8221 | 54 | 0.0005791 |
0181 | 53 | 0.0005684 |
2052 | 53 | 0.0005684 |
5651 | 53 | 0.0005684 |
6163 | 53 | 0.0005684 |
7699 | 53 | 0.0005684 |
8049 | 53 | 0.0005684 |
1094 | 52 | 0.0005577 |
2024 | 52 | 0.0005577 |
2085 | 52 | 0.0005577 |
3271 | 52 | 0.0005577 |
3555 | 52 | 0.0005577 |
5942 | 52 | 0.0005577 |
7322 | 52 | 0.0005577 |
2038 | 51 | 0.0005470 |
4449 | 51 | 0.0005470 |
4725 | 51 | 0.0005470 |
7822 | 51 | 0.0005470 |
2037 | 50 | 0.0005362 |
2076 | 50 | 0.0005362 |
3011 | 50 | 0.0005362 |
3423 | 50 | 0.0005362 |
3537 | 50 | 0.0005362 |
5136 | 50 | 0.0005362 |
5142 | 50 | 0.0005362 |
5531 | 50 | 0.0005362 |
6351 | 50 | 0.0005362 |
8249 | 50 | 0.0005362 |
1542 | 49 | 0.0005255 |
3315 | 49 | 0.0005255 |
3316 | 49 | 0.0005255 |
3411 | 49 | 0.0005255 |
3479 | 49 | 0.0005255 |
3993 | 49 | 0.0005255 |
5137 | 49 | 0.0005255 |
5261 | 49 | 0.0005255 |
2273 | 48 | 0.0005148 |
2842 | 48 | 0.0005148 |
3229 | 48 | 0.0005148 |
3612 | 48 | 0.0005148 |
5984 | 48 | 0.0005148 |
2631 | 47 | 0.0005041 |
3253 | 47 | 0.0005041 |
3713 | 47 | 0.0005041 |
5082 | 47 | 0.0005041 |
2023 | 46 | 0.0004933 |
2079 | 46 | 0.0004933 |
2281 | 46 | 0.0004933 |
3441 | 46 | 0.0004933 |
3691 | 46 | 0.0004933 |
4499 | 46 | 0.0004933 |
5995 | 46 | 0.0004933 |
6733 | 46 | 0.0004933 |
7538 | 46 | 0.0004933 |
1044 | 45 | 0.0004826 |
3251 | 45 | 0.0004826 |
3399 | 45 | 0.0004826 |
3494 | 45 | 0.0004826 |
5064 | 45 | 0.0004826 |
5192 | 45 | 0.0004826 |
7378 | 45 | 0.0004826 |
7384 | 45 | 0.0004826 |
8243 | 45 | 0.0004826 |
3519 | 44 | 0.0004719 |
3678 | 44 | 0.0004719 |
5661 | 44 | 0.0004719 |
7323 | 44 | 0.0004719 |
0241 | 43 | 0.0004612 |
2087 | 43 | 0.0004612 |
3211 | 43 | 0.0004612 |
3563 | 43 | 0.0004612 |
5088 | 43 | 0.0004612 |
7549 | 43 | 0.0004612 |
2311 | 42 | 0.0004504 |
2499 | 42 | 0.0004504 |
2813 | 42 | 0.0004504 |
3578 | 42 | 0.0004504 |
3821 | 42 | 0.0004504 |
6371 | 42 | 0.0004504 |
8063 | 42 | 0.0004504 |
8713 | 42 | 0.0004504 |
3143 | 41 | 0.0004397 |
3221 | 41 | 0.0004397 |
5032 | 41 | 0.0004397 |
5399 | 41 | 0.0004397 |
7299 | 41 | 0.0004397 |
8052 | 41 | 0.0004397 |
0172 | 40 | 0.0004290 |
3083 | 40 | 0.0004290 |
3556 | 40 | 0.0004290 |
6719 | 40 | 0.0004290 |
7513 | 40 | 0.0004290 |
8999 | 40 | 0.0004290 |
2321 | 39 | 0.0004183 |
3052 | 39 | 0.0004183 |
3356 | 39 | 0.0004183 |
3492 | 39 | 0.0004183 |
3498 | 39 | 0.0004183 |
4925 | 39 | 0.0004183 |
0831 | 38 | 0.0004075 |
2092 | 38 | 0.0004075 |
2392 | 38 | 0.0004075 |
3535 | 38 | 0.0004075 |
3544 | 38 | 0.0004075 |
3675 | 38 | 0.0004075 |
4119 | 38 | 0.0004075 |
4513 | 38 | 0.0004075 |
5722 | 38 | 0.0004075 |
6514 | 38 | 0.0004075 |
8712 | 38 | 0.0004075 |
2091 | 37 | 0.0003968 |
3231 | 37 | 0.0003968 |
3579 | 37 | 0.0003968 |
