library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.0.4
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
data <- read.csv("~/Google drive/My Drive/YEAR 2/PROJECTS/DEREK/Zero Sum Beliefs & Inclusivity/Interpretation of the Zero Sum Game/Study 1 Pilot/pilot_data_7.26.25.csv")
data <- data %>%
slice(-c(1:3)) %>%
filter(attn_bots != "14285733") %>%
filter(attn == 24) %>%
unite(geolocation, LocationLatitude, LocationLongitude) %>%
group_by(geolocation) %>%
mutate(geo_frequency = n()) %>%
filter(geo_frequency < 3) %>%
ungroup()
df_numeric <- data %>%
select(c(ResponseId, zsm_1:sdo_8R, trust_1:trust_5, negotiation_1:negotiation_4, social_inclusion_1:SJB_8, Extra_1:Open_10R, SWL)) %>%
mutate(across(-ResponseId, as.numeric))
df_numeric <- df_numeric %>%
mutate(across(ends_with("R"), ~ 8 - ., .names = "{.col}_Recoded"))
df_numeric <- df_numeric %>%
mutate(
zsm_avg = rowMeans(select(.,
zsm_1,
zsm_2,
zsm_3,
zsm_4_Recoded,
zsm_5,
zsm_6,
zsm_7_Recoded),
na.rm = TRUE)
)
df_numeric <- df_numeric %>%
mutate(
coop_avg = rowMeans(select(.,
coop_1,
coop_2_Recoded),
na.rm = TRUE)
)
df_numeric <- df_numeric %>%
mutate(
comp_avg = rowMeans(select(.,
hyper_comp_1,
hyper_comp_2,
hyper_comp_3),
na.rm = TRUE)
)
df_numeric <- df_numeric %>%
mutate(
sdo_avg = rowMeans(select(.,
sdo_1,
sdo_2,
sdo_3R_Recoded,
sdo_4R_Recoded,
sdo_5,
sdo_6,
sdo_7R_Recoded,
sdo_8R_Recoded
), na.rm = TRUE)
)
df_numeric <- df_numeric %>%
mutate(
trust_avg = rowMeans(select(.,
trust_1,
trust_2,
trust_3,
trust_4,
trust_5
), na.rm = TRUE)
)
df_numeric <- df_numeric %>%
mutate(
social_incl_avg = rowMeans(select(.,
social_inclusion_1,
social_inclusion_2,
social_inclusion_3,
social_inclusion_4
), na.rm = TRUE)
)
df_numeric <- df_numeric %>%
mutate(
pro_incl_avg = rowMeans(select(.,
professional_incl_1,
professional_incl_2,
professional_incl_3,
professional_incl_4,
professional_incl_5
), na.rm = TRUE)
)
df_numeric <- df_numeric %>%
mutate(
SJB_avg = rowMeans(select(.,
SJB_1,
SJB_2,
SJB_3R_Recoded,
SJB_4,
SJB_5,
SJB_6,
SJB_7R_Recoded,
SJB_8
), na.rm = TRUE)
)
df_numeric <- df_numeric %>%
mutate(
extraversion = rowMeans(select(.,
Extra_1,
Extra_6R_Recoded
), na.rm = TRUE)
)
df_numeric <- df_numeric %>%
mutate(
agreeable = rowMeans(select(.,
Agree_2,
Agree_7R_Recoded
), na.rm = TRUE)
)
df_numeric <- df_numeric %>%
mutate(
open = rowMeans(select(.,
Open_5,
Open_10R_Recoded
), na.rm = TRUE)
)
df_numeric <- df_numeric %>%
mutate(
conscientious = rowMeans(select(.,
Con_3,
Con_8R_Recoded
), na.rm = TRUE)
)
df_numeric <- df_numeric %>%
mutate(
neuroticism = rowMeans(select(.,
Neuro_4,
Neuro_9R_Recoded
), na.rm = TRUE)
)
order <- data %>%
select(ResponseId, FL_39_DO, FL_38_DO) %>%
rename(order = FL_39_DO) %>%
rename(condition = FL_38_DO) %>%
mutate(order = ifelse(order == "Attribution|FL_38", "Attribution First", "ZS First")) %>%
mutate(condition = ifelse(condition == "intergroupzerosummindset", "Intergroup ZSM", "Domain ZSB Chinoy"))
df <- df_numeric %>%
left_join(order, by = "ResponseId")
zsm <- df %>%
filter(condition == "Intergroup ZSM")
chinoy <- df %>%
filter(condition == "Domain ZSB Chinoy")
ggplot(df, aes(x = factor(ZS_attribution._1))) +
geom_bar(fill = "steelblue", color = "white") +
labs(
title = "Distribution of ZS Attribution Responses",
x = "ZS Attribution",
y = "Count"
) +
theme_minimal(base_size = 14) +
theme(
plot.title = element_text(hjust = 0.5)
)
ggplot(df, aes(x = factor(social_incl_avg))) +
geom_bar(fill = "steelblue", color = "white") +
labs(
title = "Distribution of Social Inclusion Responses",
x = "Social Inclusion",
y = "Count"
) +
theme_minimal(base_size = 14) +
theme(
plot.title = element_text(hjust = 0.5)
)
ggplot(df, aes(x = factor(pro_incl_avg))) +
geom_bar(fill = "steelblue", color = "white") +
labs(
title = "Distribution of Professional Inclusion Responses",
x = "Professional Inclusion",
y = "Count"
) +
theme_minimal(base_size = 14) +
