library(e1071) 

Cargar los datos

setwd("D:/Data")
datos <- read.csv("database.csv", header = TRUE, sep = ";", dec =".")

Variable: Cilindros del motor

cilindros_m <- datos$Engine.Cylinders
cilindros_m <- as.character(datos$Engine.Cylinders)
cilindros_m <- gsub("[^0-9]", "", cilindros_m)
cilindros_m <- as.numeric(cilindros_m)
cilindros_m <- cilindros_m[!is.na(cilindros_m) & cilindros_m >= 2 & cilindros_m <= 16]
TDF_cilindros <- table(cilindros_m)
Tabla_cilindros <- as.data.frame(TDF_cilindros)
colnames(Tabla_cilindros) <- c("CILINDROS", "Freq")

hi <- (Tabla_cilindros$Freq / sum(Tabla_cilindros$Freq)) * 100
Niasc <- cumsum(Tabla_cilindros$Freq)
Hiasc <- cumsum(hi)
Nidsc <- rev(cumsum(rev(Tabla_cilindros$Freq)))
Hidsc <- rev(cumsum(rev(hi)))

#Tabla

Tabla_cilindrosFinal <- data.frame(
  CILINDROS = Tabla_cilindros$CILINDROS,
  Freq = Tabla_cilindros$Freq,
  hi_perc = round(hi, 2),
  Niasc = Niasc,
  Hiasc_perc = round(Hiasc, 2),
  Nidsc = Nidsc,
  Hidsc_perc = round(Hidsc, 2)
)

Tabla

print(Tabla_cilindrosFinal)
##    CILINDROS  Freq hi_perc Niasc Hiasc_perc Nidsc Hidsc_perc
## 1          2    43    0.12    43       0.12 35599     100.00
## 2          3   197    0.55   240       0.67 35556      99.88
## 3          4 13522   37.98 13762      38.66 35359      99.33
## 4          5   703    1.97 14465      40.63 21837      61.34
## 5          6 12733   35.77 27198      76.40 21134      59.37
## 6          7    12    0.03 27210      76.43  8401      23.60
## 7          8  7677   21.57 34887      98.00  8389      23.57
## 8         10   145    0.41 35032      98.41   712       2.00
## 9         12   559    1.57 35591      99.98   567       1.59
## 10        16     8    0.02 35599     100.00     8       0.02

GRÁFICA 1.1: DISTRIBUCIÓN DE CILINDROS DEL MOTOR LOCAL

barplot(Tabla_cilindrosFinal$Freq,
        main = "GRÁFICA NO.1: DISTRIBUCIÓN DE CILINDROS DEL MOTOR",
        xlab = "CILINDROS DEL MOTOR",
        ylab = "CANTIDAD",
        col = "skyblue",
        names.arg = Tabla_cilindrosFinal$CILINDROS)

GRÁFICA 1.2: DISTRIBUCIÓN DE CILINDROS DEL MOTOR GLOBAL

barplot(Tabla_cilindrosFinal$Freq,
        main = "GRÁFICA NO.2: DISTRIBUCIÓN DE CILINDROS DEL MOTOR",
        xlab = "CILINDROS DEL MOTOR",
        ylab = "CANTIDAD",
        col = "blue",
        names.arg = Tabla_cilindrosFinal$CILINDROS,
        ylim = c(0, sum(Tabla_cilindrosFinal$Freq)))

GRÁFICA 1.3: DISTRIBUCIÓN DE CILINDROS DEL MOTOR PORCENTUAL

barplot(Tabla_cilindrosFinal$hi_perc,
        main = "GRÁFICA NO.3: FRECUENCIA DE CILINDROS DEL MOTOR (%)",
        xlab = "CILINDROS DEL MOTOR",
        ylab = "PORCENTAJE",
        col = "azure",
        names.arg = Tabla_cilindrosFinal$CILINDROS,
        ylim = c(0, 100))

GRÁFICA 1.4: DISTRIBUCIÓN DE CILINDROS DEL MOTOR BOXPLOT

boxplot(cilindros_m,
        horizontal = TRUE,
        col = "lightblue",
        main = "GRÁFICA NO.4: BOXPLOT DE CILINDROS DEL MOTOR",
        xlab = "NÚMERO DE CILINDROS")

GRÁFICA 1.5: DISTRIBUCIÓN DE CILINDROS DEL MOTOR OJIVA ASCENDENTE

x_ojiva_asc <- as.numeric(as.character(Tabla_cilindrosFinal$CILINDROS))
y_ojiva_asc <- Tabla_cilindrosFinal$Niasc

plot(x_ojiva_asc, y_ojiva_asc,
     type = "o",
     main = "GRÁFICA NO.5: OJIVA ASCENDENTE DE CILINDROS",
     xlab = "NÚMERO DE CILINDROS",
     ylab = "CANTIDAD ACUMULADA",
     col = "orange",
     pch = 16)

GRÁFICA 1.6: DISTRIBUCIÓN DE CILINDROS DEL MOTOR OJIVA DESCENDENTE

x_ojiva_desc <- as.numeric(as.character(Tabla_cilindrosFinal$CILINDROS))
y_ojiva_desc <- Tabla_cilindrosFinal$Nidsc

plot(x_ojiva_desc, y_ojiva_desc,
     type = "o",
     main = "GRÁFICA NO.6: OJIVA DESCENDENTE DE CILINDROS",
     xlab = "NÚMERO DE CILINDROS",
     ylab = "CANTIDAD ACUMULADA",
     col = "green",
     pch = 16)

GRÁFICA 1.7: DISTRIBUCIÓN DE CILINDROS DEL MOTOR OJIVA

plot(x_ojiva_asc, y_ojiva_asc,
     type = "o",
     main = "GRÁFICA NO.7: OJIVAS DE CILINDROS DEL MOTOR",
     xlab = "NÚMERO DE CILINDROS",
     ylab = "CANTIDAD ACUMULADA",
     col = "orange",
     pch = 16)

lines(x_ojiva_desc, y_ojiva_desc, type = "o", col = "green", pch = 16)

