Superíndice - Potencia

\[ E=mc^2 \]


\[ a^2 + b^2 = c^2 \]


Subíndice

\[ H_2O \]


\[ NH_3 \]


Fracciones

\[ \frac{5}{4} \]


\[ \frac{4}{5} + \frac{6}{3} = \frac{14}{5} \]


\[ \frac{7}{8} - \frac{2}{3} = \frac{5}{24} \]


\[ \frac{3}{5} \times \frac{6}{7} = \frac{18}{35} \]


\[ \frac{4}{6} \cdot \frac{3}{9} = \frac{4}{9} \]


\[ \frac{7}{8} \div \frac{9}{3} = \frac{7}{24} \]


Raíces

\[ \sqrt{2} = 1.414213562 \]


\[ \sqrt{3} = 1.732050808 \]


\[ \sqrt{4} = 2 \]


Logaritmos

\[ \log_2{4} = 2 \]


\[ \log_3{9} = 2 \]


\[ \log_2{32} = 5 \]


Sumatorias

\[ \sum_{i=1}^5 2i \]


\[ \sum_{i=2}^6 \frac{i+1}{i} \]


\[ \sum_{i=1}^n \frac{2i-1}{i(i+1)} \]


Matrices

\[ \begin{matrix} 10 & 11 & 5 \\ 9 & 6 & 4 \\ 8 & 7 & 5 \end{matrix} \]


\[ \begin{bmatrix} 7 & 8 & 9 \\ 3 & 8 & 4 \\ 10 & 5 & 11 \end{bmatrix} \]


\[ \begin{vmatrix} 10 & 5 & 7 \\ 8 & 9 & 10 \\ 6 & 6 & 11 \end{vmatrix} \]


\[ \begin{pmatrix} 8 & 5 & 5 \\ 10 & 7 & 9 \\ 9 & 7 & 5 \end{pmatrix} \]


\[ \begin{Bmatrix} 12 & 6 & 7 \\ 9 & 8 & 6 \\ 10 & 7 & 8 \end{Bmatrix} \]