theme(
plot.title = element_text(hjust = 0.5)
)
# DV: social inclusion
model_social <- lm(social_incl_avg ~ ZS_attribution._1, data = df)
# DV: professional inclusion
model_prof <- lm(pro_incl_avg ~ ZS_attribution._1, data = df)
summary(model_social)
##
## Call:
## lm(formula = social_incl_avg ~ ZS_attribution._1, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5267 -0.7156 0.2844 0.9733 2.0399
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.52675 0.15038 36.753 <2e-16 ***
## ZS_attribution._1 0.18888 0.08425 2.242 0.0273 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.468 on 95 degrees of freedom
## Multiple R-squared: 0.05025, Adjusted R-squared: 0.04025
## F-statistic: 5.026 on 1 and 95 DF, p-value: 0.0273
summary(model_prof)
##
## Call:
## lm(formula = pro_incl_avg ~ ZS_attribution._1, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4590 -0.6590 0.1258 1.0334 1.8182
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.45903 0.12432 43.910 <2e-16 ***
## ZS_attribution._1 0.09242 0.06966 1.327 0.188
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.214 on 95 degrees of freedom
## Multiple R-squared: 0.01819, Adjusted R-squared: 0.007859
## F-statistic: 1.76 on 1 and 95 DF, p-value: 0.1878
Seems to suggest that people with more interpersonal attributions for zero-sum situations (higher ZS_attribution_1 scores) tend to report greater social inclusion.
model_coop <- lm(coop_avg ~ ZS_attribution._1, data = df)
summary(model_coop)
##
## Call:
## lm(formula = coop_avg ~ ZS_attribution._1, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7409 -0.8250 0.3631 0.8830 1.8830
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.42895 0.14111 38.472 <2e-16 ***
## ZS_attribution._1 -0.10399 0.07906 -1.315 0.192
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.377 on 95 degrees of freedom
## Multiple R-squared: 0.01789, Adjusted R-squared: 0.007548
## F-statistic: 1.73 on 1 and 95 DF, p-value: 0.1916
model_comp <- lm(comp_avg ~ ZS_attribution._1, data = df)
summary(model_comp)
##
## Call:
## lm(formula = comp_avg ~ ZS_attribution._1, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.5916 -1.3068 -0.3543 0.9316 4.4558
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.44923 0.15039 16.285 <2e-16 ***
## ZS_attribution._1 -0.04747 0.08426 -0.563 0.575
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.468 on 95 degrees of freedom
## Multiple R-squared: 0.003329, Adjusted R-squared: -0.007162
## F-statistic: 0.3174 on 1 and 95 DF, p-value: 0.5745
model_sdo <- lm(sdo_avg ~ ZS_attribution._1, data = df)
summary(model_sdo)
##
## Call:
## lm(formula = sdo_avg ~ ZS_attribution._1, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.5597 -1.0597 -0.4347 0.7736 4.9403
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.30971 0.13993 16.506 <2e-16 ***
## ZS_attribution._1 0.08333 0.07840 1.063 0.291
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.366 on 95 degrees of freedom
## Multiple R-squared: 0.01175, Adjusted R-squared: 0.001348
## F-statistic: 1.13 on 1 and 95 DF, p-value: 0.2906
model_trust <- lm(trust_avg ~ ZS_attribution._1, data = df)
summary(model_trust)
##
## Call:
## lm(formula = trust_avg ~ ZS_attribution._1, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5229 -0.9282 0.2929 1.0771 2.4876
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.522898 0.154969 29.186 <2e-16 ***
## ZS_attribution._1 0.005264 0.086826 0.061 0.952
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.513 on 95 degrees of freedom
## Multiple R-squared: 3.869e-05, Adjusted R-squared: -0.01049
## F-statistic: 0.003676 on 1 and 95 DF, p-value: 0.9518
library(modelsummary)
models <- list(
"Social Inclusion" = model_social,
"Professional Inclusion" = model_prof,
"Cooperation" = model_coop,
"Competitiveness" = model_comp,
"SDO" = model_sdo,
"Trust" = model_trust
)
modelsummary(models,
