1. load libraries

2. Load Seurat Object

L1 <- NormalizeData(L1, normalization.method = "LogNormalize", scale.factor = 10000)
Avis : The `slot` argument of `SetAssayData()` is deprecated as of SeuratObject 5.0.0.
Please use the `layer` argument instead.Avis : The `slot` argument of `GetAssayData()` is deprecated as of SeuratObject 5.0.0.
Please use the `layer` argument instead.Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

UMAP colored by cell type and expression - dittoDimPlot

spe <- L1

 DefaultAssay(spe) = "RNA"

library(Ragas)


RunDimPlot(object = spe, group.by = "SCT_snn_res.0.2")


DimPlot(spe, reduction = "umap", group.by = "cell_line",label = T, label.box = T)

DimPlot(spe, reduction = "umap", group.by = "SCT_snn_res.0.2",label = T, label.box = T)

DimPlot(spe, reduction = "umap", group.by = "predicted.celltype.l2",label = T, label.box = T, repel = T)




FeaturePlot(L1, features = "CCR7", reduction = "umap") ## TCM
Avis : The `slot` argument of `FetchData()` is deprecated as of SeuratObject 5.0.0.
Please use the `layer` argument instead.

FeaturePlot(L1, features = "GZMK", reduction = "umap") ## Th1

FeaturePlot(L1, features = "IL17RB", reduction = "umap") ## Th2

FeaturePlot(L1, features = "CTSH", reduction = "umap") ## Th17

FeaturePlot(L1, features = "CCR10", reduction = "umap") ## Th22

Create a Pi object

#rm(All_samples_Merged)

my.pbmc.pi <- CreatePostIntegrationObject(object = spe)
Post-integration object created
RunDimPlot(object = my.pbmc.pi, group.by = "SCT_snn_res.0.2")


my.pbmc.pi
An object of class Pi 
6 fields in the object: seurat.obj, exp.freq, markers, ds, cell.prop, parent.meta.data.
The following field has been processed:
    seurat.obj: A Seurat object of 36601 features and 5825 cells.
        6 assays: RNA, ADT, prediction.score.celltype.l1, prediction.score.celltype.l2, prediction.score.celltype.l3, SCT, and 5 reductions: integrated_dr, ref.umap, pca, umap, harmony
Metadata from the parent object provided? No 
Subclusters integrated? No

2. Marker gene identification

#rm(spe)

my.pbmc.pi <- RunFindAllMarkers(my.pbmc.pi, 
                               logfc.threshold = 0.2,
                               min.pct = 0.1,
                               min.diff.pct = 0.2,
                               only.pos = FALSE,
                                assay = "RNA",
                               ident = "SCT_snn_res.0.2",          # Default test (Wilcoxon Rank Sum)
                               return.thresh = 0.001,)
Calculating cluster 0
Avis : `PackageCheck()` was deprecated in SeuratObject 5.0.0.
Please use `rlang::check_installed()` instead.Calculating cluster 1
Calculating cluster 2
Calculating cluster 3
Calculating cluster 4
Calculating cluster 5

2. Marker gene Visualization

p1 <- RunMatrixPlot(my.pbmc.pi,
              markers.key = "Markers|SCT_snn_res.0.2|AllMarkers|test.use=wilcox", 
              column.anno.name.rot = 45, 
              heatmap.height = 8)
Set active identity to SCT_snn_res.0.2
Performing relative-counts-normalization
Centering and scaling data matrix

  |                                                                                                                               
  |                                                                                                                         |   0%
  |                                                                                                                               
  |=========================================================================================================================| 100%
p1