3643 | 37 | 0.0003968 |
3648 | 37 | 0.0003968 |
5171 | 37 | 0.0003968 |
5499 | 37 | 0.0003968 |
7377 | 37 | 0.0003968 |
2032 | 36 | 0.0003861 |
2096 | 36 | 0.0003861 |
2657 | 36 | 0.0003861 |
3365 | 36 | 0.0003861 |
3452 | 36 | 0.0003861 |
3465 | 36 | 0.0003861 |
3565 | 36 | 0.0003861 |
3593 | 36 | 0.0003861 |
4822 | 36 | 0.0003861 |
6029 | 36 | 0.0003861 |
2865 | 35 | 0.0003754 |
3353 | 35 | 0.0003754 |
3534 | 35 | 0.0003754 |
3536 | 35 | 0.0003754 |
3639 | 35 | 0.0003754 |
3645 | 35 | 0.0003754 |
5043 | 35 | 0.0003754 |
5083 | 35 | 0.0003754 |
5092 | 35 | 0.0003754 |
5943 | 35 | 0.0003754 |
7033 | 35 | 0.0003754 |
7383 | 35 | 0.0003754 |
1422 | 34 | 0.0003646 |
2066 | 34 | 0.0003646 |
2111 | 34 | 0.0003646 |
3084 | 34 | 0.0003646 |
3398 | 34 | 0.0003646 |
3732 | 34 | 0.0003646 |
4613 | 34 | 0.0003646 |
4785 | 34 | 0.0003646 |
5251 | 34 | 0.0003646 |
5945 | 34 | 0.0003646 |
8092 | 34 | 0.0003646 |
3631 | 33 | 0.0003539 |
4481 | 33 | 0.0003539 |
5461 | 33 | 0.0003539 |
5944 | 33 | 0.0003539 |
8331 | 33 | 0.0003539 |
1321 | 32 | 0.0003432 |
1481 | 32 | 0.0003432 |
2022 | 32 | 0.0003432 |
2812 | 32 | 0.0003432 |
2824 | 32 | 0.0003432 |
5094 | 32 | 0.0003432 |
5148 | 32 | 0.0003432 |
0851 | 31 | 0.0003325 |
2015 | 31 | 0.0003325 |
2021 | 31 | 0.0003325 |
2047 | 31 | 0.0003325 |
2221 | 31 | 0.0003325 |
2522 | 31 | 0.0003325 |
3269 | 31 | 0.0003325 |
3339 | 31 | 0.0003325 |
3448 | 31 | 0.0003325 |
3524 | 31 | 0.0003325 |
3542 | 31 | 0.0003325 |
3552 | 31 | 0.0003325 |
3641 | 31 | 0.0003325 |
3873 | 31 | 0.0003325 |
3911 | 31 | 0.0003325 |
4131 | 31 | 0.0003325 |
5049 | 31 | 0.0003325 |
5113 | 31 | 0.0003325 |
5699 | 31 | 0.0003325 |
6553 | 31 | 0.0003325 |
0912 | 30 | 0.0003217 |
2231 | 30 | 0.0003217 |
2411 | 30 | 0.0003217 |
2521 | 30 | 0.0003217 |
2672 | 30 | 0.0003217 |
3965 | 30 | 0.0003217 |
4141 | 30 | 0.0003217 |
4522 | 30 | 0.0003217 |
5143 | 30 | 0.0003217 |
5146 | 30 | 0.0003217 |
5331 | 30 | 0.0003217 |
7335 | 30 | 0.0003217 |
2035 | 29 | 0.0003110 |
2095 | 29 | 0.0003110 |
2992 | 29 | 0.0003110 |
3255 | 29 | 0.0003110 |
3275 | 29 | 0.0003110 |
3334 | 29 | 0.0003110 |
3562 | 29 | 0.0003110 |
5599 | 29 | 0.0003110 |
7352 | 29 | 0.0003110 |
2062 | 28 | 0.0003003 |
2761 | 28 | 0.0003003 |
3351 | 28 | 0.0003003 |
3471 | 28 | 0.0003003 |
3695 | 28 | 0.0003003 |
5962 | 28 | 0.0003003 |
7515 | 28 | 0.0003003 |
7629 | 28 | 0.0003003 |
3354 | 27 | 0.0002896 |
3446 | 27 | 0.0002896 |
3567 | 27 | 0.0002896 |
3646 | 27 | 0.0002896 |
5131 | 27 | 0.0002896 |
5719 | 27 | 0.0002896 |
2678 | 26 | 0.0002788 |
2893 | 26 | 0.0002788 |
3554 | 26 | 0.0002788 |
4482 | 26 | 0.0002788 |
4619 | 26 | 0.0002788 |
5014 | 26 | 0.0002788 |
0273 | 25 | 0.0002681 |
1479 | 25 | 0.0002681 |
