Accuracy Analyses for Categorization Task

Libraries and Data Files

#load libraries
library(dplyr)
library(ez)
library(sciplot)
library(gplots)
library(plotrix)
## Warning: package 'plotrix' was built under R version 4.3.2
library (afex)
## Warning: package 'afex' was built under R version 4.3.3
library(emmeans)
library(mgcv)
library(itsadug)
## Warning: package 'itsadug' was built under R version 4.3.2
## Warning: package 'plotfunctions' was built under R version 4.3.2
library(boot)
library(effsize)
## Warning: package 'effsize' was built under R version 4.3.3
#load data
data<-read.csv("AllData_Categorization.csv", header = T)

Data Preprocessing

#rename useful variables
data$acc<-data$Accuracy
data$sbj<-data$participant
data$block<-data$block.thisN+1

#covert to factors
data <- mutate_if(data, is.character, as.factor)
data$sbj<-as.factor(data$sbj)

#exclude one participant (20335) for not following instructions
data<-droplevels(data[data$sbj!="20335",])
str(data)
## 'data.frame':    21120 obs. of  37 variables:
##  $ st_exp                    : int  4 30 48 18 9 55 24 62 12 34 ...
##  $ p                         : int  48 21 35 13 6 40 17 45 50 25 ...
##  $ hue                       : num  -0.05 0.15 0.35 -0.25 -0.35 0.25 0.35 0.15 -0.05 -0.25 ...
##  $ border                    : Factor w/ 2 levels "no","yes": 2 1 1 1 1 1 1 1 2 1 ...
##  $ size                      : num  2.1 2.7 3.1 2.5 2.3 3.3 2.5 3.5 2.3 2.9 ...
##  $ correctAns                : Factor w/ 2 levels "a","b": 2 1 1 2 2 1 1 1 2 2 ...
##  $ practice_trials.thisRepN  : logi  NA NA NA NA NA NA ...
##  $ practice_trials.thisTrialN: logi  NA NA NA NA NA NA ...
##  $ practice_trials.thisN     : logi  NA NA NA NA NA NA ...
##  $ practice_trials.thisIndex : logi  NA NA NA NA NA NA ...
##  $ block.thisRepN            : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ block.thisTrialN          : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ block.thisN               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ block.thisIndex           : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ trials.thisRepN           : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ trials.thisTrialN         : int  0 1 2 3 4 5 6 7 8 9 ...
##  $ trials.thisN              : int  0 1 2 3 4 5 6 7 8 9 ...
##  $ trials.thisIndex          : int  60 36 29 5 34 9 23 33 50 19 ...
##  $ thisRow.t                 : num  111 115 117 119 121 ...
##  $ notes                     : logi  NA NA NA NA NA NA ...
##  $ Accuracy                  : int  0 0 1 1 1 1 1 1 1 1 ...
##  $ RT                        : num  2.2247 0.3665 0.3849 0.4082 0.0632 ...
##  $ participant               : int  17202 17202 17202 17202 17202 17202 17202 17202 17202 17202 ...
##  $ categories                : Factor w/ 2 levels "AB","BA": 1 1 1 1 1 1 1 1 1 1 ...
##  $ group                     : Factor w/ 4 levels "1100","1600",..: 3 3 3 3 3 3 3 3 3 3 ...
##  $ date                      : Factor w/ 66 levels "2025-02-25_12h00.07.372",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ expName                   : Factor w/ 1 level "Categorization": 1 1 1 1 1 1 1 1 1 1 ...
##  $ psychopyVersion           : Factor w/ 1 level "2023.2.3": 1 1 1 1 1 1 1 1 1 1 ...
##  $ frameRate                 : num  60.1 60.1 60.1 60.1 60.1 ...
##  $ expStart                  : Factor w/ 66 levels "2025-02-25 12h00.22.380300 +0200",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ X                         : logi  NA NA NA NA NA NA ...
##  $ X.1                       : logi  NA NA NA NA NA NA ...
##  $ X.2                       : logi  NA NA NA NA NA NA ...
##  $ X.3                       : logi  NA NA NA NA NA NA ...
##  $ acc                       : int  0 0 1 1 1 1 1 1 1 1 ...
##  $ sbj                       : Factor w/ 66 levels "341","1003","1206",..: 10 10 10 10 10 10 10 10 10 10 ...
##  $ block                     : num  1 1 1 1 1 1 1 1 1 1 ...
#calculate participant's average accuracy
data_av<-aggregate(data$acc, list(data$sbj, data$group), mean)
colnames(data_av) <-c("sbj","group" ,"acc")