LS0tDQp0aXRsZTogIlNpbnRheGlzIHkgQ29tYW5kb3MgTGFUZVgiDQphdXRob3I6ICJSZW56byBDw6FjZXJlcyBSb3NzaSINCmRhdGU6ICIyNC0wNy0yNSINCm91dHB1dDoNCiAgaHRtbF9kb2N1bWVudDoNCiAgICB0aGVtZTogam91cm5hbA0KICAgIHRvYzogdHJ1ZQ0KICAgIHRvY19mbG9hdDogdHJ1ZQ0KICAgIGNvZGVfZG93bmxvYWQ6IHRydWUNCiAgd29yZF9kb2N1bWVudDoNCiAgICB0b2M6IHRydWUNCiAgcGRmX2RvY3VtZW50Og0KICAgIHRvYzogdHJ1ZQ0Kc3VidGl0bGU6ICJFY3VhY2lvbmVzIC0gRsOzcm11bGFzIC0gU2ludGF4aXMgTGFUZVgiDQotLS0NCg0KPCEtLVNpbnRheGlzIHkgY29tYW5kb3MgTGFUZVggZW4gTWFya2Rvd24tLT4NCg0KIyMgU3VwZXLDrW5kaWNlIC0gUG90ZW5jaWENCg0KJCQNCkU9bWNeMg0KJCQNCg0KLS0tDQoNCiQkDQphXjIgKyBiXjIgPSBjXjINCiQkDQoNCi0tLQ0KDQojIyBTdWLDrW5kaWNlDQoNCiQkDQpIXzJPDQokJA0KDQotLS0NCg0KJCQNCk5IXzMNCiQkDQoNCi0tLQ0KDQojIyBGcmFjY2lvbmVzDQoNCiQkDQpcZnJhY3s1fXs0fQ0KJCQNCg0KLS0tDQoNCiQkDQpcZnJhY3s0fXs1fSArIFxmcmFjezZ9ezN9ID0gXGZyYWN7MTR9ezV9DQokJA0KDQotLS0NCg0KJCQNClxmcmFjezd9ezh9IC0gXGZyYWN7Mn17M30gPSBcZnJhY3s1fXsyNH0NCiQkDQoNCi0tLQ0KDQokJA0KXGZyYWN7M317NX0gXHRpbWVzIFxmcmFjezZ9ezd9ID0gXGZyYWN7MTh9ezM1fQ0KJCQNCg0KLS0tDQoNCiQkDQpcZnJhY3s0fXs2fSBcY2RvdCBcZnJhY3szfXs5fSA9IFxmcmFjezR9ezl9DQokJA0KDQoNCi0tLQ0KDQokJA0KXGZyYWN7N317OH0gXGRpdiBcZnJhY3s5fXszfSA9IFxmcmFjezd9ezI0fQ0KJCQNCg0KLS0tDQoNCiMjIFJhw61jZXMNCg0KJCQNClxzcXJ0ezJ9ID0gMS40MTQyMTM1NjINCiQkDQoNCi0tLQ0KDQokJA0KXHNxcnR7M30gPSAxLjczMjA1MDgwOA0KJCQNCg0KLS0tDQoNCiQkDQpcc3FydHs0fSA9IDINCiQkDQoNCi0tLQ0KDQojIyBMb2dhcml0bW9zDQoNCiQkDQpcbG9nXzJ7NH0gPSAyDQokJA0KDQotLS0NCg0KJCQNClxsb2dfM3s5fSA9IDINCiQkDQoNCi0tLQ0KDQokJA0KXGxvZ18yezMyfSA9IDUNCiQkDQoNCi0tLQ0KDQojIyBTdW1hdG9yaWFzDQoNCiQkDQpcc3VtX3tpPTF9XjUgMmkNCiQkDQoNCi0tLQ0KDQokJA0KXHN1bV97aT0yfV42IFxmcmFje2krMX17aX0NCiQkDQoNCi0tLQ0KDQokJA0KXHN1bV97aT0xfV5uIFxmcmFjezJpLTF9e2koaSsxKX0NCiQkDQoNCi0tLQ0KDQojIyBNYXRyaWNlcw0KDQokJA0KXGJlZ2lue21hdHJpeH0NCjEwICYgMTEgJiA1IFxcDQo5ICYgNiAmIDQgXFwNCjggJiA3ICYgNQ0KXGVuZHttYXRyaXh9DQokJA0KDQotLS0NCg0KJCQNClxiZWdpbntibWF0cml4fQ0KNyAmIDggJiA5IFxcDQozICYgOCAmIDQgXFwNCjEwICYgNSAmIDExDQpcZW5ke2JtYXRyaXh9DQokJA0KDQotLS0NCg0KJCQNClxiZWdpbnt2bWF0cml4fQ0KMTAgJiA1ICYgNyBcXA0KOCAmIDkgJiAxMCBcXA0KNiAmIDYgJiAxMQ0KXGVuZHt2bWF0cml4fQ0KJCQNCg0KLS0tDQoNCiQkDQpcYmVnaW57cG1hdHJpeH0NCjggJiA1ICYgNSBcXA0KMTAgJiA3ICYgOSBcXA0KOSAmIDcgJiA1DQpcZW5ke3BtYXRyaXh9DQokJA0KDQotLS0NCg0KJCQNClxiZWdpbntCbWF0cml4fQ0KMTIgJiA2ICYgNyBcXA0KOSAmIDggJiA2IFxcDQoxMCAmIDcgJiA4DQpcZW5ke0JtYXRyaXh9DQokJA0KDQotLS0NCg0KPGRpdiBjbGFzcz0idG9jaWZ5LWV4dGVuZC1wYWdlIiBkYXRhLXVuaXF1ZT0idG9jaWZ5LWV4dGVuZC1wYWdlIiBzdHlsZT0iaGVpZ2h0OiAwOyI+PC9kaXY+