Superíndice - Potencia
\[
E=mc^2
\]
\[
a^2 + b^2 = c^2
\]
Subíndice
\[
H_2O
\]
\[
NH_3
\]
Fracciones
\[
\frac{5}{4}
\]
\[
\frac{4}{5} + \frac{6}{3} = \frac{14}{5}
\]
\[
\frac{7}{8} - \frac{2}{3} = \frac{5}{24}
\]
\[
\frac{3}{5} \times \frac{6}{7} = \frac{18}{35}
\]
\[
\frac{4}{6} \cdot \frac{3}{9} = \frac{4}{9}
\]
\[
\frac{7}{8} \div \frac{9}{3} = \frac{7}{24}
\]
Raíces
\[
\sqrt{2} = 1.414213562
\]
\[
\sqrt{3} = 1.732050808
\]
\[
\sqrt{4} = 2
\]
Logaritmos
\[
\log_2{4} = 2
\]
\[
\log_3{9} = 2
\]
\[
\log_2{32} = 5
\]
Sumatorias
\[
\sum_{i=1}^5 2i
\]
\[
\sum_{i=2}^6 \frac{i+1}{i}
\]
\[
\sum_{i=1}^n \frac{2i-1}{i(i+1)}
\]
Matrices
\[
\begin{matrix}
10 & 11 & 5 \\
9 & 6 & 4 \\
8 & 7 & 5
\end{matrix}
\]
\[
\begin{bmatrix}
7 & 8 & 9 \\
3 & 8 & 4 \\
10 & 5 & 11
\end{bmatrix}
\]
\[
\begin{vmatrix}
10 & 5 & 7 \\
8 & 9 & 10 \\
6 & 6 & 11
\end{vmatrix}
\]
\[
\begin{pmatrix}
8 & 5 & 5 \\
10 & 7 & 9 \\
9 & 7 & 5
\end{pmatrix}
\]
\[
\begin{Bmatrix}
12 & 6 & 7 \\
9 & 8 & 6 \\
10 & 7 & 8
\end{Bmatrix}
\]
LS0tDQp0aXRsZTogIlNpbnRheGlzIHkgQ29tYW5kb3MgTGFUZVgiDQphdXRob3I6ICJSZW56byBDw6FjZXJlcyBSb3NzaSINCmRhdGU6ICIyNC0wNy0yNSINCm91dHB1dDoNCiAgaHRtbF9kb2N1bWVudDoNCiAgICB0aGVtZTogam91cm5hbA0KICAgIHRvYzogdHJ1ZQ0KICAgIHRvY19mbG9hdDogdHJ1ZQ0KICAgIGNvZGVfZG93bmxvYWQ6IHRydWUNCiAgd29yZF9kb2N1bWVudDoNCiAgICB0b2M6IHRydWUNCiAgcGRmX2RvY3VtZW50Og0KICAgIHRvYzogdHJ1ZQ0Kc3VidGl0bGU6ICJFY3VhY2lvbmVzIC0gRsOzcm11bGFzIC0gU2ludGF4aXMgTGFUZVgiDQotLS0NCg0KPCEtLVNpbnRheGlzIHkgY29tYW5kb3MgTGFUZVggZW4gTWFya2Rvd24tLT4NCg0KIyMgU3VwZXLDrW5kaWNlIC0gUG90ZW5jaWENCg0KJCQNCkU9bWNeMg0KJCQNCg0KLS0tDQoNCiQkDQphXjIgKyBiXjIgPSBjXjINCiQkDQoNCi0tLQ0KDQojIyBTdWLDrW5kaWNlDQoNCiQkDQpIXzJPDQokJA0KDQotLS0NCg0KJCQNCk5IXzMNCiQkDQoNCi0tLQ0KDQojIyBGcmFjY2lvbmVzDQoNCiQkDQpcZnJhY3s1fXs0fQ0KJCQNCg0KLS0tDQoNCiQkDQpcZnJhY3s0fXs1fSArIFxmcmFjezZ9ezN9ID0gXGZyYWN7MTR9ezV9DQokJA0KDQotLS0NCg0KJCQNClxmcmFjezd9ezh9IC0gXGZyYWN7Mn17M30gPSBcZnJhY3s1fXsyNH0NCiQkDQoNCi0tLQ0KDQokJA0KXGZyYWN7M317NX0gXHRpbWVzIFxmcmFjezZ9ezd9ID0gXGZyYWN7MTh9ezM1fQ0KJCQNCg0KLS0tDQoNCiQkDQpcZnJhY3s0fXs2fSBcY2RvdCBcZnJhY3szfXs5fSA9IFxmcmFjezR9ezl9DQokJA0KDQoNCi0tLQ0KDQokJA0KXGZyYWN7N317OH0gXGRpdiBcZnJhY3s5fXszfSA9IFxmcmFjezd9ezI0fQ0KJCQNCg0KLS0tDQoNCiMjIFJhw61jZXMNCg0KJCQNClxzcXJ0ezJ9ID0gMS40MTQyMTM1NjINCiQkDQoNCi0tLQ0KDQokJA0KXHNxcnR7M30gPSAxLjczMjA1MDgwOA0KJCQNCg0KLS0tDQoNCiQkDQpcc3FydHs0fSA9IDINCiQkDQoNCi0tLQ0KDQojIyBMb2dhcml0bW9zDQoNCiQkDQpcbG9nXzJ7NH0gPSAyDQokJA0KDQotLS0NCg0KJCQNClxsb2dfM3s5fSA9IDINCiQkDQoNCi0tLQ0KDQokJA0KXGxvZ18yezMyfSA9IDUNCiQkDQoNCi0tLQ0KDQojIyBTdW1hdG9yaWFzDQoNCiQkDQpcc3VtX3tpPTF9XjUgMmkNCiQkDQoNCi0tLQ0KDQokJA0KXHN1bV97aT0yfV42IFxmcmFje2krMX17aX0NCiQkDQoNCi0tLQ0KDQokJA0KXHN1bV97aT0xfV5uIFxmcmFjezJpLTF9e2koaSsxKX0NCiQkDQoNCi0tLQ0KDQojIyBNYXRyaWNlcw0KDQokJA0KXGJlZ2lue21hdHJpeH0NCjEwICYgMTEgJiA1IFxcDQo5ICYgNiAmIDQgXFwNCjggJiA3ICYgNQ0KXGVuZHttYXRyaXh9DQokJA0KDQotLS0NCg0KJCQNClxiZWdpbntibWF0cml4fQ0KNyAmIDggJiA5IFxcDQozICYgOCAmIDQgXFwNCjEwICYgNSAmIDExDQpcZW5ke2JtYXRyaXh9DQokJA0KDQotLS0NCg0KJCQNClxiZWdpbnt2bWF0cml4fQ0KMTAgJiA1ICYgNyBcXA0KOCAmIDkgJiAxMCBcXA0KNiAmIDYgJiAxMQ0KXGVuZHt2bWF0cml4fQ0KJCQNCg0KLS0tDQoNCiQkDQpcYmVnaW57cG1hdHJpeH0NCjggJiA1ICYgNSBcXA0KMTAgJiA3ICYgOSBcXA0KOSAmIDcgJiA1DQpcZW5ke3BtYXRyaXh9DQokJA0KDQotLS0NCg0KJCQNClxiZWdpbntCbWF0cml4fQ0KMTIgJiA2ICYgNyBcXA0KOSAmIDggJiA2IFxcDQoxMCAmIDcgJiA4DQpcZW5ke0JtYXRyaXh9DQokJA0KDQotLS0NCg0KPGRpdiBjbGFzcz0idG9jaWZ5LWV4dGVuZC1wYWdlIiBkYXRhLXVuaXF1ZT0idG9jaWZ5LWV4dGVuZC1wYWdlIiBzdHlsZT0iaGVpZ2h0OiAwOyI+PC9kaXY+