firstbase = read.csv("firstbasestats.csv")
str(firstbase)
'data.frame':   23 obs. of  15 variables:
 $ Player            : chr  "Freddie Freeman" "Jose Abreu" "Nate Lowe" "Paul Goldschmidt" ...
 $ Pos               : chr  "1B" "1B" "1B" "1B" ...
 $ Team              : chr  "LAD" "CHW" "TEX" "STL" ...
 $ GP                : int  159 157 157 151 160 140 160 145 146 143 ...
 $ AB                : int  612 601 593 561 638 551 583 555 545 519 ...
 $ H                 : int  199 183 179 178 175 152 141 139 132 124 ...
 $ X2B               : int  47 40 26 41 35 27 25 28 40 23 ...
 $ HR                : int  21 15 27 35 32 20 36 22 8 18 ...
 $ RBI               : int  100 75 76 115 97 84 94 85 53 63 ...
 $ AVG               : num  0.325 0.305 0.302 0.317 0.274 0.276 0.242 0.251 0.242 0.239 ...
 $ OBP               : num  0.407 0.379 0.358 0.404 0.339 0.34 0.327 0.305 0.288 0.319 ...
 $ SLG               : num  0.511 0.446 0.492 0.578 0.48 0.437 0.477 0.423 0.36 0.391 ...
 $ OPS               : num  0.918 0.824 0.851 0.981 0.818 0.777 0.804 0.729 0.647 0.71 ...
 $ WAR               : num  5.77 4.19 3.21 7.86 3.85 3.07 5.05 1.32 -0.33 1.87 ...
 $ Payroll.Salary2023: num  27000000 19500000 4050000 26000000 14500000 ...
summary(firstbase)
    Player              Pos                Team          
 Length:23          Length:23          Length:23         
 Class :character   Class :character   Class :character  
 Mode  :character   Mode  :character   Mode  :character  
                                                         
                                                         
                                                         
       GP              AB              H              X2B       
 Min.   :  5.0   Min.   : 14.0   Min.   :  3.0   Min.   : 1.00  
 1st Qu.:105.5   1st Qu.:309.0   1st Qu.: 74.5   1st Qu.:13.50  
 Median :131.0   Median :465.0   Median :115.0   Median :23.00  
 Mean   :120.2   Mean   :426.9   Mean   :110.0   Mean   :22.39  
 3rd Qu.:152.0   3rd Qu.:558.0   3rd Qu.:146.5   3rd Qu.:28.00  
 Max.   :160.0   Max.   :638.0   Max.   :199.0   Max.   :47.00  
       HR             RBI              AVG        
 Min.   : 0.00   Min.   :  1.00   Min.   :0.2020  
 1st Qu.: 8.00   1st Qu.: 27.00   1st Qu.:0.2180  
 Median :18.00   Median : 63.00   Median :0.2420  
 Mean   :17.09   Mean   : 59.43   Mean   :0.2499  
 3rd Qu.:24.50   3rd Qu.: 84.50   3rd Qu.:0.2750  
 Max.   :36.00   Max.   :115.00   Max.   :0.3250  
      OBP              SLG              OPS        
 Min.   :0.2140   Min.   :0.2860   Min.   :0.5000  
 1st Qu.:0.3030   1st Qu.:0.3505   1st Qu.:0.6445  
 Median :0.3210   Median :0.4230   Median :0.7290  
 Mean   :0.3242   Mean   :0.4106   Mean   :0.7346  
 3rd Qu.:0.3395   3rd Qu.:0.4690   3rd Qu.:0.8175  
 Max.   :0.4070   Max.   :0.5780   Max.   :0.9810  
      WAR         Payroll.Salary2023
 Min.   :-1.470   Min.   :  720000  
 1st Qu.: 0.190   1st Qu.:  739200  
 Median : 1.310   Median : 4050000  
 Mean   : 1.788   Mean   : 6972743  
 3rd Qu.: 3.140   3rd Qu.: 8150000  
 Max.   : 7.860   Max.   :27000000  
model1 = lm(Payroll.Salary2023 ~ RBI, data=firstbase)
summary(model1)

Call:
lm(formula = Payroll.Salary2023 ~ RBI, data = firstbase)

