#Reading in files from Shimadzu MALDI-TOF into dataframes
standardSpectra <- read.table('C3_0001_C3_25-07-18_15-59_0001.txt', header = FALSE, skip = 8)
sampleSpectra <- read.table('C4_0001_C4_25-07-18_16-00_0001.txt', header = FALSE, skip = 8)
#Removing outlier from first row of dataset
#standardSpectra <- standardSpectra [-1,]
#sampleSpectra <- sampleSpectra [-1,]
#names(standardSpectra) <- c('m_z', 'intensity')
#names(sampleSpectra) <- c('m_z', 'intensity')
#Tidy data (installing Tidyverse)
#installing tidyverse
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.2 ✔ tibble 3.3.0
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.1.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
#Combining sampleSpectra & standardSpectra into one dataset (ms_data)
sampleSpectra$type <- 'Sample'
standardSpectra$type <- 'Standard'
ms_data <- rbind(sampleSpectra,standardSpectra)
names(ms_data) <-c('mz', 'intensity', 'type')
#Creating a ggplot from the data
#Column overlap plot
ggplot(ms_data, aes(x = mz,y=intensity))+
geom_col(aes(colour = type,fill=type))+
scale_color_manual(values=c("#ffc868","#e5216b"))+
scale_fill_manual(values=c("#ffc868","#e5216b"))+
xlab("m/z Ratio") + ylab("Millivolts")+
theme(legend.position="right")
#Separate column plots
ggplot(ms_data, aes(x = mz,y=intensity))+
geom_col(aes(colour = type,fill=type))+
scale_color_manual(values=c("#ffc868","#e5216b"))+
scale_fill_manual(values=c("#ffc868","#e5216b"))+
xlab("m/z Ratio") + ylab("Millivolts")+
facet_wrap(~type,nrow=2)
#Matching Spectra
matchSpectra <- merge(standardSpectra, sampleSpectra, by="V1")
write.csv(matchSpectra,"matchSpectra.csv")