#check learning criterion
#criterion was set to >=22/32 for one or more blocks of the task
cr=22/32
dat_b<-droplevels(data[data$border=="yes",]) 
dat_b_av<- aggregate(dat_b$acc, list(dat_b$sbj, dat_b$group, dat_b$block), mean)
colnames(dat_b_av)<-c("sbj","group", "block", "acc")
dat_b_av<-dat_b_av[order(dat_b_av$sbj, dat_b_av$block),]
#new column, "yes" if acc>=cr
dat_b_av$cr<-ifelse(dat_b_av$acc>=cr,"yes", "no")

#create a list containing sbj ids that do not fulfill the learning criterion (4 "no"s)
only_no<- dat_b_av[dat_b_av$cr == "no", ]
no_counts<- table(only_no$sbj)
total_blocks <- table(dat_b_av$sbj)
only_no_sbj<- names(no_counts[no_counts == 4 & total_blocks[names(no_counts)] == 4])
only_no_sbj
## [1] "43423" "48888" "63018" "77337" "77623"
rm(only_no,no_counts, total_blocks, cr)

#also exclude 5 sbjs that received "exclusion" instructions 
#two of them (77337 and 77623) were already in the list of participants not meeting the learning criterion
excl<-c(only_no_sbj, "17202","57393", "94372", "40242", "89443")

#save exclude_list, for use in similarity data analysis
saveRDS(excl, file = "exclude_list.rds")

#keep data only from those participants not in exclude list
data<-droplevels(data[!(data$sbj %in% excl), ])

#Check that there are 14 sbjs per group
data %>% 
  distinct(sbj, group) %>% 
  count(group)
##   group  n
## 1  1100 14
## 2  1600 14
## 3   600 14
## 4    RD 14
#calculate participant's average accuracy
data_av<-aggregate(data$acc, list(data$sbj, data$group), mean)
colnames(data_av) <-c("sbj","group" ,"acc")

#write data frame, to use it in analysis examining correlation between learning accuracy and perceptual change
write.csv(data_av, "d_cat.csv") 

Descriptive Statistics

#by-group accuracy
#"600"
mean(data_av[data_av$group=="600",]$acc)
## [1] 0.8455357
sd(data_av[data_av$group=="600",]$acc)
## [1] 0.03759432
#"1100"
mean(data_av[data_av$group=="1100",]$acc)
## [1] 0.8654018
sd(data_av[data_av$group=="1100",]$acc)
## [1] 0.0325329
"#1600"
## [1] "#1600"
mean(data_av[data_av$group=="1600",]$acc)
## [1] 0.8814732
sd(data_av[data_av$group=="1600",]$acc)
## [1] 0.02297915
#"RD"
mean(data_av[data_av$group=="RD",]$acc)
## [1] 0.8763393
sd(data_av[data_av$group=="RD",]$acc)
## [1] 0.0308073

Inferential Statistics - ANOVA

######################################################
# one-way ANOVA (factor: group) on learning accuracy
######################################################

#one-way anova
ezANOVA(data=data_av, dv=acc, wid=sbj, between=group, type=3)
## Coefficient covariances computed by hccm()
## $ANOVA
##   Effect DFn DFd        F          p p<.05       ges
## 2  group   3  52 3.591778 0.01957389     * 0.1716492
## 
## $`Levene's Test for Homogeneity of Variance`
##   DFn DFd          SSn        SSd         F         p p<.05
## 1   3  52 0.0002664621 0.02787528 0.1656907 0.9190173
#same analysis, in format suitable for post-hoc comparisons
model <- aov(acc ~ group, data = data_av)

#calculate estimated marginal means, for post-hoc comparisons.
emms <- emmeans::emmeans(model, ~ group)

