2 Targ Expert PreReg

Survey description

Goals

What we want to replicate from past studies

For these measures, in the “none” condition, we expected that participants would rate the woman higher on voice quality, interest, voice solicitation, and would select her more often.

New for this study

  1. We are manipulating who is the purported expert. We would expect that participants would select the man (vs. the woman) more frequently in the “Man expert” condition. We would also expect for the man to be seen as having higher voice quality, interest, and solicitation.
  2. We are also testing how participants evaluate each target: whether they see women (versus men) as more committed, tokenized, or likely to receive backlash.

Procedure

  1. Participants were asked to imagine that they are a supervising manager at their firm. They lead a team of employees with a similar function as them.
  2. Then, we told that there are increasing demands to improve DEI, and that their firm wants a DEI advisor. We provided more info about this role.
  3. We listed two candidates for the role: Phillip Dunn and Judith Clark. These are our within-subjects manipulation: the target of evaluation.
  4. Each candidate had qualifications. We manipulated the qualifications (this was our between subjects manipulation: the target’s expertise)

Number of between-subjects conditions: 3 (target with expertise: Man expert, no expertise, woman expert)

Distribution of qualifications across between-subjects conditions

No expert condition. The expert is the man The expert is the woman
Judith Clark’s expertise [randomly assigned functional committee] [randomly assigned functional committee] Equity and Belonging in ${e://Field/function} committee
Phillip Dunn’s expertise [randomly assigned functional committee] Equity and Belonging in ${e://Field/function} committee [randomly assigned functional committee]

Number of within-subjects conditions: 2 (target identity: man or woman)

Target: Phillip Dunn or Judith Clark

Measures (after participants read the vignette above)

Replication items

For these measures, in the “none” condition, we expected that participants would rate the woman higher on voice quality, interest, voice solicitation, and would select her more often.

Voice solicitation

  • I would ask for help/advice from them on this initiative.
  • I would encourage them to speak out on this initiative.

Voice quality

  • I think they can offer useful ideas for this initiative.
  • I think their ideas will likely have a lot of value for improving this initiative.

Interest

  • How interested do you think each candidate would be in offering their perspectives or insights on this role?

Who would you select for this role?

  • Phillip Dunn (coded as 0 if selected), Judith Clark (Coded as 1 if selected)

New items: Participant’s perceptions of each candidate

Participants see this for EACH candidate. The text for Judith Clark is below.

Prompt read: “Imagine that you asked Judith Clark to provide her perspective or insights about this role.”

Fear of social retaliation

  • being shunned or excluded at work.
  • being criticized for complaining.
  • being considered a troublemaker.

Tokenization

  • feel like her identity as a woman would be made salient.
  • feel like she would have to represent other women.
  • feel singled out.

Commitment

  • be willing to put in a great deal of effort beyond that normally expected in order to help this initiative be successful.
  • want to talk up this organization to others as a great organization to work for.
  • wonder if her values and the organization’s are similar..
  • be extremely glad that she chose this organization to work for.

Backlash

If I choose Judith Clark to provide her perspective or insights on this role, she would probably think that…

  • it’s risky to challenge existing processes because it may be seen as questioning the status quo.
  • speaking up to suggest a better way is likely to offend people.
  • it is not good to question the way things are done because people are likely to take it personally.

Demographics

Raw

Age

Gender

## 
## Female   Male 
## 0.6009 0.3883

Clean

Age

Gender

## [1] 0.9877

Analyses

Selection likelihood

Note: 1 = selected woman, 0 = selected man

Comparing likelihood of selecting men (versus women) when there is no expert

When there is not a DEI expert, participants were significantly more likely to select the woman.

Chi-squared comparison

## 
##  Chi-squared test for given probabilities
## 
## data:  table(exp_clean1$select)
## X-squared = 17, df = 1, p-value = 0.00003

Comparing selections of women across all three conditions

##                  select
## condition_text2     0   1
##   1. Man expert   111  25
##   2. No expert     35 102
##   3. Woman expert  16 119

Reference: Man

## 
## Call:
## glm(formula = select ~ condition_text2, family = "binomial", 
##     data = exp_clean1)
## 
## Coefficients:
##                                Estimate Std. Error z value             Pr(>|z|)    
## (Intercept)                      -1.491      0.221   -6.73       0.000000000017 ***
## condition_text22. No expert       2.560      0.296    8.66 < 0.0000000000000002 ***
## condition_text23. Woman expert    3.497      0.346   10.10 < 0.0000000000000002 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 548.19  on 407  degrees of freedom
## Residual deviance: 383.76  on 405  degrees of freedom
## AIC: 389.8
## 
## Number of Fisher Scoring iterations: 4

Reference: None

## 
## Call:
## glm(formula = select ~ condition_text, family = "binomial", data = exp_clean1)
## 
## Coefficients:
##                             Estimate Std. Error z value             Pr(>|z|)    
## (Intercept)                    1.070      0.196    5.46          0.000000048 ***
## condition_text2_ManExpert     -2.560      0.296   -8.66 < 0.0000000000000002 ***
## condition_text3_WomanExpert    0.937      0.331    2.83               0.0046 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 548.19  on 407  degrees of freedom
## Residual deviance: 383.76  on 405  degrees of freedom
## AIC: 389.8
## 
## Number of Fisher Scoring iterations: 4

Do participants select the expert more when the expert is a woman (versus man)

## 
## Call:
## glm(formula = expertselection ~ condition, family = "binomial", 
##     data = expertisecomp)
## 
## Coefficients:
##                Estimate Std. Error z value       Pr(>|z|)    
## (Intercept)       1.491      0.221    6.73 0.000000000017 ***
## conditionwoman    0.516      0.346    1.49           0.14    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 230.32  on 270  degrees of freedom
## Residual deviance: 228.05  on 269  degrees of freedom
## AIC: 232.1
## 
## Number of Fisher Scoring iterations: 4
## Power for logistic regression
## 
##         p0     p1 beta0  beta1   n alpha power
##     0.8162 0.1185 1.491 -3.497 271  0.05     1
## 
## URL: http://psychstat.org/logistic

VQ

Means

Anova

Compares evaluations of man vs. woman WITHIN subjects

Compares gender evaluations across BTWN subjects manipulations

All Comparisons

VS

Means

Anova

Compares evaluations of man vs. woman WITHIN subjects

Compares gender evaluations across BTWN subjects manipulations

All Comparisons

Interest

Means

Anova

Compares evaluations of man vs. woman WITHIN subjects

Compares gender evaluations across BTWN subjects manipulations

All Comparisons

FSR

Means

Anova

Compares evaluations of man vs. woman WITHIN subjects

Compares gender evaluations across BTWN subjects manipulations

Comparing men in the “men expert” condition to women in the other two conditions

Token

Means

Anova

Compares evaluations of man vs. woman WITHIN subjects

Compares gender evaluations across BTWN subjects manipulations

Comparing men in the “men expert” condition to women in the other two conditions

Commitment

Means

Anova

Compares evaluations of man vs. woman WITHIN subjects

Compares gender evaluations across BTWN subjects manipulations

Comparing men in the “men expert” condition to women in the other two conditions

Backlash

Means

Anova

Compares evaluations of man vs. woman WITHIN subjects

Compares gender evaluations across BTWN subjects manipulations

Comparing men in the “men expert” condition to women in the other two conditions

Mediators: VQ+Interest

DV: VS

DV: Select