Case-scenario 1: Juan Soto
# Walks in first five seasons
walks_first5 <- c(79, 108, 41, 145, 135)
# Desired average
wanted_avg <- 100
n_seasons <- 6
# Solve for x6
x6 <- n_seasons * wanted_avg - sum(walks_first5)
x6
## [1] 92
# Confirm new average
soto_walks <- c(walks_first5, x6)
mean(soto_walks)
## [1] 100
sd(soto_walks)
## [1] 38.20995
max(soto_walks)
## [1] 145
min(soto_walks)
## [1] 41
summary(soto_walks)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 41.00 82.25 100.00 100.00 128.25 145.00
Case-scenario 2: Combined Salaries
# Salaries of basketball and NFL players
n_basketball <- 7
n_nfl <- 9
salary_basketball <- 102000
salary_nfl <- 91000
# Overall mean salary
overall_salary <- (n_basketball * salary_basketball + n_nfl * salary_nfl) / (n_basketball + n_nfl)
overall_salary
## [1] 95812.5
Case-scenario 3: Contract Length Analysis
# Read contract data
contract_length <- read.csv("allcontracts.csv")
contract_years <- contract_length$years
# Basic stats
contracts_mean <- mean(contract_years)
contracts_median <- median(contract_years)
contracts_sd <- sd(contract_years)
contracts_n <- length(contract_years)
contracts_mean
## [1] 3.458918
contracts_median
## [1] 3
contracts_sd
## [1] 1.69686
contracts_n
## [1] 499
# Percent within 1 SD
contracts_w1sd <- sum(abs((contract_years - contracts_mean)/contracts_sd) < 1) / contracts_n
contracts_w1sd
## [1] 0.6693387
contracts_w1sd - 0.68
## [1] -0.01066132
# Percent within 2 SD
contracts_w2sd <- sum(abs((contract_years - contracts_mean)/contracts_sd) < 2) / contracts_n
contracts_w2sd
## [1] 1
contracts_w2sd - 0.95
## [1] 0.05
# Percent within 3 SD
contracts_w3sd <- sum(abs((contract_years - contracts_mean)/contracts_sd) < 3) / contracts_n
contracts_w3sd
## [1] 1
contracts_w3sd - 0.9973
## [1] 0.0027
# Histogram
hist(contract_years, xlab = "Years Left in Contract", col = "green", border = "red",
xlim = c(0,8), ylim = c(0,225), breaks = 5)
