1. load libraries

2. Load Seurat Object


L4 <- readRDS("../0-RDS_Cell_lines/L4_clustered.rds")

L4 <- NormalizeData(L4, normalization.method = "LogNormalize", scale.factor = 10000)
Avis : The `slot` argument of `SetAssayData()` is deprecated as of SeuratObject 5.0.0.
Please use the `layer` argument instead.Avis : The `slot` argument of `GetAssayData()` is deprecated as of SeuratObject 5.0.0.
Please use the `layer` argument instead.Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

UMAP colored by cell type and expression - dittoDimPlot

spe <- L4

 DefaultAssay(spe) = "RNA"

library(Ragas)


RunDimPlot(object = spe, group.by = "SCT_snn_res.0.2")

RunDimPlot(object = spe, group.by = "SCT_snn_res.0.3")


DimPlot(spe, reduction = "umap", group.by = "cell_line",label = T, label.box = T)

DimPlot(spe, reduction = "umap", group.by = "SCT_snn_res.0.2",label = T, label.box = T)

DimPlot(spe, reduction = "umap", group.by = "predicted.celltype.l2",label = T, label.box = T, repel = T)




FeaturePlot(spe, features = "CCR7", reduction = "umap") ## TCM

FeaturePlot(spe, features = "GZMK", reduction = "umap") ## Th1
Avis : All cells have the same value (0) of “GZMK”

FeaturePlot(spe, features = "IL17RB", reduction = "umap") ## Th2

FeaturePlot(spe, features = "CTSH", reduction = "umap") ## Th17

FeaturePlot(spe, features = "CCR10", reduction = "umap") ## Th22

FeaturePlot(spe, features = c("IL2RA", "FOXP3"), reduction = "umap") ## Th22

NA
NA

Create a Pi object

#rm(All_samples_Merged)

my.pbmc.pi <- CreatePostIntegrationObject(object = spe)
Post-integration object created
RunDimPlot(object = my.pbmc.pi, group.by = "SCT_snn_res.0.3")


my.pbmc.pi
An object of class Pi 
6 fields in the object: seurat.obj, exp.freq, markers, ds, cell.prop, parent.meta.data.
The following field has been processed:
    seurat.obj: A Seurat object of 36601 features and 6006 cells.
        6 assays: RNA, ADT, prediction.score.celltype.l1, prediction.score.celltype.l2, prediction.score.celltype.l3, SCT, and 5 reductions: integrated_dr, ref.umap, pca, umap, harmony
Metadata from the parent object provided? No 
Subclusters integrated? No

2. Marker gene identification

#rm(spe)

my.pbmc.pi <- RunFindAllMarkers(my.pbmc.pi, 
                               logfc.threshold = 0.1,
                               min.pct = 0.1,
                               min.diff.pct = 0.2,
                               only.pos = TRUE,
                                assay = "RNA",
                               ident = "SCT_snn_res.0.3")
Calculating cluster 0
Calculating cluster 1
Calculating cluster 2
Calculating cluster 3
Calculating cluster 4
Calculating cluster 5
Calculating cluster 6
Calculating cluster 7

3. Marker gene Visualization

p1 <- RunMatrixPlot(my.pbmc.pi,
              markers.key = "Markers|SCT_snn_res.0.3|AllMarkers|test.use=wilcox", 
              column.anno.name.rot = 45, 
              heatmap.height = 8)
Set active identity to SCT_snn_res.0.3
Performing relative-counts-normalization
Centering and scaling data matrix

  |                                                                                                                               
  |                                                                                                                         |   0%
  |                                                                                                                               
  |=========================================================================================================================| 100%
p1