stars = TRUE,
coef_map = c("ZS_attribution._1" = "ZS Attribution"),
gof_omit = "IC|Log|Adj|F|RMSE",
output = "markdown")
Social Inclusion | Professional Inclusion | Cooperation | Competitiveness | SDO | Trust | |
---|---|---|---|---|---|---|
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 | ||||||
ZS Attribution | 0.189* | 0.092 | -0.104 | -0.047 | 0.083 | 0.005 |
(0.084) | (0.070) | (0.079) | (0.084) | (0.078) | (0.087) | |
Num.Obs. | 97 | 97 | 97 | 97 | 97 | 97 |
R2 | 0.050 | 0.018 | 0.018 | 0.003 | 0.012 | 0.000 |
model_zsm_pro_incl <- lm(pro_incl_avg ~ ZS_attribution._1 * zsm_avg, data = zsm)
summary(model_zsm_pro_incl)
##
## Call:
## lm(formula = pro_incl_avg ~ ZS_attribution._1 * zsm_avg, data = zsm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.1980 -0.6183 0.0910 0.8560 1.8862
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.95522 0.40580 14.675 <2e-16 ***
## ZS_attribution._1 -0.17025 0.23542 -0.723 0.473
## zsm_avg -0.13697 0.12788 -1.071 0.290
## ZS_attribution._1:zsm_avg 0.12868 0.07327 1.756 0.086 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.142 on 44 degrees of freedom
## Multiple R-squared: 0.1483, Adjusted R-squared: 0.09021
## F-statistic: 2.553 on 3 and 44 DF, p-value: 0.06756
model_zsm_coop <- lm(coop_avg ~ ZS_attribution._1 * zsm_avg, data = zsm)
summary(model_zsm_coop)
##
## Call:
## lm(formula = coop_avg ~ ZS_attribution._1 * zsm_avg, data = zsm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.9104 -0.5041 0.2342 0.7973 2.2386
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.64837 0.41446 16.041 < 2e-16 ***
## ZS_attribution._1 0.09978 0.24044 0.415 0.68017
## zsm_avg -0.41694 0.13062 -3.192 0.00261 **
## ZS_attribution._1:zsm_avg -0.05235 0.07483 -0.700 0.48788
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.167 on 44 degrees of freedom
## Multiple R-squared: 0.21, Adjusted R-squared: 0.1561
## F-statistic: 3.898 on 3 and 44 DF, p-value: 0.01486
model_zsm_comp <- lm(comp_avg ~ ZS_attribution._1 * zsm_avg, data = zsm)
summary(model_zsm_comp)
##
## Call:
## lm(formula = comp_avg ~ ZS_attribution._1 * zsm_avg, data = zsm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.5549 -1.2452 -0.2685 1.0542 4.3218
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.05300 0.57006 3.601 0.0008 ***
## ZS_attribution._1 -0.13306 0.33071 -0.402 0.6894
## zsm_avg 0.20429 0.17965 1.137 0.2616
## ZS_attribution._1:zsm_avg -0.02892 0.10292 -0.281 0.7800
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.605 on 44 degrees of freedom
## Multiple R-squared: 0.06871, Adjusted R-squared: 0.005214
## F-statistic: 1.082 on 3 and 44 DF, p-value: 0.3666
model_zsm_sdo <- lm(sdo_avg ~ ZS_attribution._1 * zsm_avg, data = zsm)
summary(model_zsm_sdo)
##
## Call:
## lm(formula = sdo_avg ~ ZS_attribution._1 * zsm_avg, data = zsm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.3048 -0.7516 -0.2554 0.7154 2.2572
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.83539 0.36091 5.085 7.27e-06 ***
## ZS_attribution._1 0.20111 0.20938 0.961 0.342
## zsm_avg 0.06657 0.11374 0.585 0.561
## ZS_attribution._1:zsm_avg -0.05916 0.06516 -0.908 0.369
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.016 on 44 degrees of freedom
## Multiple R-squared: 0.02916, Adjusted R-squared: -0.03703
## F-statistic: 0.4405 on 3 and 44 DF, p-value: 0.7252
model_zsm_trust <- lm(trust_avg ~ ZS_attribution._1 * zsm_avg, data = zsm)
summary(model_zsm_trust)
##
## Call:
## lm(formula = trust_avg ~ ZS_attribution._1 * zsm_avg, data = zsm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.000 -1.066 0.394 1.049 2.267
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.35577 0.52330 8.324 1.39e-10 ***
## ZS_attribution._1 0.19888 0.30358 0.655 0.516
## zsm_avg 0.09776 0.16491 0.593 0.556
## ZS_attribution._1:zsm_avg -0.07689 0.09448 -0.814 0.420
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.473 on 44 degrees of freedom