2061 | 25 | 0.0002681 |
2435 | 25 | 0.0002681 |
2452 | 25 | 0.0002681 |
2541 | 25 | 0.0002681 |
2673 | 25 | 0.0002681 |
2952 | 25 | 0.0002681 |
3149 | 25 | 0.0002681 |
3341 | 25 | 0.0002681 |
3363 | 25 | 0.0002681 |
3568 | 25 | 0.0002681 |
3581 | 25 | 0.0002681 |
5075 | 25 | 0.0002681 |
5111 | 25 | 0.0002681 |
8111 | 25 | 0.0002681 |
8733 | 25 | 0.0002681 |
0721 | 24 | 0.0002574 |
1442 | 24 | 0.0002574 |
2326 | 24 | 0.0002574 |
2434 | 24 | 0.0002574 |
2493 | 24 | 0.0002574 |
2519 | 24 | 0.0002574 |
2951 | 24 | 0.0002574 |
3085 | 24 | 0.0002574 |
3632 | 24 | 0.0002574 |
3671 | 24 | 0.0002574 |
3824 | 24 | 0.0002574 |
5021 | 24 | 0.0002574 |
5033 | 24 | 0.0002574 |
5947 | 24 | 0.0002574 |
5963 | 24 | 0.0002574 |
6221 | 24 | 0.0002574 |
8322 | 24 | 0.0002574 |
1411 | 23 | 0.0002467 |
1531 | 23 | 0.0002467 |
2241 | 23 | 0.0002467 |
2339 | 23 | 0.0002467 |
2399 | 23 | 0.0002467 |
2515 | 23 | 0.0002467 |
2531 | 23 | 0.0002467 |
2874 | 23 | 0.0002467 |
4729 | 23 | 0.0002467 |
5193 | 23 | 0.0002467 |
5521 | 23 | 0.0002467 |
0751 | 22 | 0.0002359 |
2252 | 22 | 0.0002359 |
2822 | 22 | 0.0002359 |
2892 | 22 | 0.0002359 |
3053 | 22 | 0.0002359 |
3291 | 22 | 0.0002359 |
3355 | 22 | 0.0002359 |
3692 | 22 | 0.0002359 |
4959 | 22 | 0.0002359 |
0179 | 21 | 0.0002252 |
2043 | 21 | 0.0002252 |
2677 | 21 | 0.0002252 |
3021 | 21 | 0.0002252 |
3088 | 21 | 0.0002252 |
3261 | 21 | 0.0002252 |
3281 | 21 | 0.0002252 |
3295 | 21 | 0.0002252 |
3313 | 21 | 0.0002252 |
3594 | 21 | 0.0002252 |
3596 | 21 | 0.0002252 |
3624 | 21 | 0.0002252 |
3677 | 21 | 0.0002252 |
3694 | 21 | 0.0002252 |
3715 | 21 | 0.0002252 |
3799 | 21 | 0.0002252 |
5046 | 21 | 0.0002252 |
5087 | 21 | 0.0002252 |
5921 | 21 | 0.0002252 |
7334 | 21 | 0.0002252 |
7342 | 21 | 0.0002252 |
0782 | 20 | 0.0002145 |
1796 | 20 | 0.0002145 |
2034 | 20 | 0.0002145 |
2131 | 20 | 0.0002145 |
2253 | 20 | 0.0002145 |
2451 | 20 | 0.0002145 |
3262 | 20 | 0.0002145 |
3299 | 20 | 0.0002145 |
3432 | 20 | 0.0002145 |
3548 | 20 | 0.0002145 |
4121 | 20 | 0.0002145 |
4214 | 20 | 0.0002145 |
5198 | 20 | 0.0002145 |
6231 | 20 | 0.0002145 |
6399 | 20 | 0.0002145 |
1241 | 19 | 0.0002038 |
1474 | 19 | 0.0002038 |
2269 | 19 | 0.0002038 |
2426 | 19 | 0.0002038 |
2816 | 19 | 0.0002038 |
3061 | 19 | 0.0002038 |
3931 | 19 | 0.0002038 |
5052 | 19 | 0.0002038 |
8211 | 19 | 0.0002038 |
1751 | 18 | 0.0001930 |
2512 | 18 | 0.0001930 |
2591 | 18 | 0.0001930 |
2823 | 18 | 0.0001930 |
3161 | 18 | 0.0001930 |
3366 | 18 | 0.0001930 |
3431 | 18 | 0.0001930 |
3644 | 18 | 0.0001930 |
5162 | 18 | 0.0001930 |
5551 | 18 | 0.0001930 |
5713 | 18 | 0.0001930 |
7213 | 18 | 0.0001930 |
7829 | 18 | 0.0001930 |
7929 | 18 | 0.0001930 |
8042 | 18 | 0.0001930 |
0191 | 17 | 0.0001823 |
