1. load libraries

2. load seurat object

#Load Seurat Object
L6 <- readRDS("../../0-RDS_Cell_lines/L6_clustered.rds")


DefaultAssay(L6) <- "SCT"

3. Liana analysis using scPubr

Idents(L6) <- "SCT_snn_res.0.3"

liana_output <- liana::liana_wrap(sce = L6,
                                  method = c("natmi", "connectome", "logfc", "sca", "cellphonedb", "CellChat"),
                                  idents_col = NULL,
                                  verbose = FALSE,
                                  assay = "SCT")
Expression from the `SCT` assay will be used
Avis : The `slot` argument of `GetAssayData()` is deprecated as of SeuratObject 5.0.0.
Please use the `layer` argument instead.Avis : `invoke()` is deprecated as of rlang 0.4.0.

Ligand Receptor analysis plot


for (name in names(liana_output)) {
    # Save each component to a CSV file
    write.csv(liana_output[[name]], paste0("liana_L6_", name, "_L6_results.csv"), row.names = FALSE)
}

4. Liana Visualization-p1


# Ligand Receptor analysis plot.
p1 <- SCpubr::do_LigandReceptorPlot(liana_output = liana_output)
p1

NA
NA

Liana Visualization-p2


# Arrange the interactions by aggregate_rank
# Ligand Receptor analysis plot with extra interactions.
p2 <- SCpubr::do_LigandReceptorPlot(liana_output = liana_output,
                                   arrange_interactions_by = "aggregate_rank",
                                   top_interactions = 10)
p2

Liana Visualization-p3


# Arrange the interactions by specificity
# Ligand Receptor analysis plot with extra interactions.
p3 <- SCpubr::do_LigandReceptorPlot(liana_output = liana_output,
                                   arrange_interactions_by = "specificity",
                                   top_interactions = 10)
p3

Liana Visualization-p4


# Arrange the interactions by magnitude
# Ligand Receptor analysis plot with extra interactions.
p4 <- SCpubr::do_LigandReceptorPlot(liana_output = liana_output,
                                   arrange_interactions_by = "magnitude",
                                   top_interactions = 10)
p4

Liana Visualization-p5


# Arrange the interactions by both magnitude and specificity.
# Ligand Receptor analysis plot with extra interactions.
p5 <- SCpubr::do_LigandReceptorPlot(liana_output = liana_output,
                                   arrange_interactions_by = "both",
                                   top_interactions = 10)
p5

Liana Visualization-p6


# Arrange the interactions alphabetically.
# Ligand Receptor analysis plot with extra interactions.
p6 <- SCpubr::do_LigandReceptorPlot(liana_output = liana_output,
                                   sort_interactions_alphabetically = TRUE,
                                   top_interactions = 10)
p6

Liana Visualization-top significant interactions plotted-p7


# Ligand Receptor analysis plot with extra interactions.
p7 <- SCpubr::do_LigandReceptorPlot(liana_output = liana_output,
                                   top_interactions = 30)
p7

Liana Visualization-p8-Add or remove missing source-target combinations


# Add missing LR combinations.
P1 <- SCpubr::do_LigandReceptorPlot(liana_output = liana_output,
                                    add_missing_LR_combinations = TRUE)

# Restrict the results to only the LR combinations that have a value.
P2 <- SCpubr::do_LigandReceptorPlot(liana_output = liana_output,
                                    add_missing_LR_combinations = FALSE)
P <- P1 /P2
P



# Ligand Receptor analysis plot with grid.
p8 <- SCpubr::do_LigandReceptorPlot(liana_output = liana_output,
                                   grid.color = "steelblue")
p8

Compute chord diagrams of the interactions-p9


# Chord diagram of the total significant interactions from each cluster and all the rest.
out <- SCpubr::do_LigandReceptorPlot(liana_output = liana_output,
                                     top_interactions = 25,
                                     compute_ChordDiagrams = TRUE)
out$chord_total_interactions