## Multiple R-squared: 0.02242, Adjusted R-squared: -0.04424
## F-statistic: 0.3363 on 3 and 44 DF, p-value: 0.7991
models <- list(
"Social Inclusion" = model_zsm_soc_incl,
"Professional Inclusion" = model_zsm_pro_incl,
"Cooperation" = model_zsm_coop,
"Competitiveness" = model_zsm_comp,
"SDO" = model_zsm_sdo,
"Trust" = model_zsm_trust
)
modelsummary(models,
stars = TRUE,
coef_map = c("ZS_attribution._1" = "ZS Attribution",
"zsm_avg" = "ZSM",
"ZS_attribution._1:zsm_avg" = "ZS Attribution × ZSM"),
gof_omit = "IC|Log|Adj|F|RMSE",
output = "markdown")
Social Inclusion | Professional Inclusion | Cooperation | Competitiveness | SDO | Trust | |
---|---|---|---|---|---|---|
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 | ||||||
ZS Attribution | -0.162 | -0.170 | 0.100 | -0.133 | 0.201 | 0.199 |
(0.259) | (0.235) | (0.240) | (0.331) | (0.209) | (0.304) | |
ZSM | -0.194 | -0.137 | -0.417** | 0.204 | 0.067 | 0.098 |
(0.141) | (0.128) | (0.131) | (0.180) | (0.114) | (0.165) | |
ZS Attribution × ZSM | 0.154+ | 0.129+ | -0.052 | -0.029 | -0.059 | -0.077 |
(0.081) | (0.073) | (0.075) | (0.103) | (0.065) | (0.094) | |
Num.Obs. | 48 | 48 | 48 | 48 | 48 | 48 |
R2 | 0.201 | 0.148 | 0.210 | 0.069 | 0.029 | 0.022 |
model_eth_pro_incl <- lm(pro_incl_avg ~ ZS_attribution._1 * chinoy_ethnicity, data = chinoy)
summary(model_eth_pro_incl)
##
## Call:
## lm(formula = pro_incl_avg ~ ZS_attribution._1 * chinoy_ethnicity,
## data = chinoy)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1536 -0.6605 0.0364 1.2199 1.6414
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.96541 0.41999 11.823 2.13e-15 ***
## ZS_attribution._1 -0.04036 0.23512 -0.172 0.864
## chinoy_ethnicity 0.09412 0.10250 0.918 0.363
## ZS_attribution._1:chinoy_ethnicity 0.01768 0.05420 0.326 0.746
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.264 on 45 degrees of freedom
## Multiple R-squared: 0.01928, Adjusted R-squared: -0.0461
## F-statistic: 0.2948 on 3 and 45 DF, p-value: 0.8289
model_eth_coop <- lm(coop_avg ~ ZS_attribution._1 * chinoy_ethnicity, data = chinoy)
summary(model_eth_coop)
##
## Call:
## lm(formula = coop_avg ~ ZS_attribution._1 * chinoy_ethnicity,
## data = chinoy)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.0374 -0.5571 0.1544 0.9485 2.0332
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.17720 0.49162 10.531 1e-13 ***
## ZS_attribution._1 -0.54496 0.27521 -1.980 0.0538 .
## chinoy_ethnicity 0.08549 0.11998 0.713 0.4798
## ZS_attribution._1:chinoy_ethnicity 0.11300 0.06344 1.781 0.0816 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.479 on 45 degrees of freedom
## Multiple R-squared: 0.0856, Adjusted R-squared: 0.02464
## F-statistic: 1.404 on 3 and 45 DF, p-value: 0.2539
model_eth_comp <- lm(comp_avg ~ ZS_attribution._1 * chinoy_ethnicity, data = chinoy)
summary(model_eth_comp)
##
## Call:
## lm(formula = comp_avg ~ ZS_attribution._1 * chinoy_ethnicity,
## data = chinoy)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8271 -0.8271 -0.3156 0.6719 4.1366
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.42826 0.41832 3.414 0.00136 **
## ZS_attribution._1 -0.02291 0.23418 -0.098 0.92251
## chinoy_ethnicity 0.23314 0.10209 2.284 0.02717 *
## ZS_attribution._1:chinoy_ethnicity 0.02852 0.05398 0.528 0.59988
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.259 on 45 degrees of freedom
## Multiple R-squared: 0.1086, Adjusted R-squared: 0.04922
## F-statistic: 1.828 on 3 and 45 DF, p-value: 0.1556
model_eth_sdo <- lm(sdo_avg ~ ZS_attribution._1 * chinoy_ethnicity, data = chinoy)
summary(model_eth_sdo)
##
## Call:
## lm(formula = sdo_avg ~ ZS_attribution._1 * chinoy_ethnicity,
## data = chinoy)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.0499 -1.3020 -0.3187 0.7976 3.9501
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.67674 0.53115 5.040 8.06e-06 ***