#post-hoc comparisons
pairwise_comparisons <- contrast(emms, method = "pairwise", adjust = "bonferroni")
summary(pairwise_comparisons)
##  contrast    estimate     SE df t.ratio p.value
##  1100 - 1600 -0.01607 0.0119 52  -1.353  1.0000
##  1100 - 600   0.01987 0.0119 52   1.673  0.6022
##  1100 - RD   -0.01094 0.0119 52  -0.921  1.0000
##  1600 - 600   0.03594 0.0119 52   3.026  0.0231
##  1600 - RD    0.00513 0.0119 52   0.432  1.0000
##  600 - RD    -0.03080 0.0119 52  -2.594  0.0738
## 
## P value adjustment: bonferroni method for 6 tests
# Calculate Cohen's d for significant differences.
cohen.d(data_av$acc[data_av$group == "1600"],
        data_av$acc[data_av$group == "600"],
        pooled = TRUE)
## 
## Cohen's d
## 
## d estimate: 1.153475 (large)
## 95 percent confidence interval:
##     lower     upper 
## 0.3144359 1.9925144
cohen.d(data_av$acc[data_av$group == "RD"],
        data_av$acc[data_av$group == "600"],
        pooled = TRUE)
## 
## Cohen's d
## 
## d estimate: 0.8962667 (large)
## 95 percent confidence interval:
##      lower      upper 
## 0.08127669 1.71125673

Learning-Curves Plot

# calculate average performance per sbj  and block
data_bl<-aggregate(data$acc, list(data$sbj, data$group, data$block), mean)
colnames(data_bl) <-c("sbj","group", "block", "acc")

#calculate average accuracy and SE per block
data_gr<-aggregate(data_bl$acc, list(data_bl$group, data_bl$block), mean)
colnames(data_gr)<-c("group","block", "acc")

temp<- aggregate(data_bl$acc, list(data_bl$group, data_bl$block), se)
data_gr$se<-temp$x
rm(temp)
data_gr<-data_gr[order(data_gr$group, data_gr$block),]

#xlb="Block\n Error Bars: +/- 1 SE"
xlb="Block"
ylb="Proportion Correct"
mn="Categorization Accuracy"
off=0.05
pch=c(15,16,17,18)
lty=c(2,3,4,5)
col=c("grey70","grey60","grey50", "grey40" )
#"600"
plotCI(x=1:4, y=data_gr[data_gr$group=="600",]$acc, uiw=data_gr[data_gr$group=="600",]$se, bty="n", ylim=c(0.6,1),xlim=c(1, 4.5), xlab=xlb, ylab=ylb, main=mn, las=1, xaxt="n", yaxt="n", pch=pch[1], col=col[1], gap=0)
lines(x=1:4, y=data_gr[data_gr$group=="600",]$acc, lty=lty[1], col=col[1], lwd=2)
#"1100"
plotCI(x=1:4+off, y=data_gr[data_gr$group=="1100",]$acc, uiw=data_gr[data_gr$group=="600",]$se, add=T, pch=pch[2], col=col[2], gap=0)
lines(x=1:4+off, y=data_gr[data_gr$group=="1100",]$acc, lty=lty[2], col=col[2], lwd=2)
#"1600"
plotCI(x=1:4+2*off, y=data_gr[data_gr$group=="1600",]$acc, uiw=data_gr[data_gr$group=="600",]$se, add=T, pch=pch[3], col=col[3], gap=0)
lines(x=1:4+2*off, y=data_gr[data_gr$group=="1600",]$acc, lty=lty[3], col=col[3], lwd=2)
#"RD"
plotCI(x=1:4+3*off, y=data_gr[data_gr$group=="RD",]$acc, uiw=data_gr[data_gr$group=="600",]$se, add=T, pch=pch[4], col=col[4], gap=0)
lines(x=1:4+3*off, y=data_gr[data_gr$group=="RD",]$acc, lty=lty[4], col=col[4], lwd=2)

axis(side=1, at=c(1,2,3,4))
axis(side=2, at=c(0.6, 0.7, 0.8, 0.9, 1.0),labels=c("0.0", "0.7", "0.8", "0.9", "1.0") , las=2)
axis.break(2, 0.65, style="slash")

legend(x=2.5, y=0.8, legend=c("600 ms", "1100 ms", "1600 ms", "RD"), col=col, lty=lty, pch=pch, bty="n", seg.len=4, lwd=2)

Inferential Statistics - gam

#first create the trial variable
tr<-1:320
data$trial<-tr

#Null model
m0<-bam(acc~1 + s(trial) + s(trial, sbj, bs="fs", m=1), data=data, family=binomial)
## Warning in gam.side(sm, X, tol = .Machine$double.eps^0.5): model has repeated
## 1-d smooths of same variable.
gam.check(m0)