LS0tCnRpdGxlOiAiRGF0YSBWaXN1YWxpemF0aW9uIChSYWdhcyktTDEiCmF1dGhvcjogIk5hc2lyIE1haG1vb2QgQWJiYXNpIgpkYXRlOiAiYHIgU3lzLkRhdGUoKWAiCm91dHB1dDoKICBodG1sX25vdGVib29rOgogICAgdG9jOiB5ZXMKICAgIHRvY19mbG9hdDogeWVzCiAgICB0b2NfY29sbGFwc2VkOiB5ZXMKICB3b3JkX2RvY3VtZW50OgogICAgdG9jOiB5ZXMKICBodG1sX2RvY3VtZW50OgogICAgdG9jOiB5ZXMKICAgIGRmX3ByaW50OiBwYWdlZAogIHBkZl9kb2N1bWVudDoKICAgIHRvYzogeWVzCi0tLQoKCiMgMS4gbG9hZCBsaWJyYXJpZXMKYGBge3Igc2V0dXAsIGluY2x1ZGU9RkFMU0V9CmxpYnJhcnkoU2V1cmF0KQpsaWJyYXJ5KFNldXJhdFdyYXBwZXJzKQpsaWJyYXJ5KG1vbm9jbGUzKQpsaWJyYXJ5KGRwbHlyKQpsaWJyYXJ5KGdncGxvdDIpCmxpYnJhcnkoaW5mZXJjbnYpCmxpYnJhcnkoU0NwdWJyKQoKIyBMb2FkIHJlcXVpcmVkIGxpYnJhcmllcwpsaWJyYXJ5KFNldXJhdCkKbGlicmFyeShNYXRyaXgpCmxpYnJhcnkoZGF0YS50YWJsZSkKbGlicmFyeShwYXRjaHdvcmspCgoKYGBgCgojIDIuIExvYWQgU2V1cmF0IE9iamVjdCAKYGBge3J9CgpMMSA8LSByZWFkUkRTKCIuLi8wLVJEU19DZWxsX2xpbmVzL0wxX2NsdXN0ZXJlZC5yZHMiKQoKTDEgPC0gTm9ybWFsaXplRGF0YShMMSwgbm9ybWFsaXphdGlvbi5tZXRob2QgPSAiTG9nTm9ybWFsaXplIiwgc2NhbGUuZmFjdG9yID0gMTAwMDApCgpgYGAKCiMjIFVNQVAgY29sb3JlZCBieSBjZWxsIHR5cGUgYW5kIGV4cHJlc3Npb24gLSBkaXR0b0RpbVBsb3QKYGBge3J9CnNwZSA8LSBMMQoKIERlZmF1bHRBc3NheShzcGUpID0gIlJOQSIKCmxpYnJhcnkoUmFnYXMpCgoKUnVuRGltUGxvdChvYmplY3QgPSBzcGUsIGdyb3VwLmJ5ID0gIlNDVF9zbm5fcmVzLjAuMiIpCgpEaW1QbG90KHNwZSwgcmVkdWN0aW9uID0gInVtYXAiLCBncm91cC5ieSA9ICJjZWxsX2xpbmUiLGxhYmVsID0gVCwgbGFiZWwuYm94ID0gVCkKRGltUGxvdChzcGUsIHJlZHVjdGlvbiA9ICJ1bWFwIiwgZ3JvdXAuYnkgPSAiU0NUX3Nubl9yZXMuMC4yIixsYWJlbCA9IFQsIGxhYmVsLmJveCA9IFQpCkRpbVBsb3Qoc3BlLCByZWR1Y3Rpb24gPSAidW1hcCIsIGdyb3VwLmJ5ID0gInByZWRpY3RlZC5jZWxsdHlwZS5sMiIsbGFiZWwgPSBULCBsYWJlbC5ib3ggPSBULCByZXBlbCA9IFQpCgoKCkZlYXR1cmVQbG90KEwxLCBmZWF0dXJlcyA9ICJDQ1I3IiwgcmVkdWN0aW9uID0gInVtYXAiKSAjIyBUQ00KRmVhdHVyZVBsb3QoTDEsIGZlYXR1cmVzID0gIkdaTUsiLCByZWR1Y3Rpb24gPSAidW1hcCIpICMjIFRoMQpGZWF0dXJlUGxvdChMMSwgZmVhdHVyZXMgPSAiSUwxN1JCIiwgcmVkdWN0aW9uID0gInVtYXAiKSAjIyBUaDIKRmVhdHVyZVBsb3QoTDEsIGZlYXR1cmVzID0gIkNUU0giLCByZWR1Y3Rpb24gPSAidW1hcCIpICMjIFRoMTcKRmVhdHVyZVBsb3QoTDEsIGZlYXR1cmVzID0gIkNDUjEwIiwgcmVkdWN0aW9uID0gInVtYXAiKSAjIyBUaDIyCgoKCmBgYAoKIyMgQ3JlYXRlIGEgUGkgb2JqZWN0CmBgYHtyfQojcm0oQWxsX3NhbXBsZXNfTWVyZ2VkKQoKbXkucGJtYy5waSA8LSBDcmVhdGVQb3N0SW50ZWdyYXRpb25PYmplY3Qob2JqZWN0ID0gc3BlKQoKUnVuRGltUGxvdChvYmplY3QgPSBteS5wYm1jLnBpLCBncm91cC5ieSA9ICJTQ1Rfc25uX3Jlcy4wLjIiKQoKbXkucGJtYy5waQpgYGAKCiMgMi4gTWFya2VyIGdlbmUgaWRlbnRpZmljYXRpb24KYGBge3J9CiNybShzcGUpCgpteS5wYm1jLnBpIDwtIFJ1bkZpbmRBbGxNYXJrZXJzKG15LnBibWMucGksIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbG9nZmMudGhyZXNob2xkID0gMC4yLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbWluLnBjdCA9IDAuMSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1pbi5kaWZmLnBjdCA9IDAuMiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG9ubHkucG9zID0gRkFMU0UsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgYXNzYXkgPSAiUk5BIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGlkZW50ID0gIlNDVF9zbm5fcmVzLjAuMiIsICAgICAgICAgICMgRGVmYXVsdCB0ZXN0IChXaWxjb3hvbiBSYW5rIFN1bSkKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHJldHVybi50aHJlc2ggPSAwLjAwMSwpCgoKYGBgCgojIDIuIE1hcmtlciBnZW5lIFZpc3VhbGl6YXRpb24KYGBge3IsIGZpZy5oZWlnaHQ9OCwgZmlnLndpZHRoPTEwfQpwMSA8LSBSdW5NYXRyaXhQbG90KG15LnBibWMucGksCiAgICAgICAgICAgICAgbWFya2Vycy5rZXkgPSAiTWFya2Vyc3xTQ1Rfc25uX3Jlcy4wLjJ8QWxsTWFya2Vyc3x0ZXN0LnVzZT13aWxjb3giLCAKICAgICAgICAgICAgICBjb2x1bW4uYW5uby5uYW1lLnJvdCA9IDQ1LCAKICAgICAgICAgICAgICBoZWF0bWFwLmhlaWdodCA9IDgpCnAxCmBgYAoK