# Walks in the first 5 seasons
walks_before <- c(79, 108, 41, 145, 135)
# Desired average
wanted_walks <- 100
# Number of seasons
n_seasons <- 6
# Needed walks in season 6
x_6 <- n_seasons * wanted_walks - sum(walks_before)
x_6
[1] 92
# Full walk performance including needed 6th season value
Soto_walks <- c(walks_before, x_6)
# Mean
mean(Soto_walks)
[1] 100
# Standard deviation
sd(Soto_walks)
[1] 38.20995
# Max
max(Soto_walks)
[1] 145
# Min
min(Soto_walks)
[1] 41
# Summary
summary(Soto_walks)
Min. 1st Qu. Median Mean 3rd Qu. Max.
41.00 82.25 100.00 100.00 128.25 145.00
# Number of players
n_basketball <- 7
n_nfl <- 9
# Average salaries
avg_basketball <- 102000
avg_nfl <- 91000
# Combined mean salary
combined_salary <- (n_basketball * avg_basketball + n_nfl * avg_nfl) / (n_basketball + n_nfl)
combined_salary
[1] 95812.5
# Load CSV file with contract years
contract_length <- read.csv(("/Users/sarahguzman/Desktop/SPECIAL_TOPICS_SPORTS/allcontracts.csv"), header = TRUE)
contract_years <- contract_length$years
# Mean contract length
contracts_mean <- mean(contract_years)
contracts_mean
[1] 3.458918
# Median contract length
contracts_median <- median(contract_years)
contracts_median
[1] 3
# Number of observations
contracts_n <- length(contract_years)
# Standard deviation
contracts_sd <- sd(contract_years)
contracts_sd
[1] 1.69686
# Within 1 SD
contracts_w1sd <- sum(abs(contract_years - contracts_mean) < contracts_sd) / contracts_n
contracts_w1sd
[1] 0.6693387
contracts_w1sd - 0.68 # Compare to empirical rule
[1] -0.01066132
# Within 2 SD
contracts_w2sd <- sum(abs(contract_years - contracts_mean) < 2 * contracts_sd) / contracts_n
contracts_w2sd
[1] 1
contracts_w2sd - 0.95
[1] 0.05
# Within 3 SD
contracts_w3sd <- sum(abs(contract_years - contracts_mean) < 3 * contracts_sd) / contracts_n
contracts_w3sd
[1] 1
contracts_w3sd - 0.9973
[1] 0.0027
hist(contract_years,
xlab = "Years Left in Contract",
col = "green",
border = "red",
xlim = c(0, 8),
ylim = c(0, 225),
breaks = 5,
main = "Distribution of Contract Lengths")