Indicadores estadísticos

get_mode <- function(x) {
  ux <- unique(x)
  ux[which.max(tabulate(match(x, ux)))]
}

mean_cil <- mean(cilindros_m)
median_cil <- median(cilindros_m)
sd_cil <- sd(cilindros_m)

indicadores_cilindros <- data.frame(
  Indicador = c("Moda", "Mediana", "Media (x̄)", "Desviación Estándar (σ)", 
                "Varianza (σ²)", "Coef. Variación (%)", "Asimetría", "Curtosis"),
  Valor = c(
    round(get_mode(cilindros_m), 2),
    round(median_cil, 2),
    round(mean_cil, 2),
    round(sd_cil, 2),
    round(var(cilindros_m), 2),
    round((sd_cil / mean_cil) * 100, 2),
    round(skewness(cilindros_m), 2),
    round(kurtosis(cilindros_m), 2)
  )
)

boxplot.stats(cilindros_m)$out
##   [1] 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
##  [26] 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 10 12
##  [51] 12 12 12 12 12 12 12 12 12 12 12 12 12 10 12 12 12 12 12 12 12 12 12 12 12
##  [76] 10 12 12 12 12 12 12 12 12 12 12 10 12 12 12 12 12 12 12 12 12 12 12 12 12
## [101] 10 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 10 10 12 12 12 12 12 12
## [126] 12 12 10 10 12 12 12 12 12 12 12 12 12 12 12 12 12 10 10 12 12 12 12 12 10
## [151] 10 12 12 12 12 12 12 12 12 12 12 10 10 12 12 12 12 12 12 12 12 12 12 12 12
## [176] 12 12 12 12 12 12 12 12 12 10 12 12 12 12 12 12 12 12 12 12 12 12 12 10 10
## [201] 12 12 10 10 12 12 12 12 12 12 12 10 12 12 10 12 12 12 12 12 12 12 12 12 10
## [226] 10 10 12 12 12 12 10 10 12 12 12 12 12 12 12 12 12 10 12 12 12 12 12 12 12
## [251] 12 12 12 12 12 10 10 16 10 10 10 12 12 12 12 10 10 10 10 12 12 12 12 12 12
## [276] 12 12 12 12 12 12 12 10 12 12 12 12 12 10 10 12 12 12 12 10 10 10 10 10 10
## [301] 12 12 12 12 10 10 10 10 10 10 12 12 12 12 12 12 12 12 12 12 12 12 12 10 12
## [326] 12 12 12 12 10 10 12 12 12 12 10 10 10 10 10 10 16 10 10 12 12 12 12 10 10
## [351] 10 10 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 10 12 12 12 12
## [376] 12 10 10 12 12 12 10 10 10 10 10 10 10 10 12 12 12 12 10 10 10 10 12 12 12
## [401] 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 10 10 10 12 12
## [426] 12 12 12 10 10 10 10 10 10 16 10 10 12 12 12 12 10 10 10 10 12 12 12 12 12
## [451] 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 10 10 10 10 10 12 12
## [476] 12 12 12 16 12 12 12 12 12 12 10 10 10 10 12 12 12 12 12 12 12 12 12 12 12
## [501] 12 12 12 12 12 12 12 12 12 12 12 10 10 10 10 12 12 12 12 12 12 16 12 12 10
## [526] 10 10 10 10 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
## [551] 12 12 12 16 12 12 12 10 10 10 10 12 12 12 12 12 12 12 12 12 12 12 10 12 12
## [576] 12 12 10 10 10 10 12 12 12 12 12 16 12 12 12 12 12 12 10 10 10 10 12 12 12
## [601] 12 12 12 12 12 12 12 12 10 12 12 12 12 12 10 10 10 10 12 12 12 12 16 10 12
## [626] 12 12 12 10 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 10
## [651] 12 12 12 12 12 12 10 10 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
## [676] 12 12 10 10 12 12 12 12 12 10 12 12 12 12 12 12 12 12 10 10 10 10 12 12 12
## [701] 12 12 12 12 12 12 12 12 12 12 12 12
length(boxplot.stats(cilindros_m)$out)
## [1] 712
outliers <- boxplot.stats(cilindros_m)$out
range(outliers)
## [1] 10 16

Tabla indicadores estadisticos

cat("Tabla de Indicadores: Número de Cilindros del Motor\n")
## Tabla de Indicadores: Número de Cilindros del Motor
print(indicadores_cilindros)
##                 Indicador Valor
## 1                    Moda  4.00
## 2                 Mediana  6.00
## 3               Media (x̄)  5.74
## 4 Desviación Estándar (σ)  1.75
## 5           Varianza (σ²)  3.06
## 6     Coef. Variación (%) 30.45
## 7               Asimetría  0.88
## 8                Curtosis  1.01

Conclusiones

El comportamiento de la variable de los cilindros del motor fluctúa entre [2-16] y los valores se encuentran en torno a la mediana de 6, con una desviación estándar de 1.75, siendo un conjunto con un coeficiente de variación hetergogéneo y tiene un sesgo positivo con existencia de valores atípicos a partir de 10 cilindros.

Variable: PUNTUACIÓN DE ECONOMIA DE COMBUSTIBLE

puntuacion_c <- datos$Fuel.Economy.Score
puntuacion_c <- as.character(puntuacion_c)
puntuacion_c <- gsub("[^0-9]", "", puntuacion_c)
puntuacion_c <- as.numeric(puntuacion_c)
puntuacion_c <- puntuacion_c[!is.na(puntuacion_c) & puntuacion_c >= 0 & puntuacion_c <= 100]  # Ajusta si el rango esperado es distinto
TDF_puntuacion <- table(puntuacion_c)
Tabla_puntuacion <- as.data.frame(TDF_puntuacion)
colnames(Tabla_puntuacion) <- c("PUNTUACION", "Freq")

hi <- (Tabla_puntuacion$Freq / sum(Tabla_puntuacion$Freq)) * 100
Niasc <- cumsum(Tabla_puntuacion$Freq)
Hiasc <- cumsum(hi)
Nidsc <- rev(cumsum(rev(Tabla_puntuacion$Freq)))
Hidsc <- rev(cumsum(rev(hi)))

# Tabla

Tabla_puntuacionFinal <- data.frame(
  PUNTUACION = Tabla_puntuacion$PUNTUACION,
  Freq = Tabla_puntuacion$Freq,
  hi_perc = round(hi, 2),
  Niasc = Niasc,
  Hiasc_perc = round(Hiasc, 2),
  Nidsc = Nidsc,
  Hidsc_perc = round(Hidsc, 2)
)

