Comparison of Ultrasound Scattering Estimates in Subjects Undergoing Weight Loss Surgery

Author

Lu Mao

Published

July 31, 2025

Statistical analysis

Continuous variables are summarized as mean (SD) and categorical variables as frequency (%). Linear mixed effects models (LME) are used to analyze the longitudinal data of average backscatter coefficient (ABSC) estimated from ultrasound data. P values < 0.05 are considered statistically significant. All analyses are performed in R version 4.3.1 (R Core Team, 2023), using the lme4 package for LME models.

Baseline characteristics

There are \(n=\) 103 unique subjects across 2 sites. Table 1 below summarizes the baseline (day 0) ABSC (dB) values by transducer and algorithm.

Table 1: Baseline ABSC (dB) values the study population by transducer and algorithm
Characteristic Acquisition 1, N = 1031 Acquisition 2, N = 1031 Acquisition 3, N = 1031 Acquisition 4, N = 1031 Acquisition 5, N = 1031
5C1 - ALGEBRA
ABSC (dB) -27.00 (6.74) -26.92 (6.81) -26.90 (7.06) -27.10 (6.87) -27.13 (6.79)
DAX - ALGEBRA
ABSC (dB) -35.72 (7.75) -35.75 (7.75) -35.68 (7.42) -35.43 (7.40) -35.58 (7.48)
5C1 - SDM
ABSC (dB) -27.89 (7.16) -27.92 (8.52) -27.40 (8.53) -27.64 (7.26) -27.87 (7.32)
DAX - SDM
ABSC (dB) -18.93 (11.23) -20.03 (10.79) -20.63 (10.31) -19.17 (10.60) -20.47 (9.35)
1 Mean (SD)

Longitudinal analysis of ABSC

ABSC (dB) trajectories over time

The longitudinal trajectories of average ABSC (dB) by transducer, algorithm, and site are shown in Figure 1.

Figure 1: Longitudinal trajectories of average ABSC (dB) by transducer, algorithm, and site

Without applying image critera

A preliminary analysis shows that

  • The only significant interaction is between transducer and time;
  • No significant difference between acquisitions.

A linear mixed effects model (LME) was fitted with subject random effects and relevant fixed effects. The results are summarized in Table 2 below.

Table 2: Longitudinal analysis of ABSC (dB) without applying image quality criteria
Characteristic Beta 95% CI1 p-value
Time (months) -0.03 -0.05, -0.01 0.009
transducer

<0.001
    5C1
    DAX -0.65 -0.81, -0.50
Site

<0.001
    Site 1
    Site 2 2.9 2.1, 3.8
algorithm

<0.001
    ALGEBRA
    SDM -1.1 -1.3, -1.0
Skin to Liver Distance (cm) -0.71 -0.84, -0.57 <0.001
PDFF (%) 0.14 0.13, 0.16 <0.001
TAL (dB) 0.20 0.20, 0.20 <0.001
Time (months) * transducer

<0.001
    Time (months) * DAX 0.11 0.08, 0.13
1 CI = Confidence Interval

Applying image quality criteria 1

Table 3 summarizes the results of the LME model fitted to the subset of data with image quality criteria 1.

Table 3: Longitudinal analysis of ABSC (dB) applying image quality criteria 1
Characteristic Beta 95% CI1 p-value
Time (months) -0.05 -0.08, -0.03 <0.001
transducer

<0.001
    5C1
    DAX -0.73 -0.89, -0.56
Site

<0.001
    Site 1
    Site 2 2.7 1.8, 3.5
algorithm

<0.001
    ALGEBRA
    SDM -1.1 -1.2, -0.97
Skin to Liver Distance (cm) -1.2 -1.3, -1.0 <0.001
PDFF (%) 0.16 0.14, 0.18 <0.001
TAL (dB) 0.20 0.20, 0.20 <0.001
Time (months) * transducer

<0.001
    Time (months) * DAX 0.11 0.09, 0.14
1 CI = Confidence Interval

Applying image quality criteria 2

Table 4 summarizes the results of the LME model fitted to the subset of data with image quality criteria 2.

Table 4: Longitudinal analysis of ABSC (dB) applying image quality criteria 2
Characteristic Beta 95% CI1 p-value
Time (months) -0.05 -0.07, -0.02 <0.001
transducer

<0.001
    5C1
    DAX -0.73 -0.90, -0.57
Site

<0.001
    Site 1
    Site 2 2.7 1.8, 3.6
algorithm

<0.001
    ALGEBRA
    SDM -1.1 -1.2, -0.96
Skin to Liver Distance (cm) -1.1 -1.3, -0.96 <0.001
PDFF (%) 0.15 0.13, 0.17 <0.001
TAL (dB) 0.20 0.20, 0.20 <0.001
Time (months) * transducer

<0.001
    Time (months) * DAX 0.11 0.09, 0.14
1 CI = Confidence Interval