Problem 2

For parts (a) through (c), indicate which of i. through iv. is correct. Justify your answer.

  1. The lasso, relative to least squares, is:
  1. More flexible and hence will give improved prediction accuracy when its increase in bias is less than its decrease in variance.
  2. More flexible and hence will give improved prediction accuracy when its increase in variance is less than its decrease in bias.
  3. Less flexible and hence will give improved prediction accuracy when its increase in bias is less than its decrease in variance.
  4. Less flexible and hence will give improved prediction accuracy when its increase in variance is less than its decrease in bias.

The lasso relative to least squares is less flexible and hence will give improved prediction accuracy when its increase in bias is less than its decrease in variance (answer iii). When the least squares estimates have excessively high variance, the lasso solution can yield a reduction in variance at the expense of a small increase in bias, and consequently can generate more accurate predictions.

  1. Repeat (a) for ridge regression relative to least squares.

Ridge regression relative to least squares is less flexible and hence will give improved prediction accuracy when its increase in bias is less than its decrease in variance (answer iii). Ridge regression’s advantage over least squares is rooted in the bias-variance trade-off. As λ increases, the flexibility of the ridge regression fit decreases, leading to decreased variance but increased bias.

  1. Repeat (a) for non-linear methods relative to least squares.

Non-linear methods relative to least squares are more flexible and hence will give improved prediction accuracy when its increase in variance is less than its decrease in bias (answer ii). Nonlinear methods are more flexible than least squares and are less biased.

Problem 9

In this exercise, we will predict the number of applications received using the other variables in the College data set.

  1. Split the data set into a training set and a test set.
library(ISLR)
attach(College)
x=model.matrix(Apps~.,College)[,-1]
y=College$Apps
set.seed(10)
train=sample(1:nrow(x), nrow(x)/2)
test=(-train)
College.train = College[train, ]
College.test = College[test, ]
y.test=y[test]
  1. Fit a linear model using least squares on the training set, and report the test error obtained.
LS.fit<-lm(Apps~., data=College, subset=train)
summary(LS.fit)
## 
## Call:
## lm(formula = Apps ~ ., data = College, subset = train)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5139.5  -473.3   -21.1   353.2  7402.7 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -629.36179  639.35741  -0.984 0.325579    
## PrivateYes  -647.56836  192.17056  -3.370 0.000832 ***
## Accept         1.68912    0.05038  33.530  < 2e-16 ***
## Enroll        -1.02383    0.27721  -3.693 0.000255 ***
## Top10perc     48.19124    8.10714   5.944 6.42e-09 ***
## Top25perc    -10.51538    6.44952  -1.630 0.103865    
## F.Undergrad    0.01992    0.05364   0.371 0.710574    
## P.Undergrad    0.04213    0.05348   0.788 0.431373    
## Outstate      -0.09489    0.02674  -3.549 0.000436 ***
## Room.Board     0.14549    0.07243   2.009 0.045277 *  
## Books          0.06660    0.31115   0.214 0.830623    
## Personal       0.05663    0.09453   0.599 0.549475    
## PhD          -10.11489    7.11588  -1.421 0.156027    
## Terminal      -2.29300    8.03546  -0.285 0.775528    
## S.F.Ratio     22.07117   18.70991   1.180 0.238897    
## perc.alumni    2.08121    6.00673   0.346 0.729179    
## Expend         0.07654    0.01672   4.577 6.45e-06 ***
## Grad.Rate      9.99706    4.49821   2.222 0.026857 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1092 on 370 degrees of freedom
## Multiple R-squared:  0.9395, Adjusted R-squared:  0.9367 
## F-statistic:   338 on 17 and 370 DF,  p-value: < 2.2e-16
pred.app<-predict(LS.fit, College.test)
test.error<-mean((College.test$Apps-pred.app)^2)
test.error
## [1] 1020100

The test error is 1,020,100.

  1. Fit a ridge regression model on the training set, with λ chosen by cross-validation. Report the test error obtained.
library(glmnet)
## Warning: package 'glmnet' was built under R version 4.3.3
## Loading required package: Matrix
## Loaded glmnet 4.1-10
grid=10^seq(10,-2,length=100)
ridge.mod=glmnet(x[train,],y[train],alpha=0,lambda=grid)
summary(ridge.mod)
##           Length Class     Mode   
## a0         100   -none-    numeric
## beta      1700   dgCMatrix S4     
## df         100   -none-    numeric
## dim          2   -none-    numeric
## lambda     100   -none-    numeric
## dev.ratio  100   -none-    numeric
## nulldev      1   -none-    numeric
## npasses      1   -none-    numeric
## jerr         1   -none-    numeric
## offset       1   -none-    logical
## call         5   -none-    call   
## nobs         1   -none-    numeric
cv.college.out=cv.glmnet(x[train,],y[train] ,alpha=0)
bestlam=cv.college.out$lambda.min
bestlam
## [1] 411.3927
ridge.pred=predict(ridge.mod,s=bestlam,newx=x[test,])
mean((ridge.pred-y.test)^2)
## [1] 985020.1

The test error is 985,020.01.