out$dotplot

out$chord_ligand_receptor

LS0tCnRpdGxlOiAiTGlhbmEgYW5hbHlzaXMgTDYiCmF1dGhvcjogIk5hc2lyIE1haG1vb2QgQWJiYXNpIgpkYXRlOiAiYHIgU3lzLkRhdGUoKWAiCm91dHB1dDoKICBodG1sX25vdGVib29rOgogICAgdG9jOiB5ZXMKICAgIHRvY19mbG9hdDogeWVzCiAgICB0b2NfY29sbGFwc2VkOiB5ZXMKICB3b3JkX2RvY3VtZW50OgogICAgdG9jOiB5ZXMKICBodG1sX2RvY3VtZW50OgogICAgdG9jOiB5ZXMKICAgIGRmX3ByaW50OiBwYWdlZAogIHBkZl9kb2N1bWVudDoKICAgIHRvYzogeWVzCi0tLQoKIyAxLiBsb2FkIGxpYnJhcmllcwpgYGB7ciBzZXR1cCwgaW5jbHVkZT1GQUxTRX0KCnN1cHByZXNzUGFja2FnZVN0YXJ0dXBNZXNzYWdlcyh7CiAgICBsaWJyYXJ5KFNldXJhdCkKICAgIGxpYnJhcnkoZHBseXIpCiAgICBsaWJyYXJ5KHBhdGNod29yaykKICAgIGxpYnJhcnkoZ2dwbG90MikKICAgIGxpYnJhcnkocGhlYXRtYXApCiAgICBsaWJyYXJ5KGVucmljaFIpCiAgICBsaWJyYXJ5KE1hdHJpeCkKICAgIGxpYnJhcnkoZWRnZVIpCiAgICBsaWJyYXJ5KE1BU1QpCiAgbGlicmFyeShTQ3B1YnIpCiAgbGlicmFyeShsaWFuYSkKfSkKCmBgYAoKCiMgMi4gbG9hZCBzZXVyYXQgb2JqZWN0CmBgYHtyIGxvYWRfc2V1cmF0fQojTG9hZCBTZXVyYXQgT2JqZWN0Ckw2IDwtIHJlYWRSRFMoIi4uLy4uLzAtUkRTX0NlbGxfbGluZXMvTDZfY2x1c3RlcmVkLnJkcyIpCgoKRGVmYXVsdEFzc2F5KEw2KSA8LSAiU0NUIgoKYGBgCgojIDMuIExpYW5hIGFuYWx5c2lzIHVzaW5nIHNjUHVicgpgYGB7cn0KSWRlbnRzKEw2KSA8LSAiU0NUX3Nubl9yZXMuMC4zIgoKbGlhbmFfb3V0cHV0IDwtIGxpYW5hOjpsaWFuYV93cmFwKHNjZSA9IEw2LAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbWV0aG9kID0gYygibmF0bWkiLCAiY29ubmVjdG9tZSIsICJsb2dmYyIsICJzY2EiLCAiY2VsbHBob25lZGIiLCAiQ2VsbENoYXQiKSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGlkZW50c19jb2wgPSBOVUxMLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdmVyYm9zZSA9IEZBTFNFLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgYXNzYXkgPSAiU0NUIikKCmBgYAoKIyMgTGlnYW5kIFJlY2VwdG9yIGFuYWx5c2lzIHBsb3QKYGBge3IgLCBmaWcuaGVpZ2h0PTgsIGZpZy53aWR0aD0xMH0KCmZvciAobmFtZSBpbiBuYW1lcyhsaWFuYV9vdXRwdXQpKSB7CiAgICAjIFNhdmUgZWFjaCBjb21wb25lbnQgdG8gYSBDU1YgZmlsZQogICAgd3JpdGUuY3N2KGxpYW5hX291dHB1dFtbbmFtZV1dLCBwYXN0ZTAoImxpYW5hX0w2XyIsIG5hbWUsICJfTDZfcmVzdWx0cy5jc3YiKSwgcm93Lm5hbWVzID0gRkFMU0UpCn0KCmBgYAoKCiMgNC4gTGlhbmEgVmlzdWFsaXphdGlvbi1wMQpgYGB7ciwgZmlnLmhlaWdodD04LCBmaWcud2lkdGg9MTB9CgojIExpZ2FuZCBSZWNlcHRvciBhbmFseXNpcyBwbG90LgpwMSA8LSBTQ3B1YnI6OmRvX0xpZ2FuZFJlY2VwdG9yUGxvdChsaWFuYV9vdXRwdXQgPSBsaWFuYV9vdXRwdXQpCnAxCgoKYGBgCgoKCiMjIExpYW5hIFZpc3VhbGl6YXRpb24tcDIKYGBge3IsIGZpZy5oZWlnaHQ9OCwgZmlnLndpZHRoPTEwfQoKIyBBcnJhbmdlIHRoZSBpbnRlcmFjdGlvbnMgYnkgYWdncmVnYXRlX3JhbmsKIyBMaWdhbmQgUmVjZXB0b3IgYW5hbHlzaXMgcGxvdCB3aXRoIGV4dHJhIGludGVyYWN0aW9ucy4KcDIgPC0gU0NwdWJyOjpkb19MaWdhbmRSZWNlcHRvclBsb3QobGlhbmFfb3V0cHV0ID0gbGlhbmFfb3V0cHV0LAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGFycmFuZ2VfaW50ZXJhY3Rpb25zX2J5ID0gImFnZ3JlZ2F0ZV9yYW5rIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB0b3BfaW50ZXJhY3Rpb25zID0gMTApCnAyCmBgYAoKCgojIyBMaWFuYSBWaXN1YWxpemF0aW9uLXAzCmBgYHtyLCBmaWcuaGVpZ2h0PTgsIGZpZy53aWR0aD0xMH0KCiMgQXJyYW5nZSB0aGUgaW50ZXJhY3Rpb25zIGJ5IHNwZWNpZmljaXR5CiMgTGlnYW5kIFJlY2VwdG9yIGFuYWx5c2lzIHBsb3Qgd2l0aCBleHRyYSBpbnRlcmFjdGlvbnMuCnAzIDwtIFNDcHVicjo6ZG9fTGlnYW5kUmVjZXB0b3JQbG90KGxpYW5hX291dHB1dCA9IGxpYW5hX291dHB1dCwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBhcnJhbmdlX2ludGVyYWN0aW9uc19ieSA9ICJzcGVjaWZpY2l0eSIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdG9wX2ludGVyYWN0aW9ucyA9IDEwKQpwMwpgYGAKCgoKIyMgTGlhbmEgVmlzdWFsaXphdGlvbi1wNApgYGB7ciwgZmlnLmhlaWdodD04LCBmaWcud2lkdGg9MTB9CgojIEFycmFuZ2UgdGhlIGludGVyYWN0aW9ucyBieSBtYWduaXR1ZGUKIyBMaWdhbmQgUmVjZXB0b3IgYW5hbHlzaXMgcGxvdCB3aXRoIGV4dHJhIGludGVyYWN0aW9ucy4KcDQgPC0gU0NwdWJyOjpkb19MaWdhbmRSZWNlcHRvclBsb3QobGlhbmFfb3V0cHV0ID0gbGlhbmFfb3V0cHV0LAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGFycmFuZ2VfaW50ZXJhY3Rpb25zX2J5ID0gIm1hZ25pdHVkZSIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdG9wX2ludGVyYWN0aW9ucyA9IDEwKQpwNApgYGAKCgoKIyMgTGlhbmEgVmlzdWFsaXphdGlvbi1wNQpgYGB7ciwgZmlnLmhlaWdodD04LCBmaWcud2lkdGg9MTB9CgojIEFycmFuZ2UgdGhlIGludGVyYWN0aW9ucyBieSBib3RoIG1hZ25pdHVkZSBhbmQgc3BlY2lmaWNpdHkuCiMgTGlnYW5kIFJlY2VwdG9yIGFuYWx5c2lzIHBsb3Qgd2l0aCBleHRyYSBpbnRlcmFjdGlvbnMuCnA1IDwtIFNDcHVicjo6ZG9fTGlnYW5kUmVjZXB0b3JQbG90KGxpYW5hX291dHB1dCA9IGxpYW5hX291dHB1dCwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBhcnJhbmdlX2ludGVyYWN0aW9uc19ieSA9ICJib3RoIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB0b3BfaW50ZXJhY3Rpb25zID0gMTApCnA1CmBgYAoKCgojIyBMaWFuYSBWaXN1YWxpemF0aW9uLXA2CmBgYHtyLCBmaWcuaGVpZ2h0PTgsIGZpZy53aWR0aD0xMH0KCiMgQXJyYW5nZSB0aGUgaW50ZXJhY3Rpb25zIGFscGhhYmV0aWNhbGx5LgojIExpZ2FuZCBSZWNlcHRvciBhbmFseXNpcyBwbG90IHdpdGggZXh0cmEgaW50ZXJhY3Rpb25zLgpwNiA8LSBTQ3B1YnI6OmRvX0xpZ2FuZFJlY2VwdG9yUGxvdChsaWFuYV9vdXRwdXQgPSBsaWFuYV9vdXRwdXQsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgc29ydF9pbnRlcmFjdGlvbnNfYWxwaGFiZXRpY2FsbHkgPSBUUlVFLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHRvcF9pbnRlcmFjdGlvbnMgPSAxMCkKcDYKYGBgCgoKIyMgTGlhbmEgVmlzdWFsaXphdGlvbi10b3Agc2lnbmlmaWNhbnQgaW50ZXJhY3Rpb25zIHBsb3R0ZWQtcDcKYGBge3IsIGZpZy5oZWlnaHQ9OCwgZmlnLndpZHRoPTEwfQoKIyBMaWdhbmQgUmVjZXB0b3IgYW5hbHlzaXMgcGxvdCB3aXRoIGV4dHJhIGludGVyYWN0aW9ucy4KcDcgPC0gU0NwdWJyOjpkb19MaWdhbmRSZWNlcHRvclBsb3QobGlhbmFfb3V0cHV0ID0gbGlhbmFfb3V0cHV0LAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHRvcF9pbnRlcmFjdGlvbnMgPSAzMCkKcDcKYGBgCgoKIyMgTGlhbmEgVmlzdWFsaXphdGlvbi1wOC1BZGQgb3IgcmVtb3ZlIG1pc3Npbmcgc291cmNlLXRhcmdldCBjb21iaW5hdGlvbnMKYGBge3IsIGZpZy5oZWlnaHQ9MTQsIGZpZy53aWR0aD0xNn0KCiMgQWRkIG1pc3NpbmcgTFIgY29tYmluYXRpb25zLgpQMSA8LSBTQ3B1YnI6OmRvX0xpZ2FuZFJlY2VwdG9yUGxvdChsaWFuYV9vdXRwdXQgPSBsaWFuYV9vdXRwdXQsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGFkZF9taXNzaW5nX0xSX2NvbWJpbmF0aW9ucyA9IFRSVUUpCgojIFJlc3RyaWN0IHRoZSByZXN1bHRzIHRvIG9ubHkgdGhlIExSIGNvbWJpbmF0aW9ucyB0aGF0IGhhdmUgYSB2YWx1ZS4KUDIgPC0gU0NwdWJyOjpkb19MaWdhbmRSZWNlcHRvclBsb3QobGlhbmFfb3V0cHV0ID0gbGlhbmFfb3V0cHV0LAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBhZGRfbWlzc2luZ19MUl9jb21iaW5hdGlvbnMgPSBGQUxTRSkKUCA8LSBQMSAvUDIKUAoKCiMgTGlnYW5kIFJlY2VwdG9yIGFuYWx5c2lzIHBsb3Qgd2l0aCBncmlkLgpwOCA8LSBTQ3B1YnI6OmRvX0xpZ2FuZFJlY2VwdG9yUGxvdChsaWFuYV9vdXRwdXQgPSBsaWFuYV9vdXRwdXQsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZ3JpZC5jb2xvciA9ICJzdGVlbGJsdWUiKQpwOAoKYGBgCgoKIyMgQ29tcHV0ZSBjaG9yZCBkaWFncmFtcyBvZiB0aGUgaW50ZXJhY3Rpb25zLXA5CmBgYHtyLCBmaWcuaGVpZ2h0PTYsIGZpZy53aWR0aD04fQoKIyBDaG9yZCBkaWFncmFtIG9mIHRoZSB0b3RhbCBzaWduaWZpY2FudCBpbnRlcmFjdGlvbnMgZnJvbSBlYWNoIGNsdXN0ZXIgYW5kIGFsbCB0aGUgcmVzdC4Kb3V0IDwtIFNDcHVicjo6ZG9fTGlnYW5kUmVjZXB0b3JQbG90KGxpYW5hX291dHB1dCA9IGxpYW5hX291dHB1dCwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHRvcF9pbnRlcmFjdGlvbnMgPSAyNSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGNvbXB1dGVfQ2hvcmREaWFncmFtcyA9IFRSVUUpCm91dCRjaG9yZF90b3RhbF9pbnRlcmFjdGlvbnMKCm91dCRkb3RwbG90CgpvdXQkY2hvcmRfbGlnYW5kX3JlY2VwdG9yCgpgYGAKCgoKCgoKCg==