4+3
[1] 7
4-3
[1] 1
4==3
[1] FALSE
3^2
[1] 9
sqrt(4)
[1] 2
3==5
[1] FALSE
3==8
[1] FALSE
3==3
[1] TRUE
3==(2+1)
[1] TRUE
4!=4
[1] FALSE
2!=4
[1] TRUE
TRUE|FALSE
[1] TRUE
TRUE&FALSE
[1] FALSE
!FALSE
[1] TRUE
!TRUE
[1] FALSE
!FALSE & FALSE |TRUE
[1] TRUE
!FALSE & !TRUE | TRUE
[1] TRUE
2>5 | 1==3
[1] FALSE
11>7|4==3
[1] TRUE
log(10)#ln, natural log, base e=2.72
[1] 2.302585
log10(10)
[1] 1
log10(100)
[1] 2
log10(1000)
[1] 3

#Question_1: Compute the log base 5 of 10 and the log of 10.

log(10,base=5)
[1] 1.430677
log(10)#ln of 10
[1] 2.302585
log10(10)
[1] 1
#Batting Average=(No. of Hits)/(No. of At Bats)
#What is the batting average of a player that bats 29 hits in 112 at bats?
BA=(29)/(112)
BA
[1] 0.2589286
Batting_Average=round(BA,digits = 3)
Batting_Average
[1] 0.259

#Question_2:What is the batting average of a player that bats 42 hits in 212 at bats?

BA_1=(42)/(212)
Batting_Average1=round(BA_1,digits = 3 )
Batting_Average1
[1] 0.198

On Base Percentage OBP=(H+BB+HBP)/(At Bats+BB+HBP+SF) Let us compute the OBP for a player with the following general stats AB=515,H=172,BB=84,HBP=5,SF=6

OBP=(172+84+5)/(515+84+5+6)
OBP
[1] 0.4278689
On_Base_Percentage=round(OBP,digits = 3)
On_Base_Percentage
[1] 0.428

Question_3:Compute the OBP for a player with the following general stats: AB=565,H=156,BB=65,HBP=3,SF=7

