In 2012 and 2013, there were 10 teams in the MLB playoffs: the six
teams that had the most wins in each baseball division, and four “wild
card” teams. The playoffs start between the four wild card teams - the
two teams that win proceed in the playoffs (8 teams remaining). Then,
these teams are paired off and play a series of games. The four teams
that win are then paired and play to determine who will play in the
World Series. We can assign rankings to the teams as follows:
Rank 1: the team that won the World Series Rank 2: the team that lost
the World Series Rank 3: the two teams that lost to the teams in the
World Series Rank 4: the four teams that made it past the wild card
round, but lost to the above four teams Rank 5: the two teams that lost
the wild card round In your R console, create a corresponding rank
vector by typing teamRank = c(1,2,3,3,4,4,4,4,5,5) In this quick
question, we’ll see how well these rankings correlate with the regular
season wins of the teams. In 2012, the ranking of the teams and their
regular season wins were as follows: Rank 1: San Francisco Giants (Wins
= 94) Rank 2: Detroit Tigers (Wins = 88) Rank 3: New York Yankees (Wins
= 95), and St. Louis Cardinals (Wins = 88) Rank 4: Baltimore Orioles
(Wins = 93), Oakland A’s (Wins = 94), Washington Nationals (Wins = 98),
Cincinnati Reds (Wins = 97) Rank 5: Texas Rangers (Wins = 93), and
Atlanta Braves (Wins = 94) Create a vector in R called wins2012, that
has the wins of each team in 2012, in order of rank (the vector should
have 10 numbers). In 2013, the ranking of the teams and their regular
season wins were as follows: Rank 1: Boston Red Sox (Wins = 97) Rank 2:
St. Louis Cardinals (Wins = 97) Rank 3: Los Angeles Dodgers (Wins = 92),
and Detroit Tigers (Wins = 93) Rank 4: Tampa Bay Rays (Wins = 92),
Oakland A’s (Wins = 96), Pittsburgh Pirates (Wins = 94), and Atlanta
Braves (Wins = 96) Rank 5: Cleveland Indians (Wins = 92), and Cincinnati
Reds (Wins = 90) Create another vector in R called wins2013, that has
the wins of each team in 2013, in order of rank (the vector should have
10 numbers). What is the correlation between teamRank and wins2012?
Exercise 1 Numerical Response
#Explanation:You should have typed the following three lines in your R console:
teamRank = c(1,2,3,3,4,4,4,4,5,5)
wins2012 = c(94,88,95,88,93,94,98,97,93,94)
cor(teamRank, wins2012)
[1] 0.3477129
The correlation value is 0.3477129, which is the correlation between
teamRank and wins2012.The result obtained indicates that there is a weak
correaltion between final ranking and the number of wins for the year of
2012.
Exericise 2
#Explanation:You should have typed the following three lines in your R console:
teamRank = c(1,2,3,3,4,4,4,4,5,5)
wins2013 = c(97,97,92,93,92,96,94,96,92,90)
cor(teamRank, wins2013)
[1] -0.6556945
What is the correlation between teamRank and wins2013?
The output obtained is -0.6556945, which is the correlation between
teamRank and wins2013. Since one of the correlations is positive and the
other is negative, this means that there does not seem to be a pattern
between regular season wins and winning the playoffs. We wouldn’t feel
comfortable making a bet for this year given this data!