LS0tCnRpdGxlOiAiQXNzaWdubWVudDUiCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KCiAKCmBgYHtyfQojIFdhbGtzIGluIHRoZSBmaXJzdCA1IHNlYXNvbnMKd2Fsa3NfYmVmb3JlIDwtIGMoNzksIDEwOCwgNDEsIDE0NSwgMTM1KQoKIyBEZXNpcmVkIGF2ZXJhZ2UKd2FudGVkX3dhbGtzIDwtIDEwMAoKIyBOdW1iZXIgb2Ygc2Vhc29ucwpuX3NlYXNvbnMgPC0gNgoKYGBgCgpgYGB7cn0KIyBOZWVkZWQgd2Fsa3MgaW4gc2Vhc29uIDYKeF82IDwtIG5fc2Vhc29ucyAqIHdhbnRlZF93YWxrcyAtIHN1bSh3YWxrc19iZWZvcmUpCnhfNgoKYGBgCgpgYGB7cn0KIyBGdWxsIHdhbGsgcGVyZm9ybWFuY2UgaW5jbHVkaW5nIG5lZWRlZCA2dGggc2Vhc29uIHZhbHVlClNvdG9fd2Fsa3MgPC0gYyh3YWxrc19iZWZvcmUsIHhfNikKCiMgTWVhbgptZWFuKFNvdG9fd2Fsa3MpCiMgU3RhbmRhcmQgZGV2aWF0aW9uCnNkKFNvdG9fd2Fsa3MpCiMgTWF4Cm1heChTb3RvX3dhbGtzKQojIE1pbgptaW4oU290b193YWxrcykKIyBTdW1tYXJ5CnN1bW1hcnkoU290b193YWxrcykKCmBgYApgYGB7cn0KIyBOdW1iZXIgb2YgcGxheWVycwpuX2Jhc2tldGJhbGwgPC0gNwpuX25mbCA8LSA5CgojIEF2ZXJhZ2Ugc2FsYXJpZXMKYXZnX2Jhc2tldGJhbGwgPC0gMTAyMDAwCmF2Z19uZmwgPC0gOTEwMDAKCmBgYAoKYGBge3J9CiMgQ29tYmluZWQgbWVhbiBzYWxhcnkKY29tYmluZWRfc2FsYXJ5IDwtIChuX2Jhc2tldGJhbGwgKiBhdmdfYmFza2V0YmFsbCArIG5fbmZsICogYXZnX25mbCkgLyAobl9iYXNrZXRiYWxsICsgbl9uZmwpCmNvbWJpbmVkX3NhbGFyeQoKYGBgCmBgYHtyfQojIExvYWQgQ1NWIGZpbGUgd2l0aCBjb250cmFjdCB5ZWFycwpjb250cmFjdF9sZW5ndGggPC0gcmVhZC5jc3YoKCIvVXNlcnMvc2FyYWhndXptYW4vRGVza3RvcC9TUEVDSUFMX1RPUElDU19TUE9SVFMvYWxsY29udHJhY3RzLmNzdiIpLCBoZWFkZXIgPSBUUlVFKQpjb250cmFjdF95ZWFycyA8LSBjb250cmFjdF9sZW5ndGgkeWVhcnMKCmBgYAoKYGBge3J9CiMgTWVhbiBjb250cmFjdCBsZW5ndGgKY29udHJhY3RzX21lYW4gPC0gbWVhbihjb250cmFjdF95ZWFycykKY29udHJhY3RzX21lYW4KCiMgTWVkaWFuIGNvbnRyYWN0IGxlbmd0aApjb250cmFjdHNfbWVkaWFuIDwtIG1lZGlhbihjb250cmFjdF95ZWFycykKY29udHJhY3RzX21lZGlhbgoKIyBOdW1iZXIgb2Ygb2JzZXJ2YXRpb25zCmNvbnRyYWN0c19uIDwtIGxlbmd0aChjb250cmFjdF95ZWFycykKCiMgU3RhbmRhcmQgZGV2aWF0aW9uCmNvbnRyYWN0c19zZCA8LSBzZChjb250cmFjdF95ZWFycykKY29udHJhY3RzX3NkCgpgYGAKCmBgYHtyfQojIFdpdGhpbiAxIFNECmNvbnRyYWN0c193MXNkIDwtIHN1bShhYnMoY29udHJhY3RfeWVhcnMgLSBjb250cmFjdHNfbWVhbikgPCBjb250cmFjdHNfc2QpIC8gY29udHJhY3RzX24KY29udHJhY3RzX3cxc2QKY29udHJhY3RzX3cxc2QgLSAwLjY4ICAjIENvbXBhcmUgdG8gZW1waXJpY2FsIHJ1bGUKCiMgV2l0aGluIDIgU0QKY29udHJhY3RzX3cyc2QgPC0gc3VtKGFicyhjb250cmFjdF95ZWFycyAtIGNvbnRyYWN0c19tZWFuKSA8IDIgKiBjb250cmFjdHNfc2QpIC8gY29udHJhY3RzX24KY29udHJhY3RzX3cyc2QKY29udHJhY3RzX3cyc2QgLSAwLjk1CgojIFdpdGhpbiAzIFNECmNvbnRyYWN0c193M3NkIDwtIHN1bShhYnMoY29udHJhY3RfeWVhcnMgLSBjb250cmFjdHNfbWVhbikgPCAzICogY29udHJhY3RzX3NkKSAvIGNvbnRyYWN0c19uCmNvbnRyYWN0c193M3NkCmNvbnRyYWN0c193M3NkIC0gMC45OTczCgpgYGAKYGBge3J9Cmhpc3QoY29udHJhY3RfeWVhcnMsCiAgICAgeGxhYiA9ICJZZWFycyBMZWZ0IGluIENvbnRyYWN0IiwKICAgICBjb2wgPSAiZ3JlZW4iLAogICAgIGJvcmRlciA9ICJyZWQiLAogICAgIHhsaW0gPSBjKDAsIDgpLAogICAgIHlsaW0gPSBjKDAsIDIyNSksCiAgICAgYnJlYWtzID0gNSwKICAgICBtYWluID0gIkRpc3RyaWJ1dGlvbiBvZiBDb250cmFjdCBMZW5ndGhzIikKCmBgYAoK