OBP=(156+65+3)/(565+65+3+7)
On_Base_Percentage2=round(OBP,digits =3)
On_Base_Percentage2
[1] 0.35
Total_Bases<-136+214
Total_Bases
[1] 350
ls()
[1] "BA"                  "BA_1"                "Batting_Average"     "Batting_Average1"   
[5] "OBP"                 "On_Base_Percentage"  "On_Base_Percentage2" "Total_Bases"        
rm(Total_Bases)
ls()
[1] "BA"                  "BA_1"                "Batting_Average"     "Batting_Average1"   
[5] "OBP"                 "On_Base_Percentage"  "On_Base_Percentage2"
pitches_by_innings <- c(12, 15, 10, 20, 10) 
pitches_by_innings
[1] 12 15 10 20 10
Wins_Season<-c(94,88,96,87,79)
Wins_Season
[1] 94 88 96 87 79
strikes_by_innings <- c(5,6,9,7,14, 9)
strikes_by_innings
[1]  5  6  9  7 14  9
rep(2,5)
[1] 2 2 2 2 2
1:6
[1] 1 2 3 4 5 6
seq(3,10,3)
[1] 3 6 9
strikes_by_innings
[1]  5  6  9  7 14  9
Wins_Season
[1] 94 88 96 87 79
pitches_by_innings
[1] 12 15 10 20 10
strikes_by_innings+pitches_by_innings
[1] 17 21 19 27 24 21
strikes_by_innings==pitches_by_innings
[1] FALSE FALSE FALSE FALSE FALSE FALSE
length(pitches_by_innings)
[1] 5
min(pitches_by_innings)
[1] 10
max(pitches_by_innings)
[1] 20
mean(pitches_by_innings)
[1] 13.4
pitches_by_innings[3]
[1] 10
pitches_by_innings[1]
[1] 12
pitches_by_innings[5]
[1] 10
pitches_by_innings[length(pitches_by_innings)]
[1] 10
pitches_by_innings[c(2,3,4)]
[1] 15 10 20
player_positions <- c("catcher", "pitcher", "infielders", "outfielders")
player_positions
[1] "catcher"     "pitcher"     "infielders"  "outfielders"
soccer_positions<-c("goalkeepers", "defenders", "midfielders", "forwards")
soccer_positions
[1] "goalkeepers" "defenders"   "midfielders" "forwards"   
data.frame(bonus = c(2, 3, 1),#in millions 
           active_roster = c("yes", "no", "yes"), 
           salary = c(1.5, 2.5, 1))#in millions 
sample(1:9, size=2)
[1] 3 6
x<-c("yes","no","no","no","yes","yes","yes","yes","yes","yes")
x
 [1] "yes" "no"  "no"  "no"  "yes" "yes" "yes" "yes" "yes" "yes"
table(x)
x
 no yes 
  3   7 
sals <- c(12, .4, 5, 2, 50, 8, 3, 1, 4, 0.25)
mean(sals) 
[1] 8.565
var(sals)
[1] 225.5145
sd(sals)
[1] 15.01714
median(sals)
[1] 3.5
# Tukey's five number summary, usefull for boxplots
# five numbers: min, lower hinge, median, upper hinge, max
fivenum(sals)
[1]  0.25  1.00  3.50  8.00 50.00
summary(sals)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  0.250   1.250   3.500   8.565   7.250  50.000 
# Function to find the mode, i.e. most frequent value
getMode <- function(x) {
     ux <- unique(x)
     ux[which.max(tabulate(match(x, ux)))]
 }
getMode(pitches_by_innings)
[1] 10
getMode(Wins_Season)
[1] 94
Wins_Season
[1] 94 88 96 87 79
#Question_8: Summarize the following survey with the `table()` command:
