NBA = read.csv("NBA_train.csv")
str(NBA)
## 'data.frame': 835 obs. of 20 variables:
## $ SeasonEnd: int 1980 1980 1980 1980 1980 1980 1980 1980 1980 1980 ...
## $ Team : chr "Atlanta Hawks" "Boston Celtics" "Chicago Bulls" "Cleveland Cavaliers" ...
## $ Playoffs : int 1 1 0 0 0 0 0 1 0 1 ...
## $ W : int 50 61 30 37 30 16 24 41 37 47 ...
## $ PTS : int 8573 9303 8813 9360 8878 8933 8493 9084 9119 8860 ...
## $ oppPTS : int 8334 8664 9035 9332 9240 9609 8853 9070 9176 8603 ...
## $ FG : int 3261 3617 3362 3811 3462 3643 3527 3599 3639 3582 ...
## $ FGA : int 7027 7387 6943 8041 7470 7596 7318 7496 7689 7489 ...
## $ X2P : int 3248 3455 3292 3775 3379 3586 3500 3495 3551 3557 ...
## $ X2PA : int 6952 6965 6668 7854 7215 7377 7197 7117 7375 7375 ...
## $ X3P : int 13 162 70 36 83 57 27 104 88 25 ...
## $ X3PA : int 75 422 275 187 255 219 121 379 314 114 ...
## $ FT : int 2038 1907 2019 1702 1871 1590 1412 1782 1753 1671 ...
## $ FTA : int 2645 2449 2592 2205 2539 2149 1914 2326 2333 2250 ...
## $ ORB : int 1369 1227 1115 1307 1311 1226 1155 1394 1398 1187 ...
## $ DRB : int 2406 2457 2465 2381 2524 2415 2437 2217 2326 2429 ...
## $ AST : int 1913 2198 2152 2108 2079 1950 2028 2149 2148 2123 ...
## $ STL : int 782 809 704 764 746 783 779 782 900 863 ...
## $ BLK : int 539 308 392 342 404 562 339 373 530 356 ...
## $ TOV : int 1495 1539 1684 1370 1533 1742 1492 1565 1517 1439 ...
Answer:
We have 835 observations in the training dataset.
table(NBA$W, NBA$Playoffs)
##
## 0 1
## 11 2 0
## 12 2 0
## 13 2 0
## 14 2 0
## 15 10 0
## 16 2 0
## 17 11 0
## 18 5 0
## 19 10 0
## 20 10 0
## 21 12 0
## 22 11 0
## 23 11 0
## 24 18 0
## 25 11 0
## 26 17 0
## 27 10 0
## 28 18 0
## 29 12 0
## 30 19 1
## 31 15 1
## 32 12 0
## 33 17 0
## 34 16 0
## 35 13 3
## 36 17 4
## 37 15 4
## 38 8 7
## 39 10 10
## 40 9 13
## 41 11 26
## 42 8 29
## 43 2 18
## 44 2 27
## 45 3 22
## 46 1 15
## 47 0 28
## 48 1 14
## 49 0 17
## 50 0 32
## 51 0 12
## 52 0 20
## 53 0 17
## 54 0 18
## 55 0 24
## 56 0 16
## 57 0 23
## 58 0 13
## 59 0 14
## 60 0 8
## 61 0 10
## 62 0 13
## 63 0 7
## 64 0 3
## 65 0 3
## 66 0 2
## 67 0 4
## 69 0 1
## 72 0 1
Answer:
Yes, there’s a chance. The table shows some teams with 38 wins made the
playoffs, though not all. It depends on the specific season and other
teams’ performance.
Answer:
According to the table, teams with 50 or more wins always made the
playoffs based on historical data.
NBA$PTSdiff = NBA$PTS - NBA$oppPTS
plot(NBA$PTSdiff, NBA$W)
Answer:
Yes, visually there’s a strong positive relationship. As points
difference increases, so does the number of wins.
WinsReg = lm(W ~ PTSdiff, data = NBA)
summary(WinsReg)
##
## Call:
## lm(formula = W ~ PTSdiff, data = NBA)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.7393 -2.1018 -0.0672 2.0265 10.6026
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.100e+01 1.059e-01 387.0 <2e-16 ***
## PTSdiff 3.259e-02 2.793e-04 116.7 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.061 on 833 degrees of freedom
## Multiple R-squared: 0.9423, Adjusted R-squared: 0.9423
## F-statistic: 1.361e+04 on 1 and 833 DF, p-value: < 2.2e-16
Answer:
Yes, PTSdiff is significant with a p-value < 2e-16, which is well
below 0.05.
PointsReg = lm(PTS ~ X2PA + X3PA + FTA + AST + ORB + DRB + TOV + STL + BLK, data = NBA)
summary(PointsReg)
##
## Call:
## lm(formula = PTS ~ X2PA + X3PA + FTA + AST + ORB + DRB + TOV +
## STL + BLK, data = NBA)
##
## Residuals:
## Min 1Q Median 3Q Max
## -527.40 -119.83 7.83 120.67 564.71
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.051e+03 2.035e+02 -10.078 <2e-16 ***
## X2PA 1.043e+00 2.957e-02 35.274 <2e-16 ***
## X3PA 1.259e+00 3.843e-02 32.747 <2e-16 ***
## FTA 1.128e+00 3.373e-02 33.440 <2e-16 ***
## AST 8.858e-01 4.396e-02 20.150 <2e-16 ***
## ORB -9.554e-01 7.792e-02 -12.261 <2e-16 ***
## DRB 3.883e-02 6.157e-02 0.631 0.5285
## TOV -2.475e-02 6.118e-02 -0.405 0.6859
## STL -1.992e-01 9.181e-02 -2.169 0.0303 *
## BLK -5.576e-02 8.782e-02 -0.635 0.5256
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 185.5 on 825 degrees of freedom
## Multiple R-squared: 0.8992, Adjusted R-squared: 0.8981
## F-statistic: 817.3 on 9 and 825 DF, p-value: < 2.2e-16
Answer:
No, the p-value for BLK is around 0.63, which is greater than 0.05, so
it’s not statistically significant.
max(NBA$PTS)
## [1] 10371
Answer:
The maximum number of points scored in a season is calculated directly
above.
SSE = sum(PointsReg$residuals^2)
RMSE = sqrt(SSE / nrow(NBA))
RMSE
## [1] 184.4049
Answer:
The RMSE is about 184.4, meaning the model’s predictions are off by ±184
points on average. Since the average team scores about 8370 points, this
is a small error, so yes, I’m satisfied with it.