Tabla

print(Tabla_puntuacionFinal)
##    PUNTUACION  Freq hi_perc Niasc Hiasc_perc Nidsc Hidsc_perc
## 1           0  1790    4.77  1790       4.77 37515     100.00
## 2           1 30129   80.31 31919      85.08 35725      95.23
## 3           2   245    0.65 32164      85.74  5596      14.92
## 4           3   474    1.26 32638      87.00  5351      14.26
## 5           4  1038    2.77 33676      89.77  4877      13.00
## 6           5  1478    3.94 35154      93.71  3839      10.23
## 7           6   902    2.40 36056      96.11  2361       6.29
## 8           7   777    2.07 36833      98.18  1459       3.89
## 9           8   432    1.15 37265      99.33   682       1.82
## 10          9    90    0.24 37355      99.57   250       0.67
## 11         10   160    0.43 37515     100.00   160       0.43

GRÁFICA 2.1: DISTRIBUCIÓN DE PUNTUACION DE ECONOMIA LOCAL

barplot(Tabla_puntuacionFinal$Freq,
        main = "GRÁFICA NO.1: DISTRIBUCIÓN DE PUNTUACIÓN DE ECONOMÍA",
        xlab = "PUNTUACIÓN",
        ylab = "CANTIDAD",
        col = "skyblue",
        names.arg = Tabla_puntuacionFinal$PUNTUACION)

GRÁFICA 2.2: DISTRIBUCIÓN DE PUNTUACION DE ECONOMIA GLOBAL

barplot(Tabla_puntuacionFinal$Freq,
        main = "GRÁFICA NO.2: DISTRIBUCIÓN DE PUNTUACIÓN DE ECONOMÍA",
        xlab = "PUNTUACIÓN",
        ylab = "CANTIDAD",
        col = "blue",
        names.arg = Tabla_puntuacionFinal$PUNTUACION,
        ylim = c(0, sum(Tabla_puntuacionFinal$Freq)))

GRÁFICA 2.3: FRECUENCIA DE PUNTUACION DE ECONOMIA PORCENTUAL

barplot(Tabla_puntuacionFinal$hi_perc,
        main = "GRÁFICA NO.3: FRECUENCIA DE PUNTUACIÓN DE ECONOMÍA (%)",
        xlab = "PUNTUACIÓN",
        ylab = "PORCENTAJE",
        col = "azure",
        names.arg = Tabla_puntuacionFinal$PUNTUACION,
        ylim = c(0, 100))

GRÁFICA 2.4: DISTRIBUCIÓN DE PUNTUACION DE ECONOMIA BOXPLOT

boxplot(puntuacion_c,
        horizontal = TRUE,
        col = "lightblue",
        main = "GRÁFICA NO.4: BOXPLOT DE PUNTUACIÓN DE ECONOMÍA",
        xlab = "PUNTUACIÓN")

GRÁFICA 2.5: DISTRIBUCIÓN DE PUNTUACION DE ECONOMIA OJIVA ASCENDENTE

x_ojiva_asc <- as.numeric(as.character(Tabla_puntuacionFinal$PUNTUACION))
y_ojiva_asc <- Tabla_puntuacionFinal$Niasc

plot(x_ojiva_asc, y_ojiva_asc,
     type = "o",
     main = "GRÁFICA NO.5: OJIVA ASCENDENTE DE PUNTUACIÓN DE ECONOMÍA",
     xlab = "PUNTUACIÓN",
     ylab = "CANTIDAD ACUMULADA",
     col = "orange",
     pch = 16)

GRÁFICA 2.6: DISTRIBUCIÓN DE PUNTUACION DE ECONOMIA OJIVA DESCENDENTE

x_ojiva_desc <- as.numeric(as.character(Tabla_puntuacionFinal$PUNTUACION))
y_ojiva_desc <- Tabla_puntuacionFinal$Nidsc

plot(x_ojiva_desc, y_ojiva_desc,
     type = "o",
     main = "GRÁFICA NO.6: OJIVA DESCENDENTE DE PUNTUACIÓN DE ECONOMÍA",
     xlab = "PUNTUACIÓN",
     ylab = "CANTIDAD ACUMULADA",
     col = "green",
     pch = 16)

GRÁFICA 2.7: DISTRIBUCIÓN DE PUNTUACION DE ECONOMIA OJIVAS

plot(x_ojiva_asc, y_ojiva_asc,
     type = "o",
     main = "GRÁFICA NO.7: OJIVAS DE PUNTUACIÓN DE ECONOMÍA",
     xlab = "PUNTUACIÓN",
     ylab = "CANTIDAD ACUMULADA",
     col = "orange",
     pch = 16)

lines(x_ojiva_desc, y_ojiva_desc, type = "o", col = "green", pch = 16)

Indicadores estadisticos

get_mode <- function(x) {
  ux <- unique(x)
  ux[which.max(tabulate(match(x, ux)))]
}

mean_p <- mean(puntuacion_c)
median_p <- median(puntuacion_c)
sd_p <- sd(puntuacion_c)

indicadores_puntuacion <- data.frame(
  Indicador = c("Moda", "Mediana", "Media (x̄)", "Desviación Estándar (σ)", 
                "Varianza (σ²)", "Coef. Variación (%)", "Asimetría", "Curtosis"),
  Valor = c(
    round(get_mode(puntuacion_c), 2),
    round(median_p, 2),
    round(mean_p, 2),
    round(sd_p, 2),
    round(var(puntuacion_c), 2),
    round((sd_p / mean_p) * 100, 2),
    round(skewness(puntuacion_c), 2),
    round(kurtosis(puntuacion_c), 2)
  )
)