## 
## Method: fREML   Optimizer: perf newton
## full convergence after 6 iterations.
## Gradient range [-6.051167e-08,1.232092e-09]
## (score 25241.88 & scale 1).
## Hessian positive definite, eigenvalue range [2.471305,12.06464].
## Model rank =  514 / 514 
## 
## Basis dimension (k) checking results. Low p-value (k-index<1) may
## indicate that k is too low, especially if edf is close to k'.
## 
##                  k'    edf k-index p-value  
## s(trial)       9.00   7.95    0.94   0.055 .
## s(trial,sbj) 504.00 106.12    0.94   0.070 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#edf is not close to k', so we are ok. We do not need to increase k

#add a fixed effect of group
m1<- bam(acc~ 1 + group + s(trial) + s(trial, sbj, bs="fs", m=1), data=data, family=binomial )
## Warning in gam.side(sm, X, tol = .Machine$double.eps^0.5): model has repeated
## 1-d smooths of same variable.
gam.check(m1)

## 
## Method: fREML   Optimizer: perf newton
## full convergence after 6 iterations.
## Gradient range [-6.042705e-08,1.128063e-09]
## (score 25256.22 & scale 1).
## Hessian positive definite, eigenvalue range [2.472525,11.62358].
## Model rank =  517 / 517 
## 
## Basis dimension (k) checking results. Low p-value (k-index<1) may
## indicate that k is too low, especially if edf is close to k'.
## 
##                  k'    edf k-index p-value
## s(trial)       9.00   7.95    0.94    0.21
## s(trial,sbj) 504.00 101.54    0.94    0.20
#edf is not close to k', so we are ok. We do not need to increase k

compareML(m0,m1)
## m0: acc ~ 1 + s(trial) + s(trial, sbj, bs = "fs", m = 1)
## 
## m1: acc ~ 1 + group + s(trial) + s(trial, sbj, bs = "fs", m = 1)
## 
## Model m0 preferred: lower fREML score (14.335), and lower df (3.000).
## -----
##   Model    Score Edf Difference     Df
## 1    m1 25256.22   8                  
## 2    m0 25241.88   5     14.335 -3.000
## 
## AIC difference: 1.18, model m1 has lower AIC.
#m1 preferred

#add a term modeling four smooth terms of trial, one for each group level
m2<-bam(acc~ 1 + group + s(trial) + s(trial, by=group) +s(trial, sbj, bs="fs", m=1), data=data, family=binomial )
## Warning in gam.side(sm, X, tol = .Machine$double.eps^0.5): model has repeated
## 1-d smooths of same variable.
gam.check(m2)

## 
## Method: fREML   Optimizer: perf newton
## full convergence after 13 iterations.
## Gradient range [-8.083924e-05,1.590057e-05]
## (score 25263.29 & scale 1).
## Hessian positive definite, eigenvalue range [6.257526e-06,11.18759].
## Model rank =  552 / 553 
## 
## Basis dimension (k) checking results. Low p-value (k-index<1) may
## indicate that k is too low, especially if edf is close to k'.
## 
##                          k'      edf k-index p-value
## s(trial)           9.00e+00 7.94e+00    0.95    0.15
## s(trial):group1100 9.00e+00 1.99e+00    0.95    0.20
## s(trial):group1600 9.00e+00 1.00e+00    0.95    0.14
## s(trial):group600  9.00e+00 1.00e+00    0.95    0.17
## s(trial):groupRD   9.00e+00 3.10e-04    0.95    0.14
## s(trial,sbj)       5.04e+02 9.97e+01    0.95    0.21
#edf is not close to k', so we are ok. We do not need to increase k

compareML(m2, m1)
## m2: acc ~ 1 + group + s(trial) + s(trial, by = group) + s(trial, 
##     sbj, bs = "fs", m = 1)
## 
## m1: acc ~ 1 + group + s(trial) + s(trial, sbj, bs = "fs", m = 1)
## 
## Model m1 preferred: lower fREML score (7.075), and lower df (8.000).
## -----
##   Model    Score Edf Difference    Df
## 1    m2 25263.29  16                 
## 2    m1 25256.22   8     -7.075 8.000
## 
## AIC difference: 3.38, model m1 has lower AIC.
#m1 preferred

m3<-bam(acc~ 1 + group  + s(trial, by=group) +s(trial, sbj, bs="fs", m=1), data=data, family=binomial )
gam.check(m3)