0212 | 17 | 0.0001823 |
0921 | 17 | 0.0001823 |
2341 | 17 | 0.0001823 |
2389 | 17 | 0.0001823 |
2542 | 17 | 0.0001823 |
2652 | 17 | 0.0001823 |
3111 | 17 | 0.0001823 |
3264 | 17 | 0.0001823 |
3549 | 17 | 0.0001823 |
3942 | 17 | 0.0001823 |
4783 | 17 | 0.0001823 |
5147 | 17 | 0.0001823 |
5159 | 17 | 0.0001823 |
8072 | 17 | 0.0001823 |
0133 | 16 | 0.0001716 |
0781 | 16 | 0.0001716 |
2675 | 16 | 0.0001716 |
3199 | 16 | 0.0001716 |
3297 | 16 | 0.0001716 |
3449 | 16 | 0.0001716 |
3546 | 16 | 0.0001716 |
4142 | 16 | 0.0001716 |
4424 | 16 | 0.0001716 |
4489 | 16 | 0.0001716 |
4492 | 16 | 0.0001716 |
4932 | 16 | 0.0001716 |
4939 | 16 | 0.0001716 |
5078 | 16 | 0.0001716 |
5632 | 16 | 0.0001716 |
1622 | 15 | 0.0001609 |
1761 | 15 | 0.0001609 |
2297 | 15 | 0.0001609 |
2335 | 15 | 0.0001609 |
2514 | 15 | 0.0001609 |
2599 | 15 | 0.0001609 |
2732 | 15 | 0.0001609 |
2999 | 15 | 0.0001609 |
3493 | 15 | 0.0001609 |
4493 | 15 | 0.0001609 |
5153 | 15 | 0.0001609 |
5932 | 15 | 0.0001609 |
6361 | 15 | 0.0001609 |
7313 | 15 | 0.0001609 |
7542 | 15 | 0.0001609 |
7933 | 15 | 0.0001609 |
0211 | 14 | 0.0001501 |
1222 | 14 | 0.0001501 |
1429 | 14 | 0.0001501 |
2046 | 14 | 0.0001501 |
3292 | 14 | 0.0001501 |
5139 | 14 | 0.0001501 |
5181 | 14 | 0.0001501 |
619A | 14 | 0.0001501 |
1791 | 13 | 0.0001394 |
2083 | 13 | 0.0001394 |
2251 | 13 | 0.0001394 |
2284 | 13 | 0.0001394 |
2295 | 13 | 0.0001394 |
2325 | 13 | 0.0001394 |
3592 | 13 | 0.0001394 |
3647 | 13 | 0.0001394 |
3761 | 13 | 0.0001394 |
5992 | 13 | 0.0001394 |
9223 | 13 | 0.0001394 |
0119 | 12 | 0.0001287 |
0711 | 12 | 0.0001287 |
0742 | 12 | 0.0001287 |
1459 | 12 | 0.0001287 |
2053 | 12 | 0.0001287 |
2077 | 12 | 0.0001287 |
2261 | 12 | 0.0001287 |
2448 | 12 | 0.0001287 |
3087 | 12 | 0.0001287 |
3364 | 12 | 0.0001287 |
3369 | 12 | 0.0001287 |
3566 | 12 | 0.0001287 |
3635 | 12 | 0.0001287 |
3914 | 12 | 0.0001287 |
4151 | 12 | 0.0001287 |
4961 | 12 | 0.0001287 |
5421 | 12 | 0.0001287 |
5736 | 12 | 0.0001287 |
6011 | 12 | 0.0001287 |
7032 | 12 | 0.0001287 |
7218 | 12 | 0.0001287 |
0174 | 11 | 0.0001180 |
1721 | 11 | 0.0001180 |
1771 | 11 | 0.0001180 |
2045 | 11 | 0.0001180 |
2121 | 11 | 0.0001180 |
2298 | 11 | 0.0001180 |
2337 | 11 | 0.0001180 |
2436 | 11 | 0.0001180 |
2655 | 11 | 0.0001180 |
2782 | 11 | 0.0001180 |
3082 | 11 | 0.0001180 |
3144 | 11 | 0.0001180 |
3331 | 11 | 0.0001180 |
3412 | 11 | 0.0001180 |
3421 | 11 | 0.0001180 |
3483 | 11 | 0.0001180 |
3792 | 11 | 0.0001180 |
4013 | 11 | 0.0001180 |
5015 | 11 | 0.0001180 |
5048 | 11 | 0.0001180 |
5194 | 11 | 0.0001180 |
5641 | 11 | 0.0001180 |
5983 | 11 | 0.0001180 |
7231 | 11 | 0.0001180 |
7291 | 11 | 0.0001180 |
7519 | 11 | 0.0001180 |
8399 | 11 | 0.0001180 |