# Outliers

boxplot.stats(puntuacion_c)$out
##    [1]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   [25]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   [49]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   [73]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   [97]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##  [121]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##  [145]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##  [169]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##  [193]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##  [217]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##  [241]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##  [265]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##  [289]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##  [313]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##  [337]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##  [361]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##  [385]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##  [409]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##  [433]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##  [457]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##  [481]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##  [505]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##  [529]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##  [553]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##  [577]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##  [601]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##  [625]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##  [649]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##  [673]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##  [697]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##  [721]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##  [745]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##  [769]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##  [793]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##  [817]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##  [841]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##  [865]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##  [889]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##  [913]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##  [937]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##  [961]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##  [985]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [1009]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [1033]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [1057]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [1081]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [1105]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [1129]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [1153]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [1177]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [1201]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [1225]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [1249]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [1273]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [1297]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [1321]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [1345]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [1369]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [1393]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [1417]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [1441]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [1465]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [1489]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [1513]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [1537]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [1561]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [1585]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [1609]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [1633]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [1657]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [1681]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [1705]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [1729]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [1753]  0  0  0  0  7  6  9  4  6  5  6  5  5  7  6  6  6  4  3  3  3  3  3  6
## [1777]  6  6  7  6  7  7  6  6  7  7  6  5  5  5  5  5  4  3  6  6  5  7  4  4
## [1801]  4  5  5  5  5  5  5  5  4  7  7  5  2  2  4  3  2  4  3  2  2  5  5  5
## [1825]  5  5  6  5  5  7  7  7  7  7  7  5  5  5  5  5  4  7  7  6  5  5  5  5
## [1849]  5  6  6  6  4  5  4  5  7  7  6  6  6  6  5  5  4  4  4  4  6  7  6  4
## [1873]  4  4  4  4  4  5  5  5  4  4  4  4  3  7  7  6  4  4  