## 
## Method: fREML   Optimizer: perf newton
## full convergence after 7 iterations.
## Gradient range [-6.16458e-07,1.217533e-08]
## (score 25251.06 & scale 1).
## Hessian positive definite, eigenvalue range [0.397295,10.94414].
## Model rank =  544 / 544 
## 
## Basis dimension (k) checking results. Low p-value (k-index<1) may
## indicate that k is too low, especially if edf is close to k'.
## 
##                        k'    edf k-index p-value
## s(trial):group1100   9.00   6.17    0.95    0.56
## s(trial):group1600   9.00   3.76    0.95    0.58
## s(trial):group600    9.00   4.90    0.95    0.61
## s(trial):groupRD     9.00   7.30    0.95    0.60
## s(trial,sbj)       504.00  98.80    0.95    0.59
compareML(m3, m1)
## m3: acc ~ 1 + group + s(trial, by = group) + s(trial, sbj, bs = "fs", 
##     m = 1)
## 
## m1: acc ~ 1 + group + s(trial) + s(trial, sbj, bs = "fs", m = 1)
## 
## Chi-square test of fREML scores
## -----
##   Model    Score Edf Difference    Df p.value Sig.
## 1    m1 25256.22   8                              
## 2    m3 25251.06  14      5.160 6.000   0.112     
## 
## AIC difference: 21.84, model m1 has lower AIC.
#m1 preferred

m4<-bam(acc~ 1 + s(trial, by=group) +s(trial, sbj, bs="fs", m=1), data=data, family=binomial )
gam.check(m4)

## 
## Method: fREML   Optimizer: perf newton
## full convergence after 7 iterations.
## Gradient range [-8.847141e-07,1.763018e-08]
## (score 25236.33 & scale 1).
## Hessian positive definite, eigenvalue range [0.3740603,11.70784].
## Model rank =  541 / 541 
## 
## Basis dimension (k) checking results. Low p-value (k-index<1) may
## indicate that k is too low, especially if edf is close to k'.
## 
##                        k'    edf k-index p-value
## s(trial):group1100   9.00   6.17    0.94    0.22
## s(trial):group1600   9.00   3.68    0.94    0.26
## s(trial):group600    9.00   5.00    0.94    0.28
## s(trial):groupRD     9.00   7.26    0.94    0.26
## s(trial,sbj)       504.00 103.33    0.94    0.26
compareML(m4, m1)
## m4: acc ~ 1 + s(trial, by = group) + s(trial, sbj, bs = "fs", m = 1)
## 
## m1: acc ~ 1 + group + s(trial) + s(trial, sbj, bs = "fs", m = 1)
## 
## Chi-square test of fREML scores
## -----
##   Model    Score Edf Difference    Df   p.value Sig.
## 1    m1 25256.22   8                                
## 2    m4 25236.33  11     19.890 3.000 1.187e-08  ***
## 
## AIC difference: 23.31, model m1 has lower AIC.
#m1 preferred

#best-fit model
fm<-m1
summary(fm)
## 
## Family: binomial 
## Link function: logit 
## 
## Formula:
## acc ~ 1 + group + s(trial) + s(trial, sbj, bs = "fs", m = 1)
## 
## Parametric coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  1.90115    0.07090  26.813   <2e-16 ***
## group1600    0.13983    0.10124   1.381    0.167    
## group600    -0.16031    0.09916  -1.617    0.106    
## groupRD      0.09101    0.10083   0.903    0.367    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Approximate significance of smooth terms:
##                  edf  Ref.df Chi.sq p-value    
## s(trial)       7.949   8.692  132.3  <2e-16 ***
## s(trial,sbj) 101.537 500.000  217.6  <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## R-sq.(adj) =  0.0276   Deviance explained = 3.59%
## fREML =  25256  Scale est. = 1         n = 17920
#to facilitate comparisons, we re-level the group variable
levels(data$group)
## [1] "1100" "1600" "600"  "RD"
data$group_1_<-relevel(data$group, ref="600")
levels(data$group_1_)
## [1] "600"  "1100" "1600" "RD"
fm_1<-bam(acc~ 1 + group_1_ + s(trial) + s(trial, sbj, bs="fs", m=1), data=data, family=binomial )
## Warning in gam.side(sm, X, tol = .Machine$double.eps^0.5): model has repeated
## 1-d smooths of same variable.
summary(fm_1)
## 
## Family: binomial 
## Link function: logit 
## 
## Formula:
## acc ~ 1 + group_1_ + s(trial) + s(trial, sbj, bs = "fs", m = 1)
## 
## Parametric coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   1.74085    0.06941  25.079  < 2e-16 ***
## group_1_1100  0.16031    0.09916   1.617  0.10595    
## group_1_1600  0.30013    0.10021   2.995  0.00275 ** 
## group_1_RD    0.25131    0.09980   2.518  0.01180 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Approximate significance of smooth terms:
##                  edf  Ref.df Chi.sq p-value    
## s(trial)       7.949   8.692  132.3  <2e-16 ***
## s(trial,sbj) 101.537 500.000  217.6  <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## R-sq.(adj) =  0.0276   Deviance explained = 3.59%
## fREML =  25256  Scale est. = 1         n = 17920
data$group_2_<-relevel(data$group, ref="1600")
fm_2<-bam(acc~ 1 + group_2_ + s(trial) + s(trial, sbj, bs="fs", m=1), data=data, family=binomial )
## Warning in gam.side(sm, X, tol = .Machine$double.eps^0.5): model has repeated
## 1-d smooths of same variable.
summary(fm_2)
## 
## Family: binomial 
## Link function: logit 
## 
## Formula:
## acc ~ 1 + group_2_ + s(trial) + s(trial, sbj, bs = "fs", m = 1)
## 
## Parametric coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   2.04098    0.07238  28.198  < 2e-16 ***
## group_2_1100 -0.13983    0.10124  -1.381  0.16724    
## group_2_600  -0.30013    0.10021  -2.995  0.00275 ** 
## group_2_RD   -0.04882    0.10187  -0.479  0.63180    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Approximate significance of smooth terms:
##                  edf  Ref.df Chi.sq p-value    
## s(trial)       7.949   8.692  132.3  <2e-16 ***
## s(trial,sbj) 101.537 500.000  217.6  <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## R-sq.(adj) =  0.0276   Deviance explained = 3.59%
## fREML =  25256  Scale est. = 1         n = 17920

Model-Predictions Plot

labx="Trial"
#labx="Trial\n Error Bands: 95% CI"
main="Categorization Accuracy - Model Predictions"
col=c("grey70","grey60","grey50", "grey40" )
lty=c(2,3,4,5)
#"600"
plot_smooth(fm, view="trial", cond=list(group="600"), rm.ranef=c("s(trial,sbj)"), shade=T,se=1.96, print.summary=F, ylim=c(0.5,1), transform=inv.logit, xlab=labx, ylab="Proportion Correct", lwd=2, las=2, rug=F, col=col[1], lty=lty[1], hide.label=T, main=main, yaxs="i",xaxt="n", yaxt="n")
#"1100"
plot_smooth(fm, view="trial", cond=list(group="1100"), rm.ranef=c("s(trial,sbj)"), shade=T, se=1.96, print.summary=F,transform=inv.logit,lwd=2, rug=FALSE, col=col[2], lty=lty[2], add=T)
#"1600"
plot_smooth(fm, view="trial", cond=list(group="1600"), rm.ranef=c("s(trial,sbj)"), shade=T, se=1.96, print.summary=F,transform=inv.logit,lwd=2, rug=FALSE, col=col[3], lty=lty[3], add=T)
#"RD"
plot_smooth(fm, view="trial", cond=list(group="RD"), rm.ranef=c("s(trial,sbj)"), shade=T, se=1.96, print.summary=F,transform=inv.logit,lwd=2, rug=FALSE, col=col[4], lty=lty[4], add=T)

axis(side=1, at=c(0,50,100,150, 200, 250, 300, 320))
axis(side=2, at=c(0.5, 0.6, 0.7, 0.8, 0.9, 1.0),labels=c("0.0", "0.6", "0.7", "0.8", "0.9", "1.0") , las=2)
axis.break(2, 0.55, style="slash")

legend(x=200, y=0.75, legend=c("600 ms", "1100 ms", "1600 ms", "RD"), col=col, lty=lty, bty="n", seg.len=4, lwd=2)