0251 | 10 | 0.0001072 |
0722 | 10 | 0.0001072 |
2097 | 10 | 0.0001072 |
2098 | 10 | 0.0001072 |
2322 | 10 | 0.0001072 |
2369 | 10 | 0.0001072 |
2439 | 10 | 0.0001072 |
2491 | 10 | 0.0001072 |
2771 | 10 | 0.0001072 |
2796 | 10 | 0.0001072 |
2843 | 10 | 0.0001072 |
2875 | 10 | 0.0001072 |
2895 | 10 | 0.0001072 |
3172 | 10 | 0.0001072 |
3484 | 10 | 0.0001072 |
3497 | 10 | 0.0001072 |
3795 | 10 | 0.0001072 |
3951 | 10 | 0.0001072 |
3991 | 10 | 0.0001072 |
7532 | 10 | 0.0001072 |
7539 | 10 | 0.0001072 |
8244 | 10 | 0.0001072 |
0182 | 9 | 0.0000965 |
0723 | 9 | 0.0000965 |
1446 | 9 | 0.0000965 |
1794 | 9 | 0.0000965 |
2044 | 9 | 0.0000965 |
2385 | 9 | 0.0000965 |
2656 | 9 | 0.0000965 |
3296 | 9 | 0.0000965 |
3482 | 9 | 0.0000965 |
3676 | 9 | 0.0000965 |
3952 | 9 | 0.0000965 |
4741 | 9 | 0.0000965 |
5145 | 9 | 0.0000965 |
5571 | 9 | 0.0000965 |
6111 | 9 | 0.0000965 |
619B | 9 | 0.0000965 |
6515 | 9 | 0.0000965 |
7212 | 9 | 0.0000965 |
7215 | 9 | 0.0000965 |
7217 | 9 | 0.0000965 |
9621 | 9 | 0.0000965 |
0139 | 8 | 0.0000858 |
0724 | 8 | 0.0000858 |
0762 | 8 | 0.0000858 |
1423 | 8 | 0.0000858 |
1742 | 8 | 0.0000858 |
2063 | 8 | 0.0000858 |
2075 | 8 | 0.0000858 |
2258 | 8 | 0.0000858 |
2396 | 8 | 0.0000858 |
2674 | 8 | 0.0000858 |
3259 | 8 | 0.0000858 |
3274 | 8 | 0.0000858 |
3463 | 8 | 0.0000858 |
3466 | 8 | 0.0000858 |
3489 | 8 | 0.0000858 |
3586 | 8 | 0.0000858 |
4221 | 8 | 0.0000858 |
4952 | 8 | 0.0000858 |
7216 | 8 | 0.0000858 |
7221 | 8 | 0.0000858 |
7536 | 8 | 0.0000858 |
8412 | 8 | 0.0000858 |
8422 | 8 | 0.0000858 |
999B | 8 | 0.0000858 |
0291 | 7 | 0.0000751 |
1752 | 7 | 0.0000751 |
1781 | 7 | 0.0000751 |
2257 | 7 | 0.0000751 |
2262 | 7 | 0.0000751 |
2342 | 7 | 0.0000751 |
2391 | 7 | 0.0000751 |
2449 | 7 | 0.0000751 |
2791 | 7 | 0.0000751 |
3171 | 7 | 0.0000751 |
3553 | 7 | 0.0000751 |
3582 | 7 | 0.0000751 |
3716 | 7 | 0.0000751 |
4231 | 7 | 0.0000751 |
4971 | 7 | 0.0000751 |
5431 | 7 | 0.0000751 |
5946 | 7 | 0.0000751 |
5948 | 7 | 0.0000751 |
7021 | 7 | 0.0000751 |
7338 | 7 | 0.0000751 |
7622 | 7 | 0.0000751 |
8611 | 7 | 0.0000751 |
0131 | 6 | 0.0000643 |
2296 | 6 | 0.0000643 |
2353 | 6 | 0.0000643 |
3131 | 6 | 0.0000643 |
3263 | 6 | 0.0000643 |
3324 | 6 | 0.0000643 |
3495 | 6 | 0.0000643 |
3764 | 6 | 0.0000643 |
3953 | 6 | 0.0000643 |
3955 | 6 | 0.0000643 |
3996 | 6 | 0.0000643 |
4173 | 6 | 0.0000643 |
5144 | 6 | 0.0000643 |
5271 | 6 | 0.0000643 |
5949 | 6 | 0.0000643 |
5994 | 6 | 0.0000643 |
6091 | 6 | 0.0000643 |
7211 | 6 | 0.0000643 |
7533 | 6 | 0.0000643 |
7623 | 6 | 0.0000643 |
7692 | 6 | 0.0000643 |
8621 | 6 | 0.0000643 |
0161 | 5 | 0.0000536 |
0171 | 5 | 0.0000536 |
0175 | 5 | 0.0000536 |
0213 | 5 | 0.0000536 |
0214 | 5 | 0.0000536 |
0219 | 5 | 0.0000536 |