4  4  3  3  3  3
## [1897]  3  4  3  4  3  4  3  4  7  7  5  6  5  2  5  4  3  2  4  3  7  7  4  5
## [1921]  4  4  4  7  7  5  8  6  5  5  8  6  6 10  7  5  6  6  5  6  2  5  5  3
## [1945]  4  5  5  2  5  5  3  5  5  3  3  3  2  2  5  5  5  5  4  4  4  4  2  4
## [1969]  5  5  3  4  5  4  4  4  4  8  7  8  8  8  8  6  4  7  5  0  5  7  6  8
## [1993]  5  5  4  3  4  2  4  3  3  4  2  8  7  8  8  8  7  8  8  7  8  8  9  4
## [2017]  4  4  4  5  5  4  4 10  6  5  6  4  6  6  5  5  4  5  5  4  5 10  6  5
## [2041]  6  4  5  4  4  4  4  5  5  6  6  4  5  5  4  8  7  7  6  8  8  7  8  8
## [2065]  4  3  4  3  5  5  4  5  5  3  2  8  8  9  8 10 10 10  0  0  5  4  5  5
## [2089]  5  6  6  6  6  6  7  3  3  5  4  4  4  5  6  3  4  4  4  4  4  4  2  4
## [2113]  4  3  4  3  4  2  8  8  8  4  4  5 10  8  8  8  7  6 10  7  7  7  8 10
## [2137]  6  5  5  4  6  5  5  5  6  7  6  6  6  4  4  0  5  5  4  3  4  2  4  3
## [2161]  3  4  2  2  6  4  3  4  5  5  3  5  4  3  4  2  8  6  8  6  7  5  8  8
## [2185]  6  8 10  8  7  6  9  9  6  6  5  8  8  8 10 10 10  5  5  5  5  4  8  8
## [2209]  6  8  8  8  8  8  8  8  4  5  5  4  6  5  4  5  5  6  6  5  5  7  7  7
## [2233]  9  9  6  6  5  6  6  5  8  7  8  7  5  5  4  4  3  5  5  5  4  5  5  5
## [2257]  5  5  5  8  5  5  4  4  3  3  5  4  6  4  4  5  4  4  4  5  4  4  4  4
## [2281]  4  6  6  6  7  5  6  6  4  3  4  3  2  6  6  6  7  5  6  6  4  4  4  4
## [2305]  8  7  8  7  8  8  7  7  7  7  7  7  9  9  8  8  8  6  6  5  5  5  6  5
## [2329]  7  6  7  7  7  7  6  6  6  6  5  5  2  3  3  3  2  5  2  3  3  6  2  3
## [2353] 10 10  6  6  5  8  4  6  6  5  5  4  4  4  4  4  5  2  5  5  5  8  8  5
## [2377]  5  5  4  5  4  6  4  5  6  5  7  5  9  3  3  6  5  5  5  3  3  2  8  8
## [2401]  7  6  7  6  6  6  6  5  6  8  8  8  8  8  8  7  4  4  6  6  6  5  6  6
## [2425]  5  6  5  6  3  3  3  4  2  4  2  5  4  4  6  5  5  5  6  5  6  7  5  4
## [2449]  5  4  4  2  2  5  3  3  2  7  5  5  5  5  6  3  3  4  6  5  4  4  2  4
## [2473]  2  5  4  4  7  7  6  5  3  3  3  3  8  8  8  8  8  8  8  8  7  8  7  8
## [2497]  8  8  8  8  8  8  8  8  8  8  7  8  7  7  7  8  7  7  8  8  8  8  7  7
## [2521]  7  7  8  8  8  8  8  8  8  8  8  8  8 10  5  8  7  7  7  6  4  4  7  6
## [2545]  6  5  6  5  7  7  7  5  5  5  5  8  6  7  3  3  2  2  7  7  4  4  5  4
## [2569]  4  4  4  8  7  7 10  5  5  4  5  0  5  5  5  6  6  9  8  8  9  3  3  2
## [2593]  2  9  8  8  4  4  4  6  5  6  5  5  5  5  5  5  5  6  5  5  5  5  5  4
## [2617]  4  4  4  4  4  7  6  6  6  4  4  4  4  5  4  5  5  4  4  4  6  4  4  3
## [2641]  3  5  5  4  3  3  4  4  5  5  3  3  2  2  2  2  4  4  7  6  9 10  7  7
## [2665]  6  6  8  8  9  9 10 10  3  7  6  6  5  6  8  5  7  4  8  5  7  4  5  7
## [2689]  6  5  7  6  4  7  7  5  5  5  7  6  6  6  6  7  6  6  6  7  7  7  7 10
## [2713] 10 10  4  4  4  6  6 10  7  6 10 10  8  8  4  3  4  5  5  4  7  3  5  6
## [2737]  7  8  6 10 10 10 10  7  6 10  6  3  2  2  5  5  4  5  4  6  4  4  4  4
## [2761]  4  4  4  3  3  3  3  6  5  5  5  8  8  6  6  6  6  6  6  6  6  5  6  5
## [2785]  6  7  7  5  7  6  7  6  7  7  7  7 10  7  7  6  6  7  5  6  5  6  4  5
## [2809]  6  6  5  5  6  6  5  6  5  5  5  5  5  5  4  4  3  7  6  9  6  5  6  5
## [2833]  6  8  6  5  5  7  6  6  6  2  2  3  2  3  2  2  7  7  7  7  7  5  6  5
## [2857]  5  5  4  5  3  5  7  4  3  3  2  2  3  3  2  2  4  4  4  5  5  5  5  5
## [2881]  5  5  4  4  7  7  2  4  2  2  3  2  7  7  7  7  7  9  9  9  7  7  7  7
## [2905]  7  6  6  6  6  6  7  7  7  6  7  6  6  6  6  6  7  7  8  8  6  6  5  6
## [2929]  5  5  4  4  4  6  6  6  6  6  6  5  5  5  4  4  4  5  5  5  5  4  4  4
## [2953]  2  7  7  6  4  4  4  4 10 10  6  6  3  3  3  3  3  3  3  3  7  7  5  6
## [2977]  5  5  7  5  3  2  5  3  7  7  5  5  5  4  4  7  7  5  7  6  6  6  5  7
## [3001]  6  6  6 10  7  6  5  6  5  6  5  2  3  5  6  5  4  5  5  2  3  5  5  2
## [3025]  3  5  5 10  3  2  3  2  4  4  5  5  4  3  3  4  5  2  5  5  4  3  2  5
## [3049]  5  8  8  7  7  8  8  8  4  6  5  7  0  0  0  6  5  7  6  7  7  3  7  8
## [3073]  8  8  7  8  8  8  7  8  7  8  8  8 10  3  3  3  3  3  4  4 10  6  6  5
## [3097]  4  6  6  5  5  4  5  5  3  5  5  6  6  5  5  4  4  3  3  5  5  4  6  6
## [3121]  4  5  5  3  8  7  7  7  7  8  8  7  7  4  3  5  3  5  5  4  5  4  2  2
## [3145]  2  2  2  8  8  8  8  7  7 10 10  9  0  0  5  4  5  5  6  6  6  7  6  6
## [3169]  3  2  5  4  4  4  5  6  4  2  4  4  3  4  3  3  3  4  3  4  3  8  8  8
## [3193]  9  7  4  4  5 10  8  8  8  7  6 10  7  7  7  7  9  6  5  5  4  4  6  5
## [3217]  5  5  7  6  6  6  6  6  6  6  4  4  0  0  0  3  3  4  6  5  7  3  3  2
## [3241]  3  3  3  3  2  7  6  8  7  5  7 10 10  8  8  8  6  9 10  8  7  6  9  8
## [3265]  6  6  5 10  9  9  5  5  5  3  8  8  6  8  7  8  7  7  7  7  8  4  5  5
## [3289]  4  5  4  4  5  5  6  5  5  5  5  4  7  6  9  9  6  6  5  6  8  7  7  8
## [3313]  6  5  8  8  6  5  8  7  5  5  4  5  5  4  5  4  5  8  5  5  5  5  7  7