Reaction Times Analysis

rt_by_sbj <- aggregate(RT ~ sbj + group, data = data, FUN = function(x) mean(x, na.rm = TRUE))

mean_rt_by_group <- aggregate(RT ~ group, data = rt_by_sbj, mean)
sd_rt_by_group <- aggregate(RT ~ group, data = rt_by_sbj, sd)
n_by_group <- aggregate(RT ~ group, data = rt_by_sbj, function(x) length(x))

#
rt_summary <- data.frame(
  group = mean_rt_by_group$group,
  mean_rt = mean_rt_by_group$RT,
  sd_rt = sd_rt_by_group$RT,
  n = n_by_group$RT
)
rt_summary$se <- rt_summary$sd_rt / sqrt(rt_summary$n)
rt_summary$ci95 <- 1.96 * rt_summary$se

#one-sample t-test for the RD group, comparison value = 0.6 sec
rt_by_sbj_RD<-droplevels(rt_by_sbj[rt_by_sbj$group=="RD",])
t.test(rt_by_sbj_RD$RT , mu = 0.600)
## 
##  One Sample t-test
## 
## data:  rt_by_sbj_RD$RT
## t = 3.9435, df = 13, p-value = 0.001682
## alternative hypothesis: true mean is not equal to 0.6
## 95 percent confidence interval:
##  0.6965478 0.9304929
## sample estimates:
## mean of x 
## 0.8135203

Session Information

sessionInfo()
## R version 4.3.1 (2023-06-16 ucrt)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19045)
## 
## Matrix products: default
## 
## 
## locale:
## [1] LC_COLLATE=English_United States.utf8 
## [2] LC_CTYPE=English_United States.utf8   
## [3] LC_MONETARY=English_United States.utf8
## [4] LC_NUMERIC=C                          
## [5] LC_TIME=English_United States.utf8    
## 
## time zone: Europe/Athens
## tzcode source: internal
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
##  [1] effsize_0.8.1     boot_1.3-28.1     itsadug_2.4.1     plotfunctions_1.4
##  [5] mgcv_1.8-42       nlme_3.1-162      emmeans_1.8.8     afex_1.4-1       
##  [9] lme4_1.1-34       Matrix_1.6-1      plotrix_3.8-4     gplots_3.1.3     
## [13] sciplot_1.2-0     ez_4.4-0          dplyr_1.1.3      
## 
## loaded via a namespace (and not attached):
##  [1] gtable_0.3.4        xfun_0.40           bslib_0.5.1        
##  [4] ggplot2_3.4.3       caTools_1.18.2      lattice_0.21-8     
##  [7] numDeriv_2016.8-1.1 vctrs_0.6.3         tools_4.3.1        
## [10] bitops_1.0-7        generics_0.1.3      parallel_4.3.1     
## [13] sandwich_3.0-2      tibble_3.2.1        fansi_1.0.4        
## [16] pkgconfig_2.0.3     KernSmooth_2.23-21  lifecycle_1.0.3    
## [19] compiler_4.3.1      stringr_1.5.0       munsell_0.5.0      
## [22] codetools_0.2-19    lmerTest_3.1-3      carData_3.0-5      
## [25] htmltools_0.5.6     sass_0.4.7          yaml_2.3.7         
## [28] pillar_1.9.0        car_3.1-2           nloptr_2.0.3       
## [31] jquerylib_0.1.4     MASS_7.3-60         cachem_1.0.8       
## [34] abind_1.4-5         multcomp_1.4-25     gtools_3.9.4       
## [37] tidyselect_1.2.0    digest_0.6.33       mvtnorm_1.2-3      
## [40] stringi_1.7.12      reshape2_1.4.4      splines_4.3.1      
## [43] fastmap_1.1.1       grid_4.3.1          colorspace_2.1-0   
## [46] cli_3.6.1           magrittr_2.0.3      survival_3.5-5     
## [49] utf8_1.2.3          TH.data_1.1-2       withr_2.5.0        
## [52] scales_1.2.1        estimability_1.4.1  rmarkdown_2.24     
## [55] zoo_1.8-12          evaluate_0.21       knitr_1.44         
## [58] rlang_1.1.1         Rcpp_1.0.11         xtable_1.8-4       
## [61] glue_1.6.2          rstudioapi_0.15.0   minqa_1.2.5        
## [64] jsonlite_1.8.7      R6_2.5.1            plyr_1.8.8