0254 | 5 | 0.0000536 |
0259 | 5 | 0.0000536 |
0752 | 5 | 0.0000536 |
0913 | 5 | 0.0000536 |
1455 | 5 | 0.0000536 |
1795 | 5 | 0.0000536 |
2067 | 5 | 0.0000536 |
2282 | 5 | 0.0000536 |
2387 | 5 | 0.0000536 |
2393 | 5 | 0.0000536 |
2517 | 5 | 0.0000536 |
2861 | 5 | 0.0000536 |
3451 | 5 | 0.0000536 |
3769 | 5 | 0.0000536 |
3995 | 5 | 0.0000536 |
5154 | 5 | 0.0000536 |
5231 | 5 | 0.0000536 |
5441 | 5 | 0.0000536 |
5451 | 5 | 0.0000536 |
5561 | 5 | 0.0000536 |
6062 | 5 | 0.0000536 |
6081 | 5 | 0.0000536 |
7534 | 5 | 0.0000536 |
7694 | 5 | 0.0000536 |
7833 | 5 | 0.0000536 |
7911 | 5 | 0.0000536 |
0111 | 4 | 0.0000429 |
0112 | 4 | 0.0000429 |
0132 | 4 | 0.0000429 |
0919 | 4 | 0.0000429 |
2068 | 4 | 0.0000429 |
2141 | 4 | 0.0000429 |
2254 | 4 | 0.0000429 |
2323 | 4 | 0.0000429 |
2361 | 4 | 0.0000429 |
2381 | 4 | 0.0000429 |
2394 | 4 | 0.0000429 |
2789 | 4 | 0.0000429 |
3633 | 4 | 0.0000429 |
3961 | 4 | 0.0000429 |
6541 | 4 | 0.0000429 |
7219 | 4 | 0.0000429 |
9224 | 4 | 0.0000429 |
9411 | 4 | 0.0000429 |
9631 | 4 | 0.0000429 |
9661 | 4 | 0.0000429 |
0252 | 3 | 0.0000322 |
0253 | 3 | 0.0000322 |
1231 | 3 | 0.0000322 |
1743 | 3 | 0.0000322 |
2259 | 3 | 0.0000322 |
2386 | 3 | 0.0000322 |
3322 | 3 | 0.0000322 |
3915 | 3 | 0.0000322 |
5714 | 3 | 0.0000322 |
5989 | 3 | 0.0000322 |
5993 | 3 | 0.0000322 |
6019 | 3 | 0.0000322 |
6792 | 3 | 0.0000322 |
7041 | 3 | 0.0000322 |
8222 | 3 | 0.0000322 |
8231 | 3 | 0.0000322 |
8699 | 3 | 0.0000322 |
9229 | 3 | 0.0000322 |
9711 | 3 | 0.0000322 |
999E | 3 | 0.0000322 |
0115 | 2 | 0.0000214 |
0173 | 2 | 0.0000214 |
0272 | 2 | 0.0000214 |
0783 | 2 | 0.0000214 |
1741 | 2 | 0.0000214 |
2074 | 2 | 0.0000214 |
2371 | 2 | 0.0000214 |
2395 | 2 | 0.0000214 |
3142 | 2 | 0.0000214 |
3425 | 2 | 0.0000214 |
3543 | 2 | 0.0000214 |
3547 | 2 | 0.0000214 |
4311 | 2 | 0.0000214 |
4432 | 2 | 0.0000214 |
6061 | 2 | 0.0000214 |
6517 | 2 | 0.0000214 |
7369 | 2 | 0.0000214 |
8031 | 2 | 0.0000214 |
8041 | 2 | 0.0000214 |
8641 | 2 | 0.0000214 |
9311 | 2 | 0.0000214 |
999D | 2 | 0.0000214 |
0116 | 1 | 0.0000107 |
0271 | 1 | 0.0000107 |
0279 | 1 | 0.0000107 |
0761 | 1 | 0.0000107 |
0971 | 1 | 0.0000107 |
1793 | 1 | 0.0000107 |
2384 | 1 | 0.0000107 |
2429 | 1 | 0.0000107 |
2441 | 1 | 0.0000107 |
6082 | 1 | 0.0000107 |
7241 | 1 | 0.0000107 |
7251 | 1 | 0.0000107 |
7537 | 1 | 0.0000107 |
7631 | 1 | 0.0000107 |
7641 | 1 | 0.0000107 |
8043 | 1 | 0.0000107 |
8811 | 1 | 0.0000107 |
9111 | 1 | 0.0000107 |
9121 | 1 | 0.0000107 |
9199 | 1 | 0.0000107 |
9221 | 1 | 0.0000107 |
9531 | 1 | 0.0000107 |
9532 | 1 | 0.0000107 |
9611 | 1 | 0.0000107 |
9641 | 1 | 0.0000107 |
999C | 1 | 0.0000107 |
999F | 1 | 0.0000107 |
We now exclude acquirers and targets in banks or utilities company.