## [3337]  3  4  4  3  3  6  5  4  6  4  4  4  4  4  4  4  4  4  3  6  5  6  5  5
## [3361]  6  5  5  5  6  6  6  6  6  6  7  5  3  4  3  2  5  6  6  6  6  6  6  7
## [3385]  4  4  4  4  5  7  7  7  7  6  7  6  7  7  6  7  6  7  6  7  9  9  8  8
## [3409]  8  5  5  5  5  5  5  7  7  7  7  6  6  5  5  3  2  3  2  5  3  4  2  6
## [3433]  4  3  9  9  6  6  5  8  3  6  6  6  5  5  5  4  4  4  4  4  5  2  5  5
## [3457]  5  8  7  5  5  5  4  5  4  6  4  5  6  5  7  5  9  3  2  5  5  5  5  4
## [3481]  4  3  2  3  4  8  8  6  6  8  7  8  8  8  8  8  8  7  7  7  7  7  4  4
## [3505]  6  6  6  4  4  3 10  6  6  5  6  5  6  2  2  4  2  4  2  8  7  7  5  4
## [3529]  4  4  4  4  8  8  6  5  6  5  6  7  5  5  5  4  4  3  4  4  4  5  3  2
## [3553]  2  7  5  5  5  4  6  3  2  5  4  4  5  4  3  7  7  6  5  2  2  2  2  2
## [3577]  8  8  8  8  8  8  8  8  7  8  8  8  7  8  8  8  8  7  8  8  8  8  7  7
## [3601]  7  7  8  8  7  7  7  7  8  8  7  7  7  7  8  8  8  8  8  8  8  8 10  5
## [3625]  7  7  7  7  6  4  4  7  6  9  9  7  7  6  7  7  7  2  5  5  5  5  6  8
## [3649]  2  2  2  2  7  7  4  4  5  4  3  4  4  7  7  7 10  5  5  4  5  6  5  5
## [3673]  7  7  5  7  7  6  6  8  8  8  8  2  2  2  2  9  8  8  4  3  3  6  5  6
## [3697]  5  5  5  5  5  5  5  6  5  5  5  5  5  3  5  5  5  5  5  5  5  5  7  6
## [3721]  6  6  5  3  3  4  5  3  3  7  6  6  6  5  5  5  5  4  5  8  4  4  4  4
## [3745]  3  3  5  5  2  4  4  3  5  5  5  2  2  2  2  2  2  2  3  3  7  6  9  7
## [3769]  7  6  6  7  7  9  9 10 10  2  7  6  7  6  6  8  5  7  4  8  5  7  4  5
## [3793]  7  6  5  7  6  4  7  7  8 10 10 10  4  4  4  6  6  9  7  6  9  9  8  8
## [3817]  8  8  9  8  4  3  4  5  5  5  7  7  2 10 10 10  9  7  6 10  6  2  2  2
## [3841]  5  4  5  4  6  4  4  4  4  3  3  3  2  3  2  2  6  5  5  5  8  8  7  6
## [3865]  7  6  7  7  6  6  7  7  6  6  5  6  7  7  6  7  7  6  8  7  7 10  7  7
## [3889]  6  7  6  7  7  5  6  5  6  4  5  5  6  6  5  6  5  5  5  5  5  5  4  4
## [3913]  7  6  5  5  5  5  6  7  6  6  7  3  4  2  3  3  3  3  3  3  3  7  8  7
## [3937]  6  7  7  6  6  7  5  5  5  5  5  5  4  5  5  5  5  6  4  4  3  2  2  4
## [3961]  3  2  2  4  4  4  6  5  5  5  5  5  5  5  5  4  6  6  4  3  4  3  4  4
## [3985]  3  7  6  7  7  6  7  7  7  9  8  8  7  6  6  6  6  6  6  6  5  6  7  7
## [4009]  6  7  6  6  6  6  6  6  6  5  6  5  6  7  6  7  7  6  5  5  5  5  4  4
## [4033]  4  6  6  6  5  5  5  5  5  5  4  4  4  5  6  5  5  5  4  4  4  3  7  6
## [4057]  6  4  4  4  4  4 10 10  6  5  6  5  6  4  5  4  5  4  5  3  4  3  4  3
## [4081]  4  3  4  7  6  5  6  7  6  5  5  5  3  5  7  5  4  3  5  5  4  6  6  5
## [4105]  5  4  4  7  6  5  7  6  5  6  5  7  6  6  6  5  6  6  5  5  5  2  3  6
## [4129]  4  5  5  5 10  4  4  3  4  4  4  3  3  4  4  5  4  5  4  4  4  5  2  5
## [4153]  3  5  4  3  6  5  5  5  5  5  3  5  5  7  7  8  7  7  8  8  4  5  5  6
## [4177]  0  0  0  0  0  5  6  5  7  6  4  4  4  4  4  4  8  7  7  8  8  7  7  8
## [4201]  7  7  7  7  8  8 10  4  4  4  4  4  4  4  4  7  7 10  7  5  7  5  5  4
## [4225]  5  5  5  5  5  5  5  4  5  4  4  4  4  3  4  3  5  4  5  5  5  4  3  8
## [4249]  7  7  7  7  8  8  6  7  4  3  5  4  5  5  4  5  4  3  2  2  2  2  4  7
## [4273]  7  8  7  7  7  7  6  7 10 10  9  5  5  5  6  5  5  6  5  6  6  6  4  4
## [4297]  4  3  5  4  4  4  5  5  5  5  4  5  5  4  4  4  8  8  8  7  4  4  5 10
## [4321]  8  7  7  6  6 10  6  6  7  9  6  5  4  5  4  6  4  6  5  5  5  6  5  5
## [4345]  6  6  5  6  5  0  4  4  5  5  5  5  5  3  0  0  0  0  0  4  4  4  4  4
## [4369]  4  4  5  5  6  4  4  4  4  4  4  3  4  4  3  4  3  7  6  8  6  5  7 10
## [4393]  8  8  8  6  8 10  8  7  7  9  8  5  6  5  8  8  8  5  5  5  7  8  5  5
## [4417]  7  8  7  8  7  7  7  7  8  4  4  4  4  5  4  5  5  5  5  5  5  5  4  5
## [4441]  8  7  6  9  9  6  7  6  6  5  5  7  7  7  7  5  5  5  5  8  7  5  5  7
## [4465]  7  5  5  5  5  4  4  5  4  5  8  5  5  5  5  6  6  4  4  3  3  5  5  4
## [4489]  5  5  4  4  5  5  5  4  4  4  4  4  4  4  4  6  5  6  5  5  6  6  6  5
## [4513]  5  5  5  6  6  5  6  6  5  4  4  3  3  5  5  6  6  5  6  6  6  7  6  7
## [4537]  4  4  4  4  5  7  8  7  7  6  6  7  6  7  6  5  4  6  7  9  9  8  8  8
## [4561]  5  5  4  5  5  5  5  6  6  6  7 10  5  5  6  5  5  5  3  5  5  3  4  6
## [4585]  4  3  4  9  9  6  5  5  8  4  6  5  6  5  5  5  4  4  4  4  5  2  6  6
## [4609]  6  8  8  5  5  4  5  5  5  7  7  5  5  5  5  5  5  4  5  4  5  4  5  6
## [4633]  5  6  5  9  4  4  4  3  4  4  3  3  3  4  6  7  7  8  8  8  7  8  8  8
## [4657]  7  7  7  7  7  6  4  4  5  6  6  4  4  4  5  5 10  6  7  7  5  5  6  3
## [4681]  7  7  6  6  5  5  4  4  8  8  5  5  5  5  5  5  5  5  5  6  6  6  5  5
## [4705]  4  4  4  5  4  3  2  7  7  6  7  5  5  6  5  4  5  3  5  4  4  3  4  4
## [4729]  3  3  5  5  4  4  6  6  6  5  3  3  8  8  8  8  7  7  7  7  8  8  7  7
## [4753]  7  7  7  7  7  7  7  7  7  7  6  7  7  7  7  7  6  7  7  7  6  7  6  7
## [4777]  7  7  7  7  