## ZS_attribution._1 0.57563 0.29734 1.936 0.0592 .
## chinoy_ethnicity -0.03312 0.12963 -0.255 0.7995
## ZS_attribution._1:chinoy_ethnicity -0.11104 0.06854 -1.620 0.1122
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.598 on 45 degrees of freedom
## Multiple R-squared: 0.07943, Adjusted R-squared: 0.01806
## F-statistic: 1.294 on 3 and 45 DF, p-value: 0.288
model_eth_trust <- lm(trust_avg ~ ZS_attribution._1 * chinoy_ethnicity, data = chinoy)
summary(model_eth_trust)
##
## Call:
## lm(formula = trust_avg ~ ZS_attribution._1 * chinoy_ethnicity,
## data = chinoy)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5666 -0.8201 0.4225 1.2446 2.4334
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.617149 0.539166 8.563 5.29e-11 ***
## ZS_attribution._1 0.038256 0.301830 0.127 0.900
## chinoy_ethnicity -0.050587 0.131587 -0.384 0.702
## ZS_attribution._1:chinoy_ethnicity -0.008534 0.069578 -0.123 0.903
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.622 on 45 degrees of freedom
## Multiple R-squared: 0.003576, Adjusted R-squared: -0.06285
## F-statistic: 0.05384 on 3 and 45 DF, p-value: 0.9833
models <- list(
"Social Inclusion" = model_eth_soc_incl,
"Professional Inclusion" = model_eth_pro_incl,
"Cooperation" = model_eth_coop,
"Competitiveness" = model_eth_comp,
"SDO" = model_eth_sdo,
"Trust" = model_eth_trust
)
modelsummary(models,
stars = TRUE,
coef_map = c("ZS_attribution._1" = "ZS Attribution",
"chinoy_ethnicity" = "Chinoy Ethnicity ZSB",
"ZS_attribution._1:chinoy_ethnicity" = "ZS Attribution × Chinoy Ethnicity"),
gof_omit = "IC|Log|Adj|F|RMSE",
output = "markdown")
Social Inclusion | Professional Inclusion | Cooperation | Competitiveness | SDO | Trust | |
---|---|---|---|---|---|---|
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 | ||||||
ZS Attribution | 0.334 | -0.040 | -0.545+ | -0.023 | 0.576+ | 0.038 |
(0.304) | (0.235) | (0.275) | (0.234) | (0.297) | (0.302) | |
Chinoy Ethnicity ZSB | 0.113 | 0.094 | 0.085 | 0.233* | -0.033 | -0.051 |
(0.133) | (0.103) | (0.120) | (0.102) | (0.130) | (0.132) | |
ZS Attribution × Chinoy Ethnicity | -0.046 | 0.018 | 0.113+ | 0.029 | -0.111 | -0.009 |
(0.070) | (0.054) | (0.063) | (0.054) | (0.069) | (0.070) | |
Num.Obs. | 49 | 49 | 49 | 49 | 49 | 49 |
R2 | 0.053 | 0.019 | 0.086 | 0.109 | 0.079 | 0.004 |
model_cit_pro_incl <- lm(pro_incl_avg ~ ZS_attribution._1 * chinoy_citizenship, data = chinoy)
summary(model_cit_pro_incl)
##
## Call:
## lm(formula = pro_incl_avg ~ ZS_attribution._1 * chinoy_citizenship,
## data = chinoy)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3978 -0.6949 -0.0520 1.0385 1.5835
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.43403 0.38825 13.996 <2e-16 ***
## ZS_attribution._1 -0.03330 0.20025 -0.166 0.869
## chinoy_citizenship -0.03626 0.10029 -0.362 0.719
## ZS_attribution._1:chinoy_citizenship 0.01295 0.05146 0.252 0.802
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.273 on 45 degrees of freedom
## Multiple R-squared: 0.0057, Adjusted R-squared: -0.06059
## F-statistic: 0.08599 on 3 and 45 DF, p-value: 0.9674
model_cit_coop <- lm(coop_avg ~ ZS_attribution._1 * chinoy_citizenship, data = chinoy)
summary(model_cit_coop)
##
## Call:
## lm(formula = coop_avg ~ ZS_attribution._1 * chinoy_citizenship,
## data = chinoy)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5059 -0.6739 0.2364 0.8877 2.3810
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.393347 0.438000 14.597 <2e-16 ***
## ZS_attribution._1 -0.098517 0.225904 -0.436 0.6648
## chinoy_citizenship -0.281056 0.113136 -2.484 0.0168 *
## ZS_attribution._1:chinoy_citizenship -0.007852 0.058055 -0.135 0.8930
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.436 on 45 degrees of freedom
## Multiple R-squared: 0.1389, Adjusted R-squared: 0.08151
## F-statistic: 2.42 on 3 and 45 DF, p-value: 0.07844
model_cit_comp <- lm(comp_avg ~ ZS_attribution._1 * chinoy_citizenship, data = chinoy)
summary(model_cit_comp)
##
## Call:
## lm(formula = comp_avg ~ ZS_attribution._1 * chinoy_citizenship,
## data = chinoy)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8755 -0.8878 0.0072 0.5947 3.7630
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.24505 0.36563 3.405 0.00140 **
## ZS_attribution._1 -0.01579 0.18858 -0.084 0.93365
## chinoy_citizenship 0.30449 0.09444 3.224 0.00235 **
## ZS_attribution._1:chinoy_citizenship 0.02477 0.04846 0.511 0.61182
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.198 on 45 degrees of freedom
