L2 <- readRDS("../0-RDS_Cell_lines/L2_clustered.rds")
L2 <- NormalizeData(L2, normalization.method = "LogNormalize", scale.factor = 10000)
Avis : The `slot` argument of `SetAssayData()` is deprecated as of SeuratObject 5.0.0.
Please use the `layer` argument instead.Avis : The `slot` argument of `GetAssayData()` is deprecated as of SeuratObject 5.0.0.
Please use the `layer` argument instead.Performing log-normalization
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
spe <- L2
DefaultAssay(spe) = "RNA"
library(Ragas)
RunDimPlot(object = spe, group.by = "SCT_snn_res.0.2")
RunDimPlot(object = spe, group.by = "SCT_snn_res.0.3")
DimPlot(spe, reduction = "umap", group.by = "cell_line",label = T, label.box = T)
DimPlot(spe, reduction = "umap", group.by = "SCT_snn_res.0.2",label = T, label.box = T)
DimPlot(spe, reduction = "umap", group.by = "predicted.celltype.l2",label = T, label.box = T, repel = T)
FeaturePlot(L2, features = "CCR7", reduction = "umap") ## TCM
Avis : The `slot` argument of `FetchData()` is deprecated as of SeuratObject 5.0.0.
Please use the `layer` argument instead.
FeaturePlot(L2, features = "GZMK", reduction = "umap") ## Th1
FeaturePlot(L2, features = "IL17RB", reduction = "umap") ## Th2
Avis : All cells have the same value (0) of “IL17RB”
FeaturePlot(L2, features = "CTSH", reduction = "umap") ## Th17
Avis : All cells have the same value (0) of “CTSH”
FeaturePlot(L2, features = "CCR10", reduction = "umap") ## Th22
FeaturePlot(L2, features = c("IL2RA", "FOXP3"), reduction = "umap") ## Th22
NA
NA
#rm(All_samples_Merged)
my.pbmc.pi <- CreatePostIntegrationObject(object = spe)
Post-integration object created
RunDimPlot(object = my.pbmc.pi, group.by = "SCT_snn_res.0.2")
my.pbmc.pi
An object of class Pi
6 fields in the object: seurat.obj, exp.freq, markers, ds, cell.prop, parent.meta.data.
The following field has been processed:
seurat.obj: A Seurat object of 36601 features and 5935 cells.
6 assays: RNA, ADT, prediction.score.celltype.l1, prediction.score.celltype.l2, prediction.score.celltype.l3, SCT, and 5 reductions: integrated_dr, ref.umap, pca, umap, harmony
Metadata from the parent object provided? No
Subclusters integrated? No
#rm(spe)
my.pbmc.pi <- RunFindAllMarkers(my.pbmc.pi,
logfc.threshold = 0.1,
min.pct = 0.1,
min.diff.pct = 0.2,
only.pos = TRUE,
assay = "RNA",
ident = "SCT_snn_res.0.2")
Calculating cluster 0
Calculating cluster 1
Calculating cluster 2
PiData Markers|SCT_snn_res.0.2|AllMarkers|test.use=wilcox already exisits. Overwriting...
p1 <- RunMatrixPlot(my.pbmc.pi,
markers.key = "Markers|SCT_snn_res.0.2|AllMarkers|test.use=wilcox",
column.anno.name.rot = 45,
heatmap.height = 8)
Set active identity to SCT_snn_res.0.2
Performing relative-counts-normalization
Centering and scaling data matrix
|
| | 0%
|
|=========================================================================================================================| 100%
p1