LS0tCnRpdGxlOiAiRGF0YSBWaXN1YWxpemF0aW9uIChSYWdhcyktTDQiCmF1dGhvcjogIk5hc2lyIE1haG1vb2QgQWJiYXNpIgpkYXRlOiAiYHIgU3lzLkRhdGUoKWAiCm91dHB1dDoKICBodG1sX25vdGVib29rOgogICAgdG9jOiB5ZXMKICAgIHRvY19mbG9hdDogeWVzCiAgICB0b2NfY29sbGFwc2VkOiB5ZXMKICB3b3JkX2RvY3VtZW50OgogICAgdG9jOiB5ZXMKICBodG1sX2RvY3VtZW50OgogICAgdG9jOiB5ZXMKICAgIGRmX3ByaW50OiBwYWdlZAogIHBkZl9kb2N1bWVudDoKICAgIHRvYzogeWVzCi0tLQoKCiMgMS4gbG9hZCBsaWJyYXJpZXMKYGBge3Igc2V0dXAsIGluY2x1ZGU9RkFMU0V9CmxpYnJhcnkoU2V1cmF0KQpsaWJyYXJ5KFNldXJhdFdyYXBwZXJzKQpsaWJyYXJ5KG1vbm9jbGUzKQpsaWJyYXJ5KGRwbHlyKQpsaWJyYXJ5KGdncGxvdDIpCmxpYnJhcnkoaW5mZXJjbnYpCmxpYnJhcnkoU0NwdWJyKQoKIyBMb2FkIHJlcXVpcmVkIGxpYnJhcmllcwpsaWJyYXJ5KFNldXJhdCkKbGlicmFyeShNYXRyaXgpCmxpYnJhcnkoZGF0YS50YWJsZSkKbGlicmFyeShwYXRjaHdvcmspCgoKYGBgCgojIDIuIExvYWQgU2V1cmF0IE9iamVjdCAKYGBge3J9CgpMNCA8LSByZWFkUkRTKCIuLi8wLVJEU19DZWxsX2xpbmVzL0w0X2NsdXN0ZXJlZC5yZHMiKQoKTDQgPC0gTm9ybWFsaXplRGF0YShMNCwgbm9ybWFsaXphdGlvbi5tZXRob2QgPSAiTG9nTm9ybWFsaXplIiwgc2NhbGUuZmFjdG9yID0gMTAwMDApCgpgYGAKCiMjIFVNQVAgY29sb3JlZCBieSBjZWxsIHR5cGUgYW5kIGV4cHJlc3Npb24gLSBkaXR0b0RpbVBsb3QKYGBge3J9CnNwZSA8LSBMNAoKIERlZmF1bHRBc3NheShzcGUpID0gIlJOQSIKCmxpYnJhcnkoUmFnYXMpCgoKUnVuRGltUGxvdChvYmplY3QgPSBzcGUsIGdyb3VwLmJ5ID0gIlNDVF9zbm5fcmVzLjAuMiIpClJ1bkRpbVBsb3Qob2JqZWN0ID0gc3BlLCBncm91cC5ieSA9ICJTQ1Rfc25uX3Jlcy4wLjMiKQoKRGltUGxvdChzcGUsIHJlZHVjdGlvbiA9ICJ1bWFwIiwgZ3JvdXAuYnkgPSAiY2VsbF9saW5lIixsYWJlbCA9IFQsIGxhYmVsLmJveCA9IFQpCkRpbVBsb3Qoc3BlLCByZWR1Y3Rpb24gPSAidW1hcCIsIGdyb3VwLmJ5ID0gIlNDVF9zbm5fcmVzLjAuMyIsbGFiZWwgPSBULCBsYWJlbC5ib3ggPSBUKQpEaW1QbG90KHNwZSwgcmVkdWN0aW9uID0gInVtYXAiLCBncm91cC5ieSA9ICJwcmVkaWN0ZWQuY2VsbHR5cGUubDIiLGxhYmVsID0gVCwgbGFiZWwuYm94ID0gVCwgcmVwZWwgPSBUKQoKCgpGZWF0dXJlUGxvdChzcGUsIGZlYXR1cmVzID0gIkNDUjciLCByZWR1Y3Rpb24gPSAidW1hcCIpICMjIFRDTQpGZWF0dXJlUGxvdChzcGUsIGZlYXR1cmVzID0gIkdaTUsiLCByZWR1Y3Rpb24gPSAidW1hcCIpICMjIFRoMQpGZWF0dXJlUGxvdChzcGUsIGZlYXR1cmVzID0gIklMMTdSQiIsIHJlZHVjdGlvbiA9ICJ1bWFwIikgIyMgVGgyCkZlYXR1cmVQbG90KHNwZSwgZmVhdHVyZXMgPSAiQ1RTSCIsIHJlZHVjdGlvbiA9ICJ1bWFwIikgIyMgVGgxNwpGZWF0dXJlUGxvdChzcGUsIGZlYXR1cmVzID0gIkNDUjEwIiwgcmVkdWN0aW9uID0gInVtYXAiKSAjIyBUaDIyCkZlYXR1cmVQbG90KHNwZSwgZmVhdHVyZXMgPSBjKCJJTDJSQSIsICJGT1hQMyIpLCByZWR1Y3Rpb24gPSAidW1hcCIpICMjIFRoMjIKCgpgYGAKCiMjIENyZWF0ZSBhIFBpIG9iamVjdApgYGB7cn0KI3JtKEFsbF9zYW1wbGVzX01lcmdlZCkKCm15LnBibWMucGkgPC0gQ3JlYXRlUG9zdEludGVncmF0aW9uT2JqZWN0KG9iamVjdCA9IHNwZSkKClJ1bkRpbVBsb3Qob2JqZWN0ID0gbXkucGJtYy5waSwgZ3JvdXAuYnkgPSAiU0NUX3Nubl9yZXMuMC4zIikKCm15LnBibWMucGkKYGBgCgojIDIuIE1hcmtlciBnZW5lIGlkZW50aWZpY2F0aW9uCmBgYHtyfQojcm0oc3BlKQoKbXkucGJtYy5waSA8LSBSdW5GaW5kQWxsTWFya2VycyhteS5wYm1jLnBpLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGxvZ2ZjLnRocmVzaG9sZCA9IDAuMSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1pbi5wY3QgPSAwLjEsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtaW4uZGlmZi5wY3QgPSAwLjIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBvbmx5LnBvcyA9IFRSVUUsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgYXNzYXkgPSAiUk5BIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGlkZW50ID0gIlNDVF9zbm5fcmVzLjAuMyIpCgoKYGBgCgojIDMuIE1hcmtlciBnZW5lIFZpc3VhbGl6YXRpb24KYGBge3IsIGZpZy5oZWlnaHQ9OCwgZmlnLndpZHRoPTEwfQpwMSA8LSBSdW5NYXRyaXhQbG90KG15LnBibWMucGksCiAgICAgICAgICAgICAgbWFya2Vycy5rZXkgPSAiTWFya2Vyc3xTQ1Rfc25uX3Jlcy4wLjN8QWxsTWFya2Vyc3x0ZXN0LnVzZT13aWxjb3giLCAKICAgICAgICAgICAgICBjb2x1bW4uYW5uby5uYW1lLnJvdCA9IDQ1LCAKICAgICAgICAgICAgICBoZWF0bWFwLmhlaWdodCA9IDgpCnAxCmBgYAoK