## Multiple R-squared: 0.1921, Adjusted R-squared: 0.1382
## F-statistic: 3.567 on 3 and 45 DF, p-value: 0.02127
model_cit_sdo <- lm(sdo_avg ~ ZS_attribution._1 * chinoy_citizenship, data = chinoy)
summary(model_cit_sdo)
##
## Call:
## lm(formula = sdo_avg ~ ZS_attribution._1 * chinoy_citizenship,
## data = chinoy)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.2879 -0.9249 -0.3086 0.7891 4.0047
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.51494 0.46566 3.253 0.00217 **
## ZS_attribution._1 0.05743 0.24017 0.239 0.81209
## chinoy_citizenship 0.32341 0.12028 2.689 0.01002 *
## ZS_attribution._1:chinoy_citizenship 0.02911 0.06172 0.472 0.63951
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.526 on 45 degrees of freedom
## Multiple R-squared: 0.1606, Adjusted R-squared: 0.1046
## F-statistic: 2.869 on 3 and 45 DF, p-value: 0.04681
model_cit_trust <- lm(trust_avg ~ ZS_attribution._1 * chinoy_citizenship, data = chinoy)
summary(model_cit_trust)
##
## Call:
## lm(formula = trust_avg ~ ZS_attribution._1 * chinoy_citizenship,
## data = chinoy)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.0946 -0.6883 0.3366 1.0225 2.6964
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.36468 0.46670 11.495 5.55e-15 ***
## ZS_attribution._1 -0.09513 0.24071 -0.395 0.6946
## chinoy_citizenship -0.27004 0.12055 -2.240 0.0301 *
## ZS_attribution._1:chinoy_citizenship 0.02641 0.06186 0.427 0.6714
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.53 on 45 degrees of freedom
## Multiple R-squared: 0.1143, Adjusted R-squared: 0.05524
## F-statistic: 1.936 on 3 and 45 DF, p-value: 0.1374
models <- list(
"Social Inclusion" = model_cit_soc_incl,
"Professional Inclusion" = model_cit_pro_incl,
"Cooperation" = model_cit_coop,
"Competitiveness" = model_cit_comp,
"SDO" = model_cit_sdo,
"Trust" = model_cit_trust
)
modelsummary(models,
stars = TRUE,
coef_map = c("ZS_attribution._1" = "ZS Attribution",
"chinoy_citizenship" = "Chinoy Citizenship ZSB",
"ZS_attribution._1:chinoy_citizenship" = "ZS Attribution × Chinoy Citizenship"),
gof_omit = "IC|Log|Adj|F|RMSE",
output = "markdown")
Social Inclusion | Professional Inclusion | Cooperation | Competitiveness | SDO | Trust | |
---|---|---|---|---|---|---|
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 | ||||||
ZS Attribution | 0.379 | -0.033 | -0.099 | -0.016 | 0.057 | -0.095 |
(0.258) | (0.200) | (0.226) | (0.189) | (0.240) | (0.241) | |
Chinoy Citizenship ZSB | -0.001 | -0.036 | -0.281* | 0.304** | 0.323* | -0.270* |
(0.129) | (0.100) | (0.113) | (0.094) | (0.120) | (0.121) | |
ZS Attribution × Chinoy Citizenship | -0.073 | 0.013 | -0.008 | 0.025 | 0.029 | 0.026 |
(0.066) | (0.051) | (0.058) | (0.048) | (0.062) | (0.062) | |
Num.Obs. | 49 | 49 | 49 | 49 | 49 | 49 |
R2 | 0.049 | 0.006 | 0.139 | 0.192 | 0.161 | 0.114 |
model_tra_pro_incl <- lm(pro_incl_avg ~ ZS_attribution._1 * chinoy_trade, data = chinoy)
summary(model_tra_pro_incl)
##
## Call:
## lm(formula = pro_incl_avg ~ ZS_attribution._1 * chinoy_trade,
## data = chinoy)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2837 -0.8795 0.0280 1.1054 1.5114
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.00733 0.46247 10.827 4.07e-14 ***
## ZS_attribution._1 -0.23225 0.23682 -0.981 0.332
## chinoy_trade 0.09213 0.11692 0.788 0.435
## ZS_attribution._1:chinoy_trade 0.06760 0.05762 1.173 0.247
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.255 on 45 degrees of freedom
## Multiple R-squared: 0.03238, Adjusted R-squared: -0.03213
## F-statistic: 0.502 on 3 and 45 DF, p-value: 0.6828
model_tra_coop <- lm(coop_avg ~ ZS_attribution._1 * chinoy_trade, data = chinoy)
summary(model_tra_coop)
##
## Call:
## lm(formula = coop_avg ~ ZS_attribution._1 * chinoy_trade, data = chinoy)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1382 -0.6374 0.4326 0.9309 2.0073
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.28239 0.53092 11.833 2.07e-15 ***
## ZS_attribution._1 -0.41334 0.27187 -1.520 0.135
## chinoy_trade -0.21330 0.13422 -1.589 0.119
## ZS_attribution._1:chinoy_trade 0.06696 0.06615 1.012 0.317
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.441 on 45 degrees of freedom
## Multiple R-squared: 0.1323, Adjusted R-squared: 0.0744
## F-statistic: 2.286 on 3 and 45 DF, p-value: 0.09154
model_tra_comp <- lm(comp_avg ~ ZS_attribution._1 * chinoy_trade, data = chinoy)
summary(model_tra_comp)
##
## Call:
## lm(formula = comp_avg ~ ZS_attribution._1 * chinoy_trade, data = chinoy)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.5019 -0.8828 -0.3140 0.6541 4.1702
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.454351 0.470916 3.088 0.00344 **
