day1_intro

Author

AS

Setup

rm(list = ls()) # Clear environment-remove all files from your workspace
gc()            # Clear unused memory
          used (Mb) gc trigger (Mb) limit (Mb) max used (Mb)
Ncells  606361 32.4    1374645 73.5         NA   715628 38.3
Vcells 1114553  8.6    8388608 64.0      49152  2010577 15.4
cat("\f")       # Clear the console
graphics.off()  # Clear all graphs

Load Data

Motor Trend Car Road Tests

Description

The data was extracted from the 1974 Motor Trend US magazine, and comprises fuel consumption and 10 aspects of automobile design and performance for 32 automobiles (1973–74 models).

A data frame with 32 observations on 11 (numeric) variables.

[, 1] mpg Miles/(US) gallon
[, 2] cyl Number of cylinders
[, 3] disp Displacement (cu.in.)
[, 4] hp Gross horsepower
[, 5] drat Rear axle ratio
[, 6] wt Weight (1000 lbs)
[, 7] qsec 1/4 mile time
[, 8] vs Engine (0 = V-shaped, 1 = straight)
[, 9] am Transmission (0 = automatic, 1 = manual)
[,10] gear Number of forward gears
[,11] carb Number of carburetors
?datasets       # Base R datasets
?mtcars

mtcars
                     mpg cyl  disp  hp drat    wt  qsec vs am gear carb
Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
df <- mtcars    # assignment operator

Summary Statistics

  • Comment out with # manually

  • Code -> Uncomment/Comment Lines

  • Control/hide the code chunk options.

  • Lets use describe describe() describe describe finction from the psych package.

library(psych)
?describe

describe(x = df)  # more readable
     vars  n   mean     sd median trimmed    mad   min    max  range  skew
mpg     1 32  20.09   6.03  19.20   19.70   5.41 10.40  33.90  23.50  0.61
cyl     2 32   6.19   1.79   6.00    6.23   2.97  4.00   8.00   4.00 -0.17
disp    3 32 230.72 123.94 196.30  222.52 140.48 71.10 472.00 400.90  0.38
hp      4 32 146.69  68.56 123.00  141.19  77.10 52.00 335.00 283.00  0.73
drat    5 32   3.60   0.53   3.70    3.58   0.70  2.76   4.93   2.17  0.27
wt      6 32   3.22   0.98   3.33    3.15   0.77  1.51   5.42   3.91  0.42
qsec    7 32  17.85   1.79  17.71   17.83   1.42 14.50  22.90   8.40  0.37
vs      8 32   0.44   0.50   0.00    0.42   0.00  0.00   1.00   1.00  0.24
am      9 32   0.41   0.50   0.00    0.38   0.00  0.00   1.00   1.00  0.36
gear   10 32   3.69   0.74   4.00    3.62   1.48  3.00   5.00   2.00  0.53
carb   11 32   2.81   1.62   2.00    2.65   1.48  1.00   8.00   7.00  1.05
     kurtosis    se
mpg     -0.37  1.07
cyl     -1.76  0.32
disp    -1.21 21.91
hp      -0.14 12.12
drat    -0.71  0.09
wt      -0.02  0.17
qsec     0.34  0.32
vs      -2.00  0.09
am      -1.92  0.09
gear    -1.07  0.13
carb     1.26  0.29
describe(df)      # less readable
     vars  n   mean     sd median trimmed    mad   min    max  range  skew
mpg     1 32  20.09   6.03  19.20   19.70   5.41 10.40  33.90  23.50  0.61
cyl     2 32   6.19   1.79   6.00    6.23   2.97  4.00   8.00   4.00 -0.17
disp    3 32 230.72 123.94 196.30  222.52 140.48 71.10 472.00 400.90  0.38
hp      4 32 146.69  68.56 123.00  141.19  77.10 52.00 335.00 283.00  0.73
drat    5 32   3.60   0.53   3.70    3.58   0.70  2.76   4.93   2.17  0.27
wt      6 32   3.22   0.98   3.33    3.15   0.77  1.51   5.42   3.91  0.42
qsec    7 32  17.85   1.79  17.71   17.83   1.42 14.50  22.90   8.40  0.37
vs      8 32   0.44   0.50   0.00    0.42   0.00  0.00   1.00   1.00  0.24
am      9 32   0.41   0.50   0.00    0.38   0.00  0.00   1.00   1.00  0.36
gear   10 32   3.69   0.74   4.00    3.62   1.48  3.00   5.00   2.00  0.53
carb   11 32   2.81   1.62   2.00    2.65   1.48  1.00   8.00   7.00  1.05
     kurtosis    se
mpg     -0.37  1.07
cyl     -1.76  0.32
disp    -1.21 21.91
hp      -0.14 12.12
drat    -0.71  0.09
wt      -0.02  0.17
qsec     0.34  0.32
vs      -2.00  0.09
am      -1.92  0.09
gear    -1.07  0.13
carb     1.26  0.29
# hist(df$hp)
Important