sdc$acq_sic <- as.numeric(sdc$acq_sic)
sdc$tar_sic <- as.numeric(sdc$tar_sic)
sdc <- sdc %>%
filter(!acq_sic %in% c(6020:6099, 4900:4999) |
!tar_sic %in% c(6020:6099, 4900:4999))
n_sdc_sic <- as.character(nrow(sdc))
After the drop, we have 89331 transactions.
The first filter is to drop mergers where the time elapsed between
the date announced and the date completion is greater than one year.
Before the drop, we have 412655 mergers in the data. Variable
time_duration_orginal
represents the time duration between
the date originally announced and the date completion. Variable
time_duration
represents the time duration between the date
announced and the date completion. In short the differences between date
orginally announced and date announced can be explained as follows:
- DA: The date the deal was most recently announced publicly
- DOA: The date the deal was first ever announced, even if it was later withdrawn, renegotiated, or restructured.
# create a variable to measure the time duration (in days) between the date announced and the date completion
sdc <- sdc %>%
mutate(da = as.Date(da, format = "%m/%d/%Y"),
de = as.Date(de, format = "%m/%d/%Y"),
doa = as.Date(doa, format = "%m/%d/%Y"),
time_duration_orginal = as.numeric(difftime(de, doa, units = "days")),
time_duration = as.numeric(difftime(de, da, units = "days")))
The article uses DA
, but for completeness I am reporting
the summary statistics for both the time duration.
# Summary statistics for time_duration_orginal and time_duration
# Dropped missing values
sdc %>%
filter(!is.na(time_duration)) %>%
summarise(
mean_time_duration = mean(time_duration, na.rm = TRUE),
median_time_duration = median(time_duration, na.rm = TRUE),
sd_time_duration = sd(time_duration, na.rm = TRUE),
min_time_duration = min(time_duration, na.rm = TRUE),
max_time_duration = max(time_duration, na.rm = TRUE)
) %>%
mutate(across(where(is.numeric), ~ round(.x, 3))) %>%
kable("html", col.names = c("Mean Time Duration", "Median Time Duration", "SD Time Duration", "Min Time Duration", "Max Time Duration")) %>%
kable_styling(bootstrap_options = c("striped", "hover"))
Mean Time Duration | Median Time Duration | SD Time Duration | Min Time Duration | Max Time Duration |
---|---|---|---|---|
56.742 | 9 | 145.155 | 0 | 7305 |
sdc %>%
filter(!is.na(time_duration_orginal)) %>%
summarise(
mean_time_duration = mean(time_duration_orginal, na.rm = TRUE),
median_time_duration = median(time_duration_orginal, na.rm = TRUE),
sd_time_duration = sd(time_duration_orginal, na.rm = TRUE),
min_time_duration = min(time_duration_orginal, na.rm = TRUE),
max_time_duration = max(time_duration_orginal, na.rm = TRUE)
) %>%
mutate(across(where(is.numeric), ~ round(.x, 3))) %>%
kable("html", col.names = c("Mean Time Duration Orginal", "Median Time Duration Orginal", "SD Time Duration Orginal", "Min Time Duration Orginal", "Max Time Duration Orginal")) %>%
kable_styling(bootstrap_options = c("striped", "hover"))
Mean Time Duration Orginal | Median Time Duration Orginal | SD Time Duration Orginal | Min Time Duration Orginal | Max Time Duration Orginal |
---|---|---|---|---|
67.263 | 14 | 170.294 | -3050 | 7305 |
Dropping time duration greater than 365 days
After dropping the time duration greater than 365 days, we have 87664 observations. Drawing a distribution of mergers that are announced and completed within one year. We now show a distribution of mergers in a histogram
sdc_drop_one %>%
ggplot(aes(x = time_duration)) +
geom_histogram(binwidth = 10, fill = "blue", color = "black") +
labs(title = "Distribution of Mergers where Date Announced and Date Completed are within One Year",
x = "Time Duration (Days)",
y = "Count") +
theme_minimal()
sdc_drop_one %>%
ggplot(aes(x = time_duration_orginal)) +
geom_histogram(binwidth = 10, fill = "blue", color = "black") +
labs(title = "Distribution of Mergers where Orginal Date Announced and Date Completed are within One Year",
x = "Time Duration (Days)",
y = "Count") +
theme_minimal()
From the histogram we see that there is spike at 0 suggesting there are multiple mergers that announced and completed in less than a day, which does not make sense. We drop these mergers. For mergers where the time elapsed between the date originally announced and completion is negative, we will investigate further.