## ZS_attribution._1 -0.008099 0.241148 -0.034 0.97336
## chinoy_trade 0.224863 0.119054 1.889 0.06538 .
## ZS_attribution._1:chinoy_trade 0.026487 0.058672 0.451 0.65384
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.278 on 45 degrees of freedom
## Multiple R-squared: 0.08083, Adjusted R-squared: 0.01955
## F-statistic: 1.319 on 3 and 45 DF, p-value: 0.2799
model_tra_sdo <- lm(sdo_avg ~ ZS_attribution._1 * chinoy_trade, data = chinoy)
summary(model_tra_sdo)
##
## Call:
## lm(formula = sdo_avg ~ ZS_attribution._1 * chinoy_trade, data = chinoy)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.2898 -1.2111 -0.0829 0.6803 4.1086
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.08721 0.58236 3.584 0.000828 ***
## ZS_attribution._1 0.50879 0.29822 1.706 0.094880 .
## chinoy_trade 0.12393 0.14723 0.842 0.404380
## ZS_attribution._1:chinoy_trade -0.08864 0.07256 -1.222 0.228201
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.581 on 45 degrees of freedom
## Multiple R-squared: 0.09952, Adjusted R-squared: 0.03948
## F-statistic: 1.658 on 3 and 45 DF, p-value: 0.1896
model_tra_trust <- lm(trust_avg ~ ZS_attribution._1 * chinoy_trade, data = chinoy)
summary(model_tra_trust)
##
## Call:
## lm(formula = trust_avg ~ ZS_attribution._1 * chinoy_trade, data = chinoy)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.0189 -0.7181 0.3384 1.0876 2.4451
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.230092 0.582531 8.978 1.36e-11 ***
## ZS_attribution._1 -0.039605 0.298304 -0.133 0.895
## chinoy_trade -0.211233 0.147272 -1.434 0.158
## ZS_attribution._1:chinoy_trade 0.002337 0.072578 0.032 0.974
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.581 on 45 degrees of freedom
## Multiple R-squared: 0.05354, Adjusted R-squared: -0.009559
## F-statistic: 0.8485 on 3 and 45 DF, p-value: 0.4747
models <- list(
"Social Inclusion" = model_tra_soc_incl,
"Professional Inclusion" = model_tra_pro_incl,
"Cooperation" = model_tra_coop,
"Competitiveness" = model_tra_comp,
"SDO" = model_tra_sdo,
"Trust" = model_tra_trust
)
modelsummary(models,
stars = TRUE,
coef_map = c("ZS_attribution._1" = "ZS Attribution",
"chinoy_trade" = "Chinoy Trade ZSB",
"ZS_attribution._1:chinoy_trade" = "ZS Attribution × Chinoy Trade"),
gof_omit = "IC|Log|Adj|F|RMSE",
output = "markdown")
Social Inclusion | Professional Inclusion | Cooperation | Competitiveness | SDO | Trust | |
---|---|---|---|---|---|---|
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 | ||||||
ZS Attribution | 0.007 | -0.232 | -0.413 | -0.008 | 0.509+ | -0.040 |
(0.312) | (0.237) | (0.272) | (0.241) | (0.298) | (0.298) | |
Chinoy Trade ZSB | 0.070 | 0.092 | -0.213 | 0.225+ | 0.124 | -0.211 |
(0.154) | (0.117) | (0.134) | (0.119) | (0.147) | (0.147) | |
ZS Attribution × Chinoy Trade | 0.035 | 0.068 | 0.067 | 0.026 | -0.089 | 0.002 |
(0.076) | (0.058) | (0.066) | (0.059) | (0.073) | (0.073) | |
Num.Obs. | 49 | 49 | 49 | 49 | 49 | 49 |
R2 | 0.029 | 0.032 | 0.132 | 0.081 | 0.100 | 0.054 |
model_inc_pro_incl <- lm(pro_incl_avg ~ ZS_attribution._1 * chinoy_income, data = chinoy)
summary(model_inc_pro_incl)
##
## Call:
## lm(formula = pro_incl_avg ~ ZS_attribution._1 * chinoy_income,
## data = chinoy)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3567 -0.7233 0.1347 1.0750 1.6642
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.26157 0.50265 10.468 1.22e-13 ***
## ZS_attribution._1 -0.10908 0.26715 -0.408 0.685
## chinoy_income 0.01585 0.10468 0.151 0.880
## ZS_attribution._1:chinoy_income 0.02685 0.05290 0.508 0.614
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.272 on 45 degrees of freedom
## Multiple R-squared: 0.006329, Adjusted R-squared: -0.05992
## F-statistic: 0.09554 on 3 and 45 DF, p-value: 0.9621
model_inc_coop <- lm(coop_avg ~ ZS_attribution._1 * chinoy_income, data = chinoy)
summary(model_inc_coop)
##
## Call:
## lm(formula = coop_avg ~ ZS_attribution._1 * chinoy_income, data = chinoy)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2411 -0.7466 0.2948 0.8901 2.9200
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.65139 0.55534 8.376 9.85e-11 ***