Residuals:
      Min        1Q    Median        3Q       Max 
-10250331  -5220790   -843455   2386848  13654950 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)   
(Intercept) -2363744    2866320  -0.825  0.41883   
RBI           157088      42465   3.699  0.00133 **
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6516000 on 21 degrees of freedom
Multiple R-squared:  0.3945,    Adjusted R-squared:  0.3657 
F-statistic: 13.68 on 1 and 21 DF,  p-value: 0.001331
model1$residuals
          1           2           3           4           5 
 13654950.2  10082148.6  -5524939.3  10298631.2   1626214.0 
          6           7           8           9          10 
 -6731642.8  -5902522.2 -10250330.7  -4711916.8   -532796.1 
         11          12          13          14          15 
 -6667082.5  -6696203.1   7582148.6  -4916640.9  -1898125.3 
         16          17          18          19          20 
  -336532.3   -995042.5  -1311618.3   -843454.5   8050721.3 
         21          22          23 
  1250336.9   1847040.4   2926656.0 
SSE = sum(model1$residuals^2)
SSE
[1] 8.914926e+14
model2 = lm(Payroll.Salary2023 ~ AVG + RBI, data=firstbase)
summary(model2)

Call:
lm(formula = Payroll.Salary2023 ~ AVG + RBI, data = firstbase)

Residuals:
     Min       1Q   Median       3Q      Max 
-9097952 -4621582   -33233  3016541 10260245 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)  
(Intercept) -18083756    9479036  -1.908   0.0709 .
AVG          74374031   42934155   1.732   0.0986 .
RBI            108850      49212   2.212   0.0388 *
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6226000 on 20 degrees of freedom
Multiple R-squared:  0.4735,    Adjusted R-squared:  0.4209 
F-statistic: 8.994 on 2 and 20 DF,  p-value: 0.001636
SSE = sum(model2$residuals^2)
SSE
[1] 7.751841e+14
model3 = lm(Payroll.Salary2023 ~ HR + RBI + AVG + OBP+ OPS, data=firstbase)
summary(model3)

Call:
lm(formula = Payroll.Salary2023 ~ HR + RBI + AVG + OBP + OPS, 
    data = firstbase)

Residuals:
     Min       1Q   Median       3Q      Max 
-9611440 -3338119    64016  4472451  9490309 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)  
(Intercept) -31107858   11738494  -2.650   0.0168 *
HR            -341069     552069  -0.618   0.5449  
RBI            115786     113932   1.016   0.3237  
AVG         -63824769  104544645  -0.611   0.5496  
OBP          27054948  131210166   0.206   0.8391  
OPS          60181012   95415131   0.631   0.5366  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6023000 on 17 degrees of freedom
Multiple R-squared:  0.5811,    Adjusted R-squared:  0.4579 
F-statistic: 4.717 on 5 and 17 DF,  p-value: 0.006951
SSE = sum(model3$residuals^2)
SSE
[1] 6.167793e+14
model4 = lm(Payroll.Salary2023 ~ RBI + AVG + OBP+OPS, data=firstbase)
summary(model4)

Call:
lm(formula = Payroll.Salary2023 ~ RBI + AVG + OBP + OPS, data = firstbase)