LS0tCnRpdGxlOiAiU3BvcnRzIEFuYWx5dGljczogSW4tY2xhc3MgQWN0aXZpdHkgMTAiCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KCkluIDIwMTIgYW5kIDIwMTMsIHRoZXJlIHdlcmUgMTAgdGVhbXMgaW4gdGhlIE1MQiBwbGF5b2ZmczogdGhlIHNpeCB0ZWFtcyB0aGF0IGhhZCB0aGUgbW9zdCB3aW5zIGluIGVhY2ggYmFzZWJhbGwgZGl2aXNpb24sIGFuZCBmb3VyIOKAnHdpbGQgY2FyZOKAnSB0ZWFtcy4gVGhlIHBsYXlvZmZzIHN0YXJ0IGJldHdlZW4gdGhlIGZvdXIgd2lsZCBjYXJkIHRlYW1zIC0gdGhlIHR3byB0ZWFtcyB0aGF0IHdpbiBwcm9jZWVkIGluIHRoZSBwbGF5b2ZmcyAoOCB0ZWFtcyByZW1haW5pbmcpLiBUaGVuLCB0aGVzZSB0ZWFtcyBhcmUgcGFpcmVkIG9mZiBhbmQgcGxheSBhIHNlcmllcyBvZiBnYW1lcy4gVGhlIGZvdXIgdGVhbXMgdGhhdCB3aW4gYXJlIHRoZW4gcGFpcmVkIGFuZCBwbGF5IHRvIGRldGVybWluZSB3aG8gd2lsbCBwbGF5IGluIHRoZSBXb3JsZCBTZXJpZXMuIApXZSBjYW4gYXNzaWduIHJhbmtpbmdzIHRvIHRoZSB0ZWFtcyBhcyBmb2xsb3dzOgogClJhbmsgMTogdGhlIHRlYW0gdGhhdCB3b24gdGhlIFdvcmxkIFNlcmllcwpSYW5rIDI6IHRoZSB0ZWFtIHRoYXQgbG9zdCB0aGUgV29ybGQgU2VyaWVzClJhbmsgMzogdGhlIHR3byB0ZWFtcyB0aGF0IGxvc3QgdG8gdGhlIHRlYW1zIGluIHRoZSBXb3JsZCBTZXJpZXMKUmFuayA0OiB0aGUgZm91ciB0ZWFtcyB0aGF0IG1hZGUgaXQgcGFzdCB0aGUgd2lsZCBjYXJkIHJvdW5kLCBidXQgbG9zdCB0byB0aGUgYWJvdmUgZm91ciB0ZWFtcwpSYW5rIDU6IHRoZSB0d28gdGVhbXMgdGhhdCBsb3N0IHRoZSB3aWxkIGNhcmQgcm91bmQKSW4geW91ciBSIGNvbnNvbGUsIGNyZWF0ZSBhIGNvcnJlc3BvbmRpbmcgcmFuayB2ZWN0b3IgYnkgdHlwaW5nCnRlYW1SYW5rID0gYygxLDIsMywzLDQsNCw0LDQsNSw1KQpJbiB0aGlzIHF1aWNrIHF1ZXN0aW9uLCB3ZeKAmWxsIHNlZSBob3cgd2VsbCB0aGVzZSByYW5raW5ncyBjb3JyZWxhdGUgd2l0aCB0aGUgcmVndWxhciBzZWFzb24gd2lucyBvZiB0aGUgdGVhbXMuIEluIDIwMTIsIHRoZSByYW5raW5nIG9mIHRoZSB0ZWFtcyBhbmQgdGhlaXIgcmVndWxhciBzZWFzb24gd2lucyB3ZXJlIGFzIGZvbGxvd3M6ClJhbmsgMTogU2FuIEZyYW5jaXNjbyBHaWFudHMgKFdpbnMgPSA5NCkKUmFuayAyOiBEZXRyb2l0IFRpZ2VycyAoV2lucyA9IDg4KQpSYW5rIDM6IE5ldyBZb3JrIFlhbmtlZXMgKFdpbnMgPSA5NSksIGFuZCBTdC4gTG91aXMgQ2FyZGluYWxzIChXaW5zID0gODgpClJhbmsgNDogQmFsdGltb3JlIE9yaW9sZXMgKFdpbnMgPSA5MyksIE9ha2xhbmQgQeKAmXMgKFdpbnMgPSA5NCksIFdhc2hpbmd0b24gTmF0aW9uYWxzIChXaW5zID0gOTgpLCBDaW5jaW5uYXRpIFJlZHMgKFdpbnMgPSA5NykKUmFuayA1OiBUZXhhcyBSYW5nZXJzIChXaW5zID0gOTMpLCBhbmQgQXRsYW50YSBCcmF2ZXMgKFdpbnMgPSA5NCkgCkNyZWF0ZSBhIHZlY3RvciBpbiBSIGNhbGxlZCB3aW5zMjAxMiwgdGhhdCBoYXMgdGhlIHdpbnMgb2YgZWFjaCB0ZWFtIGluIDIwMTIsIGluIG9yZGVyIG9mIHJhbmsgKHRoZSB2ZWN0b3Igc2hvdWxkIGhhdmUgMTAgbnVtYmVycykuCkluIDIwMTMsIHRoZSByYW5raW5nIG9mIHRoZSB0ZWFtcyBhbmQgdGhlaXIgcmVndWxhciBzZWFzb24gd2lucyB3ZXJlIGFzIGZvbGxvd3M6ClJhbmsgMTogQm9zdG9uIFJlZCBTb3ggKFdpbnMgPSA5NykKUmFuayAyOiBTdC4gTG91aXMgQ2FyZGluYWxzIChXaW5zID0gOTcpClJhbmsgMzogTG9zIEFuZ2VsZXMgRG9kZ2VycyAoV2lucyA9IDkyKSwgYW5kIERldHJvaXQgVGlnZXJzIChXaW5zID0gOTMpClJhbmsgNDogVGFtcGEgQmF5IFJheXMgKFdpbnMgPSA5MiksIE9ha2xhbmQgQeKAmXMgKFdpbnMgPSA5NiksIFBpdHRzYnVyZ2ggUGlyYXRlcyAoV2lucyA9IDk0KSwgYW5kIEF0bGFudGEgQnJhdmVzIChXaW5zID0gOTYpClJhbmsgNTogQ2xldmVsYW5kIEluZGlhbnMgKFdpbnMgPSA5MiksIGFuZCBDaW5jaW5uYXRpIFJlZHMgKFdpbnMgPSA5MCkgCkNyZWF0ZSBhbm90aGVyIHZlY3RvciBpbiBSIGNhbGxlZCB3aW5zMjAxMywgdGhhdCBoYXMgdGhlIHdpbnMgb2YgZWFjaCB0ZWFtIGluIDIwMTMsIGluIG9yZGVyIG9mIHJhbmsgKHRoZSB2ZWN0b3Igc2hvdWxkIGhhdmUgMTAgbnVtYmVycykuCldoYXQgaXMgdGhlIGNvcnJlbGF0aW9uIGJldHdlZW4gdGVhbVJhbmsgYW5kIHdpbnMyMDEyPwoKCioqKkV4ZXJjaXNlIDEqKioKIE51bWVyaWNhbCBSZXNwb25zZSAKIApgYGB7cn0KI0V4cGxhbmF0aW9uOllvdSBzaG91bGQgaGF2ZSB0eXBlZCB0aGUgZm9sbG93aW5nIHRocmVlIGxpbmVzIGluIHlvdXIgUiBjb25zb2xlOgp0ZWFtUmFuayA9IGMoMSwyLDMsMyw0LDQsNCw0LDUsNSkKd2luczIwMTIgPSBjKDk0LDg4LDk1LDg4LDkzLDk0LDk4LDk3LDkzLDk0KQpjb3IodGVhbVJhbmssIHdpbnMyMDEyKQpgYGAKCiAKClRoZSBjb3JyZWxhdGlvbiB2YWx1ZSBpcyAwLjM0NzcxMjksIHdoaWNoIGlzIHRoZSBjb3JyZWxhdGlvbiBiZXR3ZWVuIHRlYW1SYW5rIGFuZCB3aW5zMjAxMi5UaGUgcmVzdWx0IG9idGFpbmVkIGluZGljYXRlcyB0aGF0IHRoZXJlIGlzIGEgd2VhayBjb3JyZWFsdGlvbiBiZXR3ZWVuIGZpbmFsIHJhbmtpbmcgYW5kIHRoZSBudW1iZXIgb2Ygd2lucyBmb3IgdGhlIHllYXIgb2YgMjAxMi4KCgoKKioqRXhlcmljaXNlIDIqKioKYGBge3J9CiNFeHBsYW5hdGlvbjpZb3Ugc2hvdWxkIGhhdmUgdHlwZWQgdGhlIGZvbGxvd2luZyB0aHJlZSBsaW5lcyBpbiB5b3VyIFIgY29uc29sZToKdGVhbVJhbmsgPSBjKDEsMiwzLDMsNCw0LDQsNCw1LDUpCndpbnMyMDEzID0gYyg5Nyw5Nyw5Miw5Myw5Miw5Niw5NCw5Niw5Miw5MCkKY29yKHRlYW1SYW5rLCB3aW5zMjAxMykKCmBgYAoKV2hhdCBpcyB0aGUgY29ycmVsYXRpb24gYmV0d2VlbiB0ZWFtUmFuayBhbmQgd2luczIwMTM/CgpUaGUgb3V0cHV0IG9idGFpbmVkIGlzIC0wLjY1NTY5NDUsIHdoaWNoIGlzIHRoZSBjb3JyZWxhdGlvbiBiZXR3ZWVuIHRlYW1SYW5rIGFuZCB3aW5zMjAxMy4KU2luY2Ugb25lIG9mIHRoZSBjb3JyZWxhdGlvbnMgaXMgcG9zaXRpdmUgYW5kIHRoZSBvdGhlciBpcyBuZWdhdGl2ZSwgdGhpcyBtZWFucyB0aGF0IHRoZXJlIGRvZXMgbm90IHNlZW0gdG8gYmUgYSBwYXR0ZXJuIGJldHdlZW4gcmVndWxhciBzZWFzb24gd2lucyBhbmQgd2lubmluZyB0aGUgcGxheW9mZnMuIFdlIHdvdWxkbuKAmXQgZmVlbCBjb21mb3J0YWJsZSBtYWtpbmcgYSBiZXQgZm9yIHRoaXMgeWVhciBnaXZlbiB0aGlzIGRhdGEhCgoKCgoKCg==