## ZS_attribution._1 -0.73804 0.29515 -2.501 0.0161 *
## chinoy_income 0.20532 0.11565 1.775 0.0826 .
## ZS_attribution._1:chinoy_income 0.14579 0.05844 2.495 0.0164 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.405 on 45 degrees of freedom
## Multiple R-squared: 0.1747, Adjusted R-squared: 0.1197
## F-statistic: 3.175 on 3 and 45 DF, p-value: 0.03307
lm(coop_avg ~ ZS_attribution._1 * chinoy_income, data = chinoy) %>%
plot_model(type="pred", terms=c("ZS_attribution._1", "chinoy_income"))
model_inc_comp <- lm(comp_avg ~ ZS_attribution._1 * chinoy_income, data = chinoy)
summary(model_inc_comp)
##
## Call:
## lm(formula = comp_avg ~ ZS_attribution._1 * chinoy_income, data = chinoy)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.7629 -1.0437 -0.3868 0.6132 4.1352
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.38759 0.50517 2.747 0.00862 **
## ZS_attribution._1 0.16589 0.26848 0.618 0.53977
## chinoy_income 0.19647 0.10520 1.868 0.06834 .
## ZS_attribution._1:chinoy_income -0.01268 0.05316 -0.239 0.81253
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.279 on 45 degrees of freedom
## Multiple R-squared: 0.08049, Adjusted R-squared: 0.01919
## F-statistic: 1.313 on 3 and 45 DF, p-value: 0.2819
model_inc_sdo <- lm(sdo_avg ~ ZS_attribution._1 * chinoy_income, data = chinoy)
summary(model_inc_sdo)
##
## Call:
## lm(formula = sdo_avg ~ ZS_attribution._1 * chinoy_income, data = chinoy)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.0468 -1.0884 -0.2945 0.6850 4.2914
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.20657 0.61539 5.211 4.55e-06 ***
## ZS_attribution._1 0.70999 0.32707 2.171 0.0353 *
## chinoy_income -0.15973 0.12815 -1.246 0.2191
## ZS_attribution._1:chinoy_income -0.13096 0.06476 -2.022 0.0491 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.557 on 45 degrees of freedom
## Multiple R-squared: 0.1259, Adjusted R-squared: 0.0676
## F-statistic: 2.16 on 3 and 45 DF, p-value: 0.1059
model_inc_trust <- lm(trust_avg ~ ZS_attribution._1 * chinoy_income, data = chinoy)
summary(model_inc_trust)
##
## Call:
## lm(formula = trust_avg ~ ZS_attribution._1 * chinoy_income, data = chinoy)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5922 -0.8658 0.3000 0.9579 2.4493
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.54501 0.61389 9.033 1.14e-11 ***
## ZS_attribution._1 -0.25993 0.32627 -0.797 0.4298
## chinoy_income -0.23821 0.12784 -1.863 0.0689 .
## ZS_attribution._1:chinoy_income 0.04317 0.06461 0.668 0.5074
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.554 on 45 degrees of freedom
## Multiple R-squared: 0.08626, Adjusted R-squared: 0.02534
## F-statistic: 1.416 on 3 and 45 DF, p-value: 0.2505
models <- list(
"Social Inclusion" = model_inc_soc_incl,
"Professional Inclusion" = model_inc_pro_incl,
"Cooperation" = model_inc_coop,
"Competitiveness" = model_inc_comp,
"SDO" = model_inc_sdo,
"Trust" = model_inc_trust
)
modelsummary(models,
stars = TRUE,
coef_map = c("ZS_attribution._1" = "ZS Attribution",
"chinoy_income" = "Chinoy Income ZSB",
"ZS_attribution._1:chinoy_income" = "ZS Attribution × Chinoy Income"),
gof_omit = "IC|Log|Adj|F|RMSE",
output = "markdown")
Social Inclusion | Professional Inclusion | Cooperation | Competitiveness | SDO | Trust | |
---|---|---|---|---|---|---|
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 | ||||||
ZS Attribution | 0.119 | -0.109 | -0.738* | 0.166 | 0.710* | -0.260 |
(0.349) | (0.267) | (0.295) | (0.268) | (0.327) | (0.326) | |
Chinoy Income ZSB | 0.008 | 0.016 | 0.205+ | 0.196+ | -0.160 | -0.238+ |
(0.137) | (0.105) | (0.116) | (0.105) | (0.128) | (0.128) | |
ZS Attribution × Chinoy Income | 0.003 | 0.027 | 0.146* | -0.013 | -0.131* | 0.043 |
(0.069) | (0.053) | (0.058) | (0.053) | (0.065) | (0.065) | |
Num.Obs. | 49 | 49 | 49 | 49 | 49 | 49 |
R2 | 0.022 | 0.006 | 0.175 | 0.080 | 0.126 | 0.086 |
Social inclusion