Residuals:
     Min       1Q   Median       3Q      Max 
-9399551 -3573842    98921  3979339  9263512 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)  
(Intercept) -29466887   11235931  -2.623   0.0173 *
RBI             71495      87015   0.822   0.4220  
AVG         -11035457   59192453  -0.186   0.8542  
OBP          86360720   87899074   0.982   0.3389  
OPS           9464546   47788458   0.198   0.8452  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 5919000 on 18 degrees of freedom
Multiple R-squared:  0.5717,    Adjusted R-squared:  0.4765 
F-statistic: 6.007 on 4 and 18 DF,  p-value: 0.00298
firstbase<-firstbase[,-(1:3)]
cor(firstbase$RBI, firstbase$Payroll.Salary2023)
[1] 0.6281239
cor(firstbase$AVG, firstbase$OBP)
[1] 0.8028894
cor(firstbase)
                          GP        AB         H       X2B
GP                 1.0000000 0.9779421 0.9056508 0.8446267
AB                 0.9779421 1.0000000 0.9516701 0.8924632
H                  0.9056508 0.9516701 1.0000000 0.9308318
X2B                0.8446267 0.8924632 0.9308318 1.0000000
HR                 0.7432552 0.7721339 0.7155225 0.5889699
RBI                0.8813917 0.9125839 0.9068893 0.8485911
AVG                0.4430808 0.5126292 0.7393167 0.6613085
OBP                0.4841583 0.5026125 0.6560021 0.5466537
SLG                0.6875270 0.7471949 0.8211406 0.7211259
OPS                0.6504483 0.6980141 0.8069779 0.6966830
WAR                0.5645243 0.6211558 0.7688712 0.6757470
Payroll.Salary2023 0.4614889 0.5018820 0.6249911 0.6450730
                          HR       RBI       AVG       OBP
GP                 0.7432552 0.8813917 0.4430808 0.4841583
AB                 0.7721339 0.9125839 0.5126292 0.5026125
H                  0.7155225 0.9068893 0.7393167 0.6560021
X2B                0.5889699 0.8485911 0.6613085 0.5466537
HR                 1.0000000 0.8929048 0.3444242 0.4603408
RBI                0.8929048 1.0000000 0.5658479 0.5704463
AVG                0.3444242 0.5658479 1.0000000 0.8028894
OBP                0.4603408 0.5704463 0.8028894 1.0000000
SLG                0.8681501 0.8824090 0.7254274 0.7617499
OPS                0.7638721 0.8156612 0.7989005 0.8987390
WAR                0.6897677 0.7885666 0.7855945 0.7766375
Payroll.Salary2023 0.5317619 0.6281239 0.5871543 0.7025979
                         SLG       OPS       WAR
GP                 0.6875270 0.6504483 0.5645243
AB                 0.7471949 0.6980141 0.6211558
H                  0.8211406 0.8069779 0.7688712
X2B                0.7211259 0.6966830 0.6757470
HR                 0.8681501 0.7638721 0.6897677
RBI                0.8824090 0.8156612 0.7885666
AVG                0.7254274 0.7989005 0.7855945
OBP                0.7617499 0.8987390 0.7766375
SLG                1.0000000 0.9686752 0.8611140
OPS                0.9686752 1.0000000 0.8799893
WAR                0.8611140 0.8799893 1.0000000
Payroll.Salary2023 0.6974086 0.7394981 0.8086359
                   Payroll.Salary2023
GP                          0.4614889
AB                          0.5018820
H                           0.6249911
X2B                         0.6450730
HR                          0.5317619
RBI                         0.6281239
AVG                         0.5871543
OBP                         0.7025979
SLG                         0.6974086
OPS                         0.7394981
WAR                         0.8086359
Payroll.Salary2023          1.0000000
model5 = lm(Payroll.Salary2023 ~ RBI + OBP+OPS, data=firstbase)
summary(model5)

Call:
lm(formula = Payroll.Salary2023 ~ RBI + OBP + OPS, data = firstbase)

Residuals:
     Min       1Q   Median       3Q      Max 
-9465449 -3411234   259746  4102864  8876798 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)  
(Intercept) -29737007   10855411  -2.739    0.013 *
RBI             72393      84646   0.855    0.403  
OBP          82751360   83534224   0.991    0.334  
OPS           7598051   45525575   0.167    0.869  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 5767000 on 19 degrees of freedom
Multiple R-squared:  0.5709,    Adjusted R-squared:  0.5031 
F-statistic: 8.426 on 3 and 19 DF,  p-value: 0.000913
model6 = lm(Payroll.Salary2023 ~ RBI + OBP, data=firstbase)
summary(model6)

Call:
lm(formula = Payroll.Salary2023 ~ RBI + OBP, data = firstbase)

