#Step 1: Read files into dataframes
standardSpectra <- read.table('G3_0001_G3_25-07-18_15-50_0001.txt',
header = FALSE, skip= 8)
sampleSpectra <- read.table('G4_0001_G4_25-07-18_15-51_0001.txt',
header = FALSE, skip= 8)
#Remove the outlier in the first row ##Rename column titles
standardSpectra <- standardSpectra [-c(1, 22), ]
sampleSpectra <- sampleSpectra [-c(1, 48),]
names(standardSpectra) <- c('m_z', 'intensity')
names(sampleSpectra) <- c('m_z', 'intensity')
#Tidy data
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.2 ✔ tibble 3.3.0
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.1.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
sampleSpectra$type <- 'Sample'
standardSpectra$type <- 'Standard'
ms_data <- rbind(sampleSpectra, standardSpectra)
names(ms_data)<-c('mz','intensity','type')
#Create Scatter Plot
ggplot(ms_data, aes(x = mz,y=intensity))+
geom_point(aes(colour = type))+
scale_color_manual(values=c("#ffc868","#e5216b"))+
xlab("m/z ratio") + ylab("Millivolts")+
theme(legend.position="left")
#Create Column Plot
ggplot(ms_data, aes(x = mz,y=intensity))+
geom_col(aes(colour = type,fill=type))+
scale_color_manual(values=c("#ffc868","#e5216b"))+
scale_fill_manual(values=c("#ffc868","#e5216b"))+
xlab("m/z ratio") + ylab("Millivolts")+
theme(legend.position="right")
#Find Peaks with Identical M/Z Ratio ##Write .csv final
matchSpectra <- merge(sampleSpectra,standardSpectra, by="m_z")
write.csv(matchSpectra,"matchSpectra.csv")