sdc_drop_one %>%
filter(time_duration_orginal<0)%>%
ggplot(aes(x = time_duration_orginal)) +
geom_histogram(binwidth = 10, fill = "blue", color = "black") +
labs(title = "Distribution of Mergers where Orginal Duration between Date Announced and Date Completed are Negative",
x = "Time Duration (Days)",
y = "Count") +
theme_minimal()
We now drop mergers where both of the time duration is negative.
sdc_drop_two <- sdc_drop_one %>%
filter(time_duration > 0) %>%
filter(time_duration_orginal > 0)
n_drop_two <- as.character(nrow(sdc_drop_two))
sdc_drop_two %>%
ggplot(aes(x = time_duration)) +
geom_histogram(binwidth = 10, fill = "blue", color = "black") +
labs(title = "Distribution of Time Duration Between Date Announced and Date Completed",
x = "Time Duration (Days)",
y = "Count") +
theme_minimal()
The paper dropped mergers where the acquirer’s total to deal size
less than 5 percent or greater than 150 percent. Variable
ACQ_ASSET_DV
represents the ratio of total assets to deal
size for the acquiring firm.
# Drop deal values with values of 0 or missing
sdc_drop_three <- sdc_drop_two %>%
filter(dv > 0, !is.na(dv))
#creating the variable ACQ_ASSET_DV
sdc_drop_three <- sdc_drop_three %>%
mutate(acq_asset_dv = acq_totalasset / dv)
# dropping mergers where acq_asset_dv has missing values
sdc_drop_three <- sdc_drop_three %>%
filter(!is.na(acq_asset_dv))
# looking at the summary statistics of the variable ACQ_ASSET_DV
sdc_drop_three %>%
summarise(
mean_acq_asset_dv = mean(acq_asset_dv, na.rm = TRUE),
median_acq_asset_dv = median(acq_asset_dv, na.rm = TRUE),
sd_acq_asset_dv = sd(acq_asset_dv, na.rm = TRUE),
min_acq_asset_dv = min(acq_asset_dv, na.rm = TRUE),
max_acq_asset_dv = max(acq_asset_dv, na.rm = TRUE)
) %>%
mutate(across(where(is.numeric), ~ round(.x, 3))) %>%
kable("html", col.names = c("Mean Acquiror Asset to Deal Size", "Median Acquiror Asset to Deal Size", "SD Acquiror Asset to Deal Size", "Min Acquiror Asset to Deal Size", "Max Acquiror Asset to Deal Size")) %>%
kable_styling(bootstrap_options = c("striped", "hover"))
Mean Acquiror Asset to Deal Size | Median Acquiror Asset to Deal Size | SD Acquiror Asset to Deal Size | Min Acquiror Asset to Deal Size | Max Acquiror Asset to Deal Size |
---|---|---|---|---|
2110.466 | 9.57 | 161051.2 | 0 | 25245296 |
#Dropping deals where acq_asset_dv is less than 0.05 or greater than 1.5
sdc_drop_four <- sdc_drop_three %>%
filter(acq_asset_dv >= 0.05, acq_asset_dv <= 1.5)
n_drop_four <- as.character(nrow(sdc_drop_four))
#Export the dataset
write_csv(sdc_drop_four, "data/processed/sdc_filtered.csv")
Currently we have 3805 observations. We now look at the distribution
of the variable acq_asset_dv
to see if there are any
outliers.
sdc_drop_four %>%
ggplot(aes(x = acq_asset_dv)) +
geom_histogram(binwidth = 0.05, fill = "blue", color = "black") +
labs(title = "Distribution of Acquiror Asset to Deal Size",
x = "Acquiror Asset to Deal Size",
y = "Count") +
theme_minimal()