Does the package need to have the same name as the function?

No !

psych package has describe function.

stargazer package has stargazer function.

# install.packages("stargazer")
??stargazer     # global search
library(stargazer)

Please cite as: 
 Hlavac, Marek (2022). stargazer: Well-Formatted Regression and Summary Statistics Tables.
 R package version 5.2.3. https://CRAN.R-project.org/package=stargazer 
?stargazer      # local search

stargazer(df, type = "text", title = "Summary Statistics Table")

Summary Statistics Table
============================================
Statistic N   Mean   St. Dev.  Min     Max  
--------------------------------------------
mpg       32 20.091   6.027   10.400 33.900 
cyl       32  6.188   1.786     4       8   
disp      32 230.722 123.939  71.100 472.000
hp        32 146.688  68.563    52     335  
drat      32  3.597   0.535   2.760   4.930 
wt        32  3.217   0.978   1.513   5.424 
qsec      32 17.849   1.787   14.500 22.900 
vs        32  0.438   0.504     0       1   
am        32  0.406   0.499     0       1   
gear      32  3.688   0.738     3       5   
carb      32  2.812   1.615     1       8   
--------------------------------------------

I am not printing the output of the following 3 commands.

stargazer(df, 
          type = "text", 
          title = "Summary Statistics Table"
          )

stargazer(df, 
          type  = "text", 
          title = "Summary Statistics Table"
          )

stargazer(df, # dataframe/raw data
          type  = "text", # output                    
          title = "Summary Statistics Table" # title
          )
Tip

More readable code gives arguments for each input into the function, is well alligned, and has comments.

stargazer(...   = df,                         # dataframe/raw data
          type  = "text",                     # output                    
          title = "Summary Statistics Table"  # title
          )

Summary Statistics Table
============================================
Statistic N   Mean   St. Dev.  Min     Max  
--------------------------------------------
mpg       32 20.091   6.027   10.400 33.900 
cyl       32  6.188   1.786     4       8   
disp      32 230.722 123.939  71.100 472.000
hp        32 146.688  68.563    52     335  
drat      32  3.597   0.535   2.760   4.930 
wt        32  3.217   0.978   1.513   5.424 
qsec      32 17.849   1.787   14.500 22.900 
vs        32  0.438   0.504     0       1   
am        32  0.406   0.499     0       1   
gear      32  3.688   0.738     3       5   
carb      32  2.812   1.615     1       8   
--------------------------------------------

Control Digits and Variable labels

stargazer(...   = df,                         # dataframe/raw data
          type  = "text",                     # output                    
          title = "Summary Statistics Table", # title
          digits = 1,                         # control decimal places
          covariate.labels = c("Miles per Gallon", # label variables
                               "# of Cylinders"
                               )
          )

Summary Statistics Table
=============================================
Statistic        N  Mean  St. Dev. Min   Max 
---------------------------------------------
Miles per Gallon 32 20.1    6.0    10.4 33.9 
# of Cylinders   32  6.2    1.8     4     8  
disp             32 230.7  123.9   71.1 472.0
hp               32 146.7   68.6    52   335 
drat             32  3.6    0.5    2.8   4.9 
wt               32  3.2    1.0    1.5   5.4 
qsec             32 17.8    1.8    14.5 22.9 
vs               32  0.4    0.5     0     1  
am               32  0.4    0.5     0     1  
gear             32  3.7    0.7     3     5  
carb             32  2.8    1.6     1     8  
---------------------------------------------