7  6  7  7  7  6  7  6  5  6  4  4  9  9  7  6  5  7  6  6
## [4801]  7  6  5  5  5  5  6  8  3  3  2  2  4  4  5  4  4  4  4  7  7  7  7  7
## [4825] 10  6  6  6  6  5  5  5  6  6  5  7  7  6  6  8  7  8  3  3  2  2  8  7
## [4849]  7  4  4  4  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5
## [4873]  5  5  5  5  4  5  5  5  5  5  5  7  6  6  6  5  6  5  5  4  6  6  6  5
## [4897]  6  5  4  4  5  5  5  5  4  5  4  4  4  4  3  4  5  5  3  4  4  4  5  5
## [4921]  5  6  3  3  2  2  2  2  3  3  3  7  6  9  6  6  6  6  8  8 10 10  7  6
## [4945]  6  7  6  8  7  8  7  8  7  7  5  7  5  5  6  4  7  6  8 10 10 10 10 10
## [4969] 10 10 10  4  4  4  6  9  7  6  9  9  8  8  8  8  8  8  5  5  5  7  7  3
## [4993] 10 10 10  9  6  6  6  6  3  2  2  5  4  5  4  5  4  4  4  4  4  3  3  3
## [5017]  3  3  5  5  5  5  8  8  6  8  7  7  6  8  6  8  7  6  8  6  6  5 10  6
## [5041]  8  7  7  8  6  8  7  7  8  7  7  7  8  7  6  7  7  6  8 10  5  8  7  7
## [5065]  8  5  5  4  5  5  5  7  7  5  5  7  5  5  5  7  7  5  5  5  5  7  6  5
## [5089]  5  7  7  5  5  5  5  5  7  7  6  6  7  2  3  2  3  2  3  2  3  3  2  6
## [5113]  7  6  6  6  6  6  7  5  6  5  5  5  3  5  5  5  6  4  6  5  4  5  4  5
## [5137]  5  5  4  4  6  6  6  4  2  3  2  3  2  6  6  6  6  6  7  7  6  8  8  8
## [5161]  6  6  6  6  6  5  6  5  6  5  6  6  6  6  6  6  6  5  5  5  5  5  5  5
## [5185]  5  6  6  7  7  5  5  5  5  4  4  5  5  5  5  5  5  4  4  4  4  4  4  5
## [5209]  4  4  6  4 10 10  5  5  5  5  5  5  5  5  4  4  4  4  4  4  4  3  3  3
## [5233]  3  3  3  3  3  6  5  7  5  5  5  5  5  3  5  6  4  3  3  5  4  3  6  6
## [5257]  4  4  5  3  4  7  7  6  7  5  5  5  5  5  5  5  6  5 10  6  5  6  5  6
## [5281]  5  4  4  6  5  5  4  6  5  5  5  3 10 10  3  3  4  4  5  4  4  3  3  4
## [5305]  5  6  5  4  5  6  5  5  6  5  5  4  5  3  4  5  8  8  7  6  7  7  7  8
## [5329]  8  5  4  6  4  0  0  5  6  4  6  7 10  6  4  4  4  4  3  3  4  3  3  3
## [5353]  7  7  7  8  7  7  7  8  7  7  7  7  8  8 10  3  3  4  4  4  4  3  4  7
## [5377]  6  7  7  5  5  5  4  5  5  5  4  4  5  4  4  4  3  3  4  3  3  4  4  5
## [5401]  5  5  5  3  4  7  6  6  7  6  8  8  8  6  6  5  3  5  3  4  4  5  4  4
## [5425]  2  4  4  4  7  6  8  7  6  7  6  7  6  7  5 10 10  9  4  5  4  5  5  6
## [5449]  5  6  6  6  4  3  3  3  4  4  4  5  4  4  5  4  4  3  4  7  7  8  7  4
## [5473]  3  4 10  7  7  8  7  8  5  6  6 10  7  6  6  9  6  5  4  6  5  4  5  4
## [5497]  3  4  4  4  5  5  5  6  5  5  5  6  5  5  5  0  3  4  5  5  6  5  5  4
## [5521]  5  3  0  0  4  4  4  4  3  3  4  3  3  3  5  4  6  4  4  3  4  3  4  3
## [5545]  4  3  7  6  7  6  5  6  8  8  7  8  8  7  7  6  8  8  8  8  8  7  7  7
## [5569]  7  7  5  5  5  5  5  7  7  5  5  8  7  7  7  6  6  7  4  4  4  4  5  4
## [5593]  4  5  5  5  5  5  5  4  4  8  6  7  9  9  6  7  6  5  6  7  6  6  7  7
## [5617]  7  7  6  5  5  5  7  7  5  5  5  5  4  5  4  4  7  4  4  5  5  6  6  4
## [5641]  4  3  2  5  4  5  4  4  4  4  5  5  5  4  5  4  5  5  4  5  4  4  5  4
## [5665]  5  5  5  5  5  6  6  5  5  5  5  5  5  5  5  6  6  5  5  3  2  5  5  5
## [5689]  5  5  6  6  6  6  5  6  4  4  4  4  5  7  7  7  5  7  5  6  7  6  6  4
## [5713]  4  8  6  7  6  7  9  8  7  7  7  4  5  4  5  5  4  5  5  5  5  6  6  6
## [5737]  6 10  5  5  5  5  3  3  5  3  3  4  5  5  3  4  3  4  6  6  9  9  5  6
## [5761]  5  5  5  5  7  4  3  6  5  5  5  4  4  4  4  4  2  6  5  5  8  8  6  5
## [5785]  5  5  4  5  5  7  7  5  5  5  4  4  4  3  4  4  5  4  4  4  5  6  4  6
## [5809]  5  9  4  3  3  3  4  4  4  3  2  3  4  4  8  8  7  7  8  8  8  7  8  7
## [5833]  8  7  7  7  7  7  6  6  5  7  7  4  4  4  4  4  4  6  4  4  4  4  2  6
## [5857]  2  2  2  4  4  4  2  2  4  3  5 10  7  6  5  7  6  5  5  5  4  8  7  5
## [5881]  5  5  5  5  5  5  5  5  4  5  5  4  2  7  6  5  5  5  4  4  6  4  4  2
## [5905]  5  5  4  4  4  3  5  4  7  5  7  7  7  7  6  7  7  8  7  8  6  7  6  6
## [5929]  7  6  7  7  6  6  7  6  7  6  7  7  6  6  6  6  6  6  7  6 10  7  6  7
## [5953]  6  6  6  6  5  6  6  6  6  5  5  5  5  4  6  7  7  4  4  5  4  3  4  4
## [5977]  7  7  7  6  6 10 10  6  5  5  7  7  6  5  5  5  5  5  7  7  8  7  8  8
## [6001]  7  7  5  5  5  5  5  5  5  5  5  4  5  5  5  5  5  5  5  5  5  4  5  5
## [6025]  5  5  3  3  3  5  5  5  5  5  5  4  4  4  4  6  5  6  5  5  5  4  5  4
## [6049]  4  3  3  6  5  4  6  5  5  5  4  4  5  5  5  4  4  5  4  4  4  4  3  3
## [6073]  4  2  3  4  5  5  2  2  2  2  2  2  2  2  3  3  7  6  8  8  8  7  6  6
## [6097]  8  8 10 10  7  6  6  6  6  7  7  7  7  7  7  7  5  7  5  5  5  4  7  6
## [6121]  7 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10  4  4  4  5  9
## [6145]  7  6  9  9  8  8  7  7  8  8  5  5  4  7  7  2 10 10 10  9  6  6  8  6
## [6169]  6  2  2  2  5  4  5  5  4  4  4  4  2  3  2  2  3  2  8  8  6  7  7  6
## [6193]  6  7  6  6  6  6  6  4 10  6  7  7  6  6  7  7  7  7  6  7  8  7  8  6
## [6217]  9  5  7  5  5  4  5  5  6  5  7  6  