3. Consider the Gini index, classification error, and entropy in a simple classification setting with two classes. Create a single plot that displays each of these quantities as a function of ˆpm1. The x-axis should

FIGURE 8.14. Left: A partition of the predictor space corresponding to Exercise 4a. Right: A tree corresponding to Exercise 4b. display ˆpm1, ranging from 0 to 1, and the y-axis should display the value of the Gini index, classification error, and entropy. Hint: In a setting with two classes, ˆpm1 = 1 − ˆpm2. You could make this plot by hand, but it will be much easier to make in R.

p=seq(0,1,0.0001)
#Gini
G=2*p*(1-p)
#Classification Error
E=1-pmax(p,1-p)
#Entropy
D=-(p*log(p) + (1-p)*log(1-p))

plot(p,D, col="red",ylab="")
lines(p,E,col='green')
lines(p,G,col='blue')
legend(0.3,0.15,c("Entropy", "Missclassification","Gini"),lty=c(1,1,1),lwd=c(2.5,2.5,2.5),col=c('red','green','blue'))

9. This problem involves the OJ data set which is part of the ISLR2 package.

  1. Create a training set containing a random sample of 800 observations, and a test set containing the remaining observations.
set.seed(1)
train_index <- sample(1:nrow(OJ), 800)
train_data <- OJ[train_index, ]
test_data <- OJ[-train_index, ]
  1. Fit a tree to the training data, with Purchase as the response and the other variables as predictors. Use the summary() function to produce summary statistics about the tree, and..
oj_tree <- tree(Purchase ~ ., data = train_data)
summary(oj_tree)
## 
## Classification tree:
## tree(formula = Purchase ~ ., data = train_data)
## Variables actually used in tree construction:
## [1] "LoyalCH"       "PriceDiff"     "SpecialCH"     "ListPriceDiff"
## [5] "PctDiscMM"    
## Number of terminal nodes:  9 
## Residual mean deviance:  0.7432 = 587.8 / 791 
## Misclassification error rate: 0.1588 = 127 / 800

..describe the results obtained. What is the training error rate? How many terminal nodes does the tree have?

The tree used LoyalCH, PriceDiff, SpecialCH, ListPriceDiff, and PctDiscMM variables to make splits. These variables suggest that customer brand loyalty, price differences, and promotional activity play key roles in distinguishing between Citris Hill and Minute Maid purchases. The tree has 9 terminal nodes.

  1. Type in the name of the tree object in order to get a detailed text output.
oj_tree
## node), split, n, deviance, yval, (yprob)
##       * denotes terminal node
## 
##  1) root 800 1073.00 CH ( 0.60625 0.39375 )  
##    2) LoyalCH < 0.5036 365  441.60 MM ( 0.29315 0.70685 )  
##      4) LoyalCH < 0.280875 177  140.50 MM ( 0.13559 0.86441 )  
##        8) LoyalCH < 0.0356415 59   10.14 MM ( 0.01695 0.98305 ) *
##        9) LoyalCH > 0.0356415 118  116.40 MM ( 0.19492 0.80508 ) *
##      5) LoyalCH > 0.280875 188  258.00 MM ( 0.44149 0.55851 )  
##       10) PriceDiff < 0.05 79   84.79 MM ( 0.22785 0.77215 )  
##         20) SpecialCH < 0.5 64   51.98 MM ( 0.14062 0.85938 ) *
##         21) SpecialCH > 0.5 15   20.19 CH ( 0.60000 0.40000 ) *
##       11) PriceDiff > 0.05 109  147.00 CH ( 0.59633 0.40367 ) *
##    3) LoyalCH > 0.5036 435  337.90 CH ( 0.86897 0.13103 )  
##      6) LoyalCH < 0.764572 174  201.00 CH ( 0.73563 0.26437 )  
##       12) ListPriceDiff < 0.235 72   99.81 MM ( 0.50000 0.50000 )  
##         24) PctDiscMM < 0.196196 55   73.14 CH ( 0.61818 0.38182 ) *
##         25) PctDiscMM > 0.196196 17   12.32 MM ( 0.11765 0.88235 ) *
##       13) ListPriceDiff > 0.235 102   65.43 CH ( 0.90196 0.09804 ) *
##      7) LoyalCH > 0.764572 261   91.20 CH ( 0.95785 0.04215 ) *

Pick one of the terminal nodes, and interpret the information displayed.

Node 8: terminal node where LoyalCH<0.0356, with 59 obversations - Predicted class has very high class probability: 98.3%, indicating almost all customers with extremely low brand loyalty chose Minute Maid. Node deviance is 10.14, indicating high purity (confident and consistent).

  1. Create a plot of the tree, and..
plot(oj_tree,compress=TRUE,margin=0.1)
## Warning in text.default(x[1L], y[1L], "|", ...): "compress" is not a graphical
## parameter
## Warning in text.default(x[1L], y[1L], "|", ...): "margin" is not a graphical
## parameter
## Warning in plot.xy(xy.coords(x, y), type = type, ...): "compress" is not a
## graphical parameter
## Warning in plot.xy(xy.coords(x, y), type = type, ...): "margin" is not a
## graphical parameter
text(oj_tree, pretty = 0,cex=0.7)

..interpret the results.

When LoyalCH<0.5036, customers are more likely to purchase Minute Maid, while higher loyalty scores are classified as choosing Citrus Hill. The tree shows that brand loyalty is the strongest predictor, with price and promotion effects modifying the decision in specific loyalty segments.

  1. Predict the response on the test data, and produce a confusion matrix comparing the test labels to the predicted test labels.
oj_pred <- predict(oj_tree, test_data, type = "class")
confusion <- table(Predicted = oj_pred, Actual = test_data$Purchase)
confusion
##          Actual
## Predicted  CH  MM
##        CH 160  38
##        MM   8  64
test_error <- 1 - sum(diag(confusion)) / sum(confusion)
test_error
## [1] 0.1703704

What is the test error rate?

Test error rate: 17.04%

  1. Apply the cv.tree() function to the training set in order to determine the optimal tree size.
cv_oj <- cv.tree(oj_tree, FUN = prune.misclass)
  1. Produce a plot with tree size on the x-axis and cross-validated classification error rate on the y-axis.
plot(cv_oj$size, cv_oj$dev, type = "b", xlab = "Tree Size", ylab = "CV Classification Error")

  1. Which tree size corresponds to the lowest cross-validated classification error rate?
best_size <- cv_oj$size[which.min(cv_oj$dev)]
best_size
## [1] 7

Tree size corresponding to lowest cross-validated classification error rate: 7

  1. Produce a pruned tree corresponding to the optimal tree size obtained using cross-validation. If cross-validation does not lead to selection of a pruned tree, then create a pruned tree with five terminal nodes.
pruned_oj <- prune.misclass(oj_tree, best = best_size)
plot(pruned_oj)
text(pruned_oj, pretty = 0)

  1. Compare the training error rates between the pruned and unpruned trees.
summary(oj_tree)$misclass
## [1] 127 800
summary(pruned_oj)$misclass
## [1] 130 800

Which is higher?

Pruned tree with 7 terminal nodes: 16.25%

  1. Compare the test error rates between the pruned and unpruned trees.
oj_pred_pruned <- predict(pruned_oj, test_data, type = "class")
conf_pruned <- table(Predicted = oj_pred_pruned, Actual = test_data$Purchase)
test_error_pruned <- 1 - sum(diag(conf_pruned)) / sum(conf_pruned)
test_error_pruned
## [1] 0.162963

Which is higher?

Unpruned tree: 17.04%