Residuals:
     Min       1Q   Median       3Q      Max 
-9045497 -3487008   139497  4084739  9190185 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)   
(Intercept) -28984802    9632560  -3.009  0.00693 **
RBI             84278      44634   1.888  0.07360 . 
OBP          95468873   33385182   2.860  0.00969 **
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 5625000 on 20 degrees of freedom
Multiple R-squared:  0.5703,    Adjusted R-squared:  0.5273 
F-statistic: 13.27 on 2 and 20 DF,  p-value: 0.0002149
firstbaseTest = read.csv("firstbasestats_test.csv")
str(firstbaseTest)
'data.frame':   2 obs. of  15 variables:
 $ Player            : chr  "Matt Olson" "Josh Bell"
 $ Pos               : chr  "1B" "1B"
 $ Team              : chr  "ATL" "SD"
 $ GP                : int  162 156
 $ AB                : int  616 552
 $ H                 : int  148 147
 $ X2B               : int  44 29
 $ HR                : int  34 17
 $ RBI               : int  103 71
 $ AVG               : num  0.24 0.266
 $ OBP               : num  0.325 0.362
 $ SLG               : num  0.477 0.422
 $ OPS               : num  0.802 0.784
 $ WAR               : num  3.29 3.5
 $ Payroll.Salary2023: num  21000000 16500000
predictTest = predict(model6, newdata=firstbaseTest)
predictTest
       1        2 
10723186 11558647 
SSE = sum((firstbaseTest$Payroll.Salary2023 - predictTest)^2)
SST = sum((firstbaseTest$Payroll.Salary2023 - mean(firstbase$Payroll.Salary2023))^2)
1 - SSE/SST
[1] 0.5477734
LS0tCnRpdGxlOiAiSW4tY2xhc3MgYWN0aXZpdHkgIzYiCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KCmBgYHtyfQpmaXJzdGJhc2UgPSByZWFkLmNzdigiZmlyc3RiYXNlc3RhdHMuY3N2IikKc3RyKGZpcnN0YmFzZSkKYGBgCmBgYHtyfQpzdW1tYXJ5KGZpcnN0YmFzZSkKYGBgCmBgYHtyfQptb2RlbDEgPSBsbShQYXlyb2xsLlNhbGFyeTIwMjMgfiBSQkksIGRhdGE9Zmlyc3RiYXNlKQpzdW1tYXJ5KG1vZGVsMSkKYGBgCmBgYHtyfQptb2RlbDEkcmVzaWR1YWxzCmBgYApgYGB7cn0KU1NFID0gc3VtKG1vZGVsMSRyZXNpZHVhbHNeMikKU1NFCmBgYApgYGB7cn0KbW9kZWwyID0gbG0oUGF5cm9sbC5TYWxhcnkyMDIzIH4gQVZHICsgUkJJLCBkYXRhPWZpcnN0YmFzZSkKc3VtbWFyeShtb2RlbDIpCmBgYApgYGB7cn0KU1NFID0gc3VtKG1vZGVsMiRyZXNpZHVhbHNeMikKU1NFCmBgYApgYGB7cn0KbW9kZWwzID0gbG0oUGF5cm9sbC5TYWxhcnkyMDIzIH4gSFIgKyBSQkkgKyBBVkcgKyBPQlArIE9QUywgZGF0YT1maXJzdGJhc2UpCnN1bW1hcnkobW9kZWwzKQpgYGAKYGBge3J9ClNTRSA9IHN1bShtb2RlbDMkcmVzaWR1YWxzXjIpClNTRQpgYGAKYGBge3J9Cm1vZGVsNCA9IGxtKFBheXJvbGwuU2FsYXJ5MjAyMyB+IFJCSSArIEFWRyArIE9CUCtPUFMsIGRhdGE9Zmlyc3RiYXNlKQpzdW1tYXJ5KG1vZGVsNCkKYGBgCmBgYHtyfQpmaXJzdGJhc2U8LWZpcnN0YmFzZVssLSgxOjMpXQpgYGAKYGBge3J9CmNvcihmaXJzdGJhc2UkUkJJLCBmaXJzdGJhc2UkUGF5cm9sbC5TYWxhcnkyMDIzKQpgYGAKYGBge3J9CmNvcihmaXJzdGJhc2UkQVZHLCBmaXJzdGJhc2UkT0JQKQpgYGAKYGBge3J9CmNvcihmaXJzdGJhc2UpCmBgYApgYGB7cn0KbW9kZWw1ID0gbG0oUGF5cm9sbC5TYWxhcnkyMDIzIH4gUkJJICsgT0JQK09QUywgZGF0YT1maXJzdGJhc2UpCnN1bW1hcnkobW9kZWw1KQpgYGAKYGBge3J9Cm1vZGVsNiA9IGxtKFBheXJvbGwuU2FsYXJ5MjAyMyB+IFJCSSArIE9CUCwgZGF0YT1maXJzdGJhc2UpCnN1bW1hcnkobW9kZWw2KQpgYGAKYGBge3J9CmZpcnN0YmFzZVRlc3QgPSByZWFkLmNzdigiZmlyc3RiYXNlc3RhdHNfdGVzdC5jc3YiKQpzdHIoZmlyc3RiYXNlVGVzdCkKYGBgCmBgYHtyfQpwcmVkaWN0VGVzdCA9IHByZWRpY3QobW9kZWw2LCBuZXdkYXRhPWZpcnN0YmFzZVRlc3QpCnByZWRpY3RUZXN0CmBgYApgYGB7cn0KU1NFID0gc3VtKChmaXJzdGJhc2VUZXN0JFBheXJvbGwuU2FsYXJ5MjAyMyAtIHByZWRpY3RUZXN0KV4yKQpTU1QgPSBzdW0oKGZpcnN0YmFzZVRlc3QkUGF5cm9sbC5TYWxhcnkyMDIzIC0gbWVhbihmaXJzdGJhc2UkUGF5cm9sbC5TYWxhcnkyMDIzKSleMikKMSAtIFNTRS9TU1QKYGBg