5  7  5  7  5  5  6  5  7  5  4  5
## [6241]  5  6  5  5  6  5  5  5  7  4  5  4  5  5  5  5  6  5  6  4  6  6  3  2
## [6265]  7  6  5  6  6  5  6  6  7  6  6  5  5  5  5  5  5  5  4  4  5  3  3  3
## [6289]  5  4  4  4  4  4  3  4  6  6  5  2  4  2  3  2  3  2  6  6  5  6  6  6
## [6313]  6  6  8  8  8  6  5  6  6  6  5  5  5  5  5  6  6  5  6  6  6  6  5  5
## [6337]  5  5  5  5  5  5  5  4  3  5  5  5  5  5  5  4  4  4  3  4  3  5  5  4
## [6361]  4  3  3 10 10  5  4  5  5  5  5  5  5  4  4  4  4  4  4  2  3  2  3  2
## [6385]  3  2  6  5  5  5  4  4  5  2  4  5  4  3  2  4  4  3  5  3  3  6  7  6
## [6409]  6  5  5  5  5  5  5  5  5  5  5  5  6  5  5  5  4  4  5  4  4  5  5  3
## [6433]  5  5  3  3  3  5  4  5  4  3  3  3 10  2  5  5  4  4  5  4  2  5  5  5
## [6457]  4  5  4  5  4  2  4  2  4  3  8  7  7  7  8  7  5  3  5  4  0  0  5  5
## [6481]  7  6 10  4  3  3  3  3  3  3  3  6  7  6  7  6  7  6  7  8  8  8  7  2
## [6505]  3  4  3  4  3  3  3  6  6  6  6  5  5  4  5  5  4  4  5  5 10  5  4  3
## [6529]  3  3  4  2  3  2  3  5  4  3  5  4  4  2  3  4  3  3  4  4  4  4  4  4
## [6553]  3  3  3  7  6  8  7  7  7  6  7  5  5  6  5 10 10  9  5  4  4  5  4  5
## [6577]  5  5  6  5  5  3  3  3  2  4  4  4  3  4  5  4  4  4  4  4  4  4  4  4
## [6601]  3  2  2  4  5  3  4  4  4  3  4  2  7  7  8  7  3  3  4 10  7  7  7  6
## [6625]  8  5  5  5  4 10  6  5  5  9  5  4  3  5  4  3  5  3  5  3  5  5  3  2
## [6649]  4  4  4  5  4  4  5  5  5  5  5  5  0  4  5  3  4  3  4  4  5  4  5  4
## [6673]  3  3  5  5  4  5  4  5  4  2  0  0  4  3  3  3  3  3  3  3  5  3  5  4
## [6697]  4  3  4  3  3  3  3  2  7  5  7  5  4  6 10  8  8  7  8  8  8  7  8  8
## [6721]  8  7  8  6  7  6  7  8  8  7  7  7  7  7  6  5  5  4  5  5  4  5  7  7
## [6745]  5  5  8  7  7  7  5  6  6  8 10 10 10  4  4  5  5  5  5  4  5  4  4  7
## [6769]  7  6  9  9  5  6  5  5  6  6  6  6  7  7  6  7  5  6  5  5  7  6  5  5
## [6793]  5  5  5  5  5  4  4  4  3  4  7  6  5  4  4  5  5  6  6  3  4  2  2  4
## [6817]  7  5  4  5  4  3  3  4  4  5  3  5  3  5  5  8  5  8  5  8  5  8  3  4
## [6841]  4  3  4  4  5  5  5  4  5  5  5  5  5  4  4  5  5  5  5  5  5  4  4  3
## [6865]  2  5  4  5  5  5  5  5  5  5  6  5  6  3  3  3  3  5  6  7  6  6  6  5
## [6889]  6  6  6  3  4 10 10  9  7  5  6  7  9  7  7  7  4  4  4  5  5  4  4  5
## [6913]  5  4  6  6  6  6 10  5  4  5  6  5  5  3  3  2  2  5  2  4  5  5  5  2
## [6937]  2  4  5  9  9  5  6  5  5  5  5  7  4  2  6  4  5  4  4  3  4  3  2  5
## [6961]  5  5  7  6  4  5  4  4  5  5  7  4  4  4  4  4  4  4  5  3  4  3  4  4
## [6985]  4  4  5  4  5  4  9  3  3  3  2  4  4  4  4  4  2  2  2  2  3  3  3  8
## [7009]  8  7  6  7  7  7  7  7  7  7  6  7  7  5  5  7  7  4  4  5  5  5  4  4
## [7033]  4  4  4  4  6  3  4  5  4  4  4  4  2  2  2  3  3  3  3  3  2  4  2  5
## [7057] 10  6  6  5  5  6  6  7  6  4  4  5  5  5  5  5  4  4  6  6  5  5  5  4
## [7081]  4  4  4  2  4  2  5  5  4  4  4  4  2  2  2  5  4  6  6  6  5  6  7  7
## [7105]  6  7  7  7  7  6  5  6  5  6  6  6  6  6  6  6  5  6  5  6  6 10  7  6
## [7129]  6  9  8  8  8  6  6  5  6  5  6  5  4  4  4  6  7  7  2  2  4  4  4  4
## [7153]  3  3  3  3  3  7  7  6  6  6 10  5  5  5  5  5  5  4  5  6  7  8  8  7
## [7177]  7  7  6  6  6  3  3  3  8  7  7  5  5  5  5  5  5  5  4  5  4  5  5  5
## [7201]  5  5  5  5  4  5  4  5  5  5  5  5  5  5  4  5  5  4  4  4  4  5  5  5
## [7225]  5  4  4  4  4  3  3  5  4  4  4  4  3  4  2  3  4  5  2  3  2  8  8  8
## [7249]  8  6  5  7  6  5  6  5  7  6  7  6  7  6  7  5  5  7  5  6  4  5  4 10
## [7273] 10 10 10 10 10 10 10 10  6  5  3  3  3  5  9  5  6  9  9  7  7  7  7  7
## [7297]  8  8  5  5  5  5  6  7  5  2 10 10 10 10  9  5  5  7  6  5  2  5  4  4
## [7321]  4  4  4  4  3  3  2  2  2  2  2  2  7  8  8  8  6  6  6  6  6  5  4  7
## [7345]  7  5  6  5  5  7  6  5  6  6  6  6  7  7  8  6  5  6  5  4  4  6  6  5
## [7369]  7  6  7  5  5  6  6  6  5  7  5  5  5  5  6  5  5  5
length(boxplot.stats(puntuacion_c)$out)
## [1] 7386
outliers <- boxplot.stats(puntuacion_c)$out
range(outliers)
## [1]  0 10

Tabla Indicadores estadisticos

cat("Tabla de Indicadores: Puntuación de Economía de Combustible\n")
## Tabla de Indicadores: Puntuación de Economía de Combustible
print(indicadores_puntuacion)
##                 Indicador  Valor
## 1                    Moda   1.00
## 2                 Mediana   1.00
## 3               Media (x̄)   1.61
## 4 Desviación Estándar (σ)   1.74
## 5           Varianza (σ²)   3.03
## 6     Coef. Variación (%) 108.21
## 7               Asimetría   2.54
## 8                Curtosis   5.81

Conclusiones

El comportamiento de la variable puntuación de eocnomía fluctúa entre [0-10] y los valores se encuentran en torno a la mediana de 1, con una desviación estándar de 1.74, siendo un conjunto con un coeficiente de variación muy heterogéneo y tiene un sesgo positivo con existencia de valores atípicos a partir de la puntuación 2.