#What is your favorite day of the week to watch baseball? A total of 10 fans submitted this survey.
#Saturday, Saturday, Sunday, Monday, Saturday,Tuesday, Sunday, Friday, Friday, Monday
game_day<-c("Saturday", "Saturday", "Sunday", "Monday", "Saturday","Tuesday", "Sunday", "Friday", "Friday", "Monday")
table(game_day)
game_day
  Friday   Monday Saturday   Sunday  Tuesday 
       2        2        3        2        1 
getMode(game_day)
[1] "Saturday"
LS0tCnRpdGxlOiAiUiBOb3RlYm9va1IgTm90ZWJvb2sgQWN0aXZpdHkgNCIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKCgpgYGB7cn0KNCszCjQtMwo0PT0zCjNeMgpzcXJ0KDQpCmBgYAoKCmBgYHtyfQozPT01CjM9PTgKMz09MwozPT0oMisxKQo0IT00CjIhPTQKYGBgCgoKCgoKYGBge3J9ClRSVUV8RkFMU0UKYGBgCgpgYGB7cn0KVFJVRSZGQUxTRQpgYGAKCgpgYGB7cn0KIUZBTFNFCmBgYAoKYGBge3J9CiFUUlVFCmBgYAoKYGBge3J9CiFGQUxTRSAmIEZBTFNFIHxUUlVFCiFGQUxTRSAmICFUUlVFIHwgVFJVRQpgYGAKCmBgYHtyfQoyPjUgfCAxPT0zCjExPjd8ND09MwpgYGAKCgpgYGB7cn0KbG9nKDEwKSNsbiwgbmF0dXJhbCBsb2csIGJhc2UgZT0yLjcyCmBgYAoKCgpgYGB7cn0KbG9nMTAoMTApCmxvZzEwKDEwMCkKbG9nMTAoMTAwMCkKYGBgCgojUXVlc3Rpb25fMTogQ29tcHV0ZSB0aGUgbG9nIGJhc2UgNSBvZiAxMCBhbmQgdGhlIGxvZyBvZiAxMC4KCmBgYHtyfQpsb2coMTAsYmFzZT01KQpgYGAKCgpgYGB7cn0KbG9nKDEwKSNsbiBvZiAxMApsb2cxMCgxMCkKYGBgCgoKYGBge3J9CiNCYXR0aW5nIEF2ZXJhZ2U9KE5vLiBvZiBIaXRzKS8oTm8uIG9mIEF0IEJhdHMpCiNXaGF0IGlzIHRoZSBiYXR0aW5nIGF2ZXJhZ2Ugb2YgYSBwbGF5ZXIgdGhhdCBiYXRzIDI5IGhpdHMgaW4gMTEyIGF0IGJhdHM/CkJBPSgyOSkvKDExMikKQkEKYGBgCgoKYGBge3J9CkJhdHRpbmdfQXZlcmFnZT1yb3VuZChCQSxkaWdpdHMgPSAzKQpCYXR0aW5nX0F2ZXJhZ2UKYGBgCgojUXVlc3Rpb25fMjpXaGF0IGlzIHRoZSBiYXR0aW5nIGF2ZXJhZ2Ugb2YgYSBwbGF5ZXIgdGhhdCBiYXRzIDQyIGhpdHMgaW4gMjEyIGF0IGJhdHM/CgpgYGB7cn0KQkFfMT0oNDIpLygyMTIpCkJhdHRpbmdfQXZlcmFnZTE9cm91bmQoQkFfMSxkaWdpdHMgPSAzICkKQmF0dGluZ19BdmVyYWdlMQpgYGAKCk9uIEJhc2UgUGVyY2VudGFnZQpPQlA9KEgrQkIrSEJQKS8oQXQgQmF0cytCQitIQlArU0YpCkxldCB1cyBjb21wdXRlIHRoZSBPQlAgZm9yIGEgcGxheWVyIHdpdGggdGhlIGZvbGxvd2luZyBnZW5lcmFsIHN0YXRzCkFCPTUxNSxIPTE3MixCQj04NCxIQlA9NSxTRj02CgoKYGBge3J9Ck9CUD0oMTcyKzg0KzUpLyg1MTUrODQrNSs2KQpPQlAKYGBgCgoKYGBge3J9Ck9uX0Jhc2VfUGVyY2VudGFnZT1yb3VuZChPQlAsZGlnaXRzID0gMykKT25fQmFzZV9QZXJjZW50YWdlCmBgYAoKUXVlc3Rpb25fMzpDb21wdXRlIHRoZSBPQlAgZm9yIGEgcGxheWVyIHdpdGggdGhlIGZvbGxvd2luZyBnZW5lcmFsIHN0YXRzOgpBQj01NjUsSD0xNTYsQkI9NjUsSEJQPTMsU0Y9NwoKYGBge3J9Ck9CUD0oMTU2KzY1KzMpLyg1NjUrNjUrMys3KQpPbl9CYXNlX1BlcmNlbnRhZ2UyPXJvdW5kKE9CUCxkaWdpdHMgPTMpCk9uX0Jhc2VfUGVyY2VudGFnZTIKYGBgCgoKCmBgYHtyfQpUb3RhbF9CYXNlczwtMTM2KzIxNApUb3RhbF9CYXNlcwpgYGAKCgpgYGB7cn0KbHMoKQpgYGAKCgpgYGB7cn0Kcm0oVG90YWxfQmFzZXMpCmBgYAoKCmBgYHtyfQpscygpCmBgYAoKCmBgYHtyfQpwaXRjaGVzX2J5X2lubmluZ3MgPC0gYygxMiwgMTUsIDEwLCAyMCwgMTApIApwaXRjaGVzX2J5X2lubmluZ3MKYGBgCgoKCmBgYHtyfQpXaW5zX1NlYXNvbjwtYyg5NCw4OCw5Niw4Nyw3OSkKV2luc19TZWFzb24KYGBgCgoKYGBge3J9CnN0cmlrZXNfYnlfaW5uaW5ncyA8LSBjKDUsNiw5LDcsMTQpCnN0cmlrZXNfYnlfaW5uaW5ncwoKYGBgCgpgYGB7cn0KcmVwKDIsNSkKYGBgCgoKCmBgYHtyfQoxOjYKc2VxKDMsMTAsMykKYGBgCgpgYGB7cn0Kc3RyaWtlc19ieV9pbm5pbmdzCldpbnNfU2Vhc29uCnBpdGNoZXNfYnlfaW5uaW5ncwpgYGAKCmBgYHtyfQpzdHJpa2VzX2J5X2lubmluZ3MrcGl0Y2hlc19ieV9pbm5pbmdzCnN0cmlrZXNfYnlfaW5uaW5ncz09cGl0Y2hlc19ieV9pbm5pbmdzCmBgYAoKCmBgYHtyfQpsZW5ndGgocGl0Y2hlc19ieV9pbm5pbmdzKQptaW4ocGl0Y2hlc19ieV9pbm5pbmdzKQptYXgocGl0Y2hlc19ieV9pbm5pbmdzKQptZWFuKHBpdGNoZXNfYnlfaW5uaW5ncykKYGBgCgoKCmBgYHtyfQpwaXRjaGVzX2J5X2lubmluZ3NbM10KcGl0Y2hlc19ieV9pbm5pbmdzWzFdCnBpdGNoZXNfYnlfaW5uaW5nc1s1XQpgYGAKCmBgYHtyfQpwaXRjaGVzX2J5X2lubmluZ3NbbGVuZ3RoKHBpdGNoZXNfYnlfaW5uaW5ncyldCmBgYAoKYGBge3J9CnBpdGNoZXNfYnlfaW5uaW5nc1tjKDIsMyw0KV0KYGBgCgoKCmBgYHtyfQpwbGF5ZXJfcG9zaXRpb25zIDwtIGMoImNhdGNoZXIiLCAicGl0Y2hlciIsICJpbmZpZWxkZXJzIiwgIm91dGZpZWxkZXJzIikKcGxheWVyX3Bvc2l0aW9ucwpgYGAKCgoKYGBge3J9CnNvY2Nlcl9wb3NpdGlvbnM8LWMoImdvYWxrZWVwZXJzIiwgImRlZmVuZGVycyIsICJtaWRmaWVsZGVycyIsICJmb3J3YXJkcyIpCnNvY2Nlcl9wb3NpdGlvbnMKYGBgCgoKYGBge3J9CmRhdGEuZnJhbWUoYm9udXMgPSBjKDIsIDMsIDEpLCNpbiBtaWxsaW9ucyAKICAgICAgICAgICBhY3RpdmVfcm9zdGVyID0gYygieWVzIiwgIm5vIiwgInllcyIpLCAKICAgICAgICAgICBzYWxhcnkgPSBjKDEuNSwgMi41LCAxKSkjaW4gbWlsbGlvbnMgCmBgYAoKCgpgYGB7cn0Kc2FtcGxlKDE6OSwgc2l6ZT0yKQpgYGAKCmBgYHtyfQp4PC1jKCJ5ZXMiLCJubyIsIm5vIiwibm8iLCJ5ZXMiLCJ5ZXMiLCJ5ZXMiLCJ5ZXMiLCJ5ZXMiLCJ5ZXMiKQp4CnRhYmxlKHgpCmBgYAoKCmBgYHtyfQpzYWxzIDwtIGMoMTIsIC40LCA1LCAyLCA1MCwgOCwgMywgMSwgNCwgMC4yNSkKbWVhbihzYWxzKSAKYGBgCgoKYGBge3J9CnZhcihzYWxzKQpzZChzYWxzKQptZWRpYW4oc2FscykKYGBgCgoKYGBge3J9CiMgVHVrZXkncyBmaXZlIG51bWJlciBzdW1tYXJ5LCB1c2VmdWxsIGZvciBib3hwbG90cwojIGZpdmUgbnVtYmVyczogbWluLCBsb3dlciBoaW5nZSwgbWVkaWFuLCB1cHBlciBoaW5nZSwgbWF4CmZpdmVudW0oc2FscykKYGBgCgoKCmBgYHtyfQpzdW1tYXJ5KHNhbHMpCmBgYAoKCmBgYHtyfQojIEZ1bmN0aW9uIHRvIGZpbmQgdGhlIG1vZGUsIGkuZS4gbW9zdCBmcmVxdWVudCB2YWx1ZQpnZXRNb2RlIDwtIGZ1bmN0aW9uKHgpIHsKICAgICB1eCA8LSB1bmlxdWUoeCkKICAgICB1eFt3aGljaC5tYXgodGFidWxhdGUobWF0Y2goeCwgdXgpKSldCiB9CmBgYAoKCgoKYGBge3J9CmdldE1vZGUocGl0Y2hlc19ieV9pbm5pbmdzKQpgYGAKCgpgYGB7cn0KZ2V0TW9kZShXaW5zX1NlYXNvbikKV2luc19TZWFzb24KYGBgCgoKYGBge3J9CiNRdWVzdGlvbl84OiBTdW1tYXJpemUgdGhlIGZvbGxvd2luZyBzdXJ2ZXkgd2l0aCB0aGUgYHRhYmxlKClgIGNvbW1hbmQ6CiNXaGF0IGlzIHlvdXIgZmF2b3JpdGUgZGF5IG9mIHRoZSB3ZWVrIHRvIHdhdGNoIGJhc2ViYWxsPyBBIHRvdGFsIG9mIDEwIGZhbnMgc3VibWl0dGVkIHRoaXMgc3VydmV5LgojU2F0dXJkYXksIFNhdHVyZGF5LCBTdW5kYXksIE1vbmRheSwgU2F0dXJkYXksVHVlc2RheSwgU3VuZGF5LCBGcmlkYXksIEZyaWRheSwgTW9uZGF5CmdhbWVfZGF5PC1jKCJTYXR1cmRheSIsICJTYXR1cmRheSIsICJTdW5kYXkiLCAiTW9uZGF5IiwgIlNhdHVyZGF5IiwiVHVlc2RheSIsICJTdW5kYXkiLCAiRnJpZGF5IiwgIkZyaWRheSIsICJNb25kYXkiKQpgYGAKCgpgYGB7cn0KdGFibGUoZ2FtZV9kYXkpCmBgYAoKCmBgYHtyfQpnZXRNb2RlKGdhbWVfZGF5KQpgYGAKCg==