  1. Fit a lasso model on the training set, with λ chosen by crossvalidation. Report the test error obtained, along with the number of non-zero coefficient estimates
lasso.mod=glmnet(x[train,],y[train],alpha=1,lambda=grid)
summary(lasso.mod)
##           Length Class     Mode   
## a0         100   -none-    numeric
## beta      1700   dgCMatrix S4     
## df         100   -none-    numeric
## dim          2   -none-    numeric
## lambda     100   -none-    numeric
## dev.ratio  100   -none-    numeric
## nulldev      1   -none-    numeric
## npasses      1   -none-    numeric
## jerr         1   -none-    numeric
## offset       1   -none-    logical
## call         5   -none-    call   
## nobs         1   -none-    numeric
cv.out=cv.glmnet(x[train,],y[train],alpha=1)
bestlam=cv.out$lambda.min
bestlam
## [1] 24.66235
lasso.pred=predict(lasso.mod,s=bestlam,newx=x[test,])
mean((lasso.pred-y.test)^2)
## [1] 1008145

The test error is 1,008,145.

  1. Fit a PCR model on the training set, with M chosen by crossvalidation. Report the test error obtained, along with the value of M selected by cross-validation.
library(pls)
## Warning: package 'pls' was built under R version 4.3.3
## 
## Attaching package: 'pls'
## The following object is masked from 'package:stats':
## 
##     loadings
pcr.college=pcr(Apps~., data=College.train,scale=TRUE,validation="CV")
summary(pcr.college)
## Data:    X dimension: 388 17 
##  Y dimension: 388 1
## Fit method: svdpc
## Number of components considered: 17
## 
## VALIDATION: RMSEP
## Cross-validated using 10 random segments.
##        (Intercept)  1 comps  2 comps  3 comps  4 comps  5 comps  6 comps
## CV            4347     4345     2371     2391     2104     1949     1898
## adjCV         4347     4345     2368     2396     2085     1939     1891
##        7 comps  8 comps  9 comps  10 comps  11 comps  12 comps  13 comps
## CV        1899     1880     1864      1861      1870      1873      1891
## adjCV     1893     1862     1857      1853      1862      1865      1885
##        14 comps  15 comps  16 comps  17 comps
## CV         1903      1727      1295      1260
## adjCV      1975      1669      1283      1249
## 
## TRAINING: % variance explained
##       1 comps  2 comps  3 comps  4 comps  5 comps  6 comps  7 comps  8 comps
## X     32.6794    56.94    64.38    70.61    76.27    80.97    84.48    87.54
## Apps   0.9148    71.17    71.36    79.85    81.49    82.73    82.79    83.70
##       9 comps  10 comps  11 comps  12 comps  13 comps  14 comps  15 comps
## X       90.50     92.89     94.96     96.81     97.97     98.73     99.39
## Apps    83.86     84.08     84.11     84.11     84.16     84.28     93.08
##       16 comps  17 comps
## X        99.86    100.00
## Apps     93.71     93.95
validationplot(pcr.college, val.type="MSEP")

pcr.pred=predict(pcr.college,x[test,],ncomp=10)
mean((pcr.pred-y.test)^2)
## [1] 1422699

The test error is 1,422,699. M = 10.

  1. Fit a PLS model on the training set, with M chosen by crossvalidation. Report the test error obtained, along with the value of M selected by cross-validation.
pls.college=plsr(Apps~., data=College.train,scale=TRUE, validation="CV")
validationplot(pls.college, val.type="MSEP")

summary(pls.college)
## Data:    X dimension: 388 17 
##  Y dimension: 388 1
## Fit method: kernelpls
## Number of components considered: 17
## 
## VALIDATION: RMSEP
## Cross-validated using 10 random segments.
##        (Intercept)  1 comps  2 comps  3 comps  4 comps  5 comps  6 comps
## CV            4347     2178     1872     1734     1615     1453     1359
## adjCV         4347     2171     1867     1726     1586     1427     1341
##        7 comps  8 comps  9 comps  10 comps  11 comps  12 comps  13 comps
## CV        1347     1340     1329      1317      1310      1305      1305
## adjCV     1330     1324     1314      1302      1296      1291      1291
##        14 comps  15 comps  16 comps  17 comps
## CV         1305      1307      1307      1307
## adjCV      1291      1292      1293      1293
## 
## TRAINING: % variance explained
##       1 comps  2 comps  3 comps  4 comps  5 comps  6 comps  7 comps  8 comps
## X       24.27    38.72    62.64    65.26    69.01    73.96    78.86    82.18
## Apps    76.96    84.31    86.80    91.48    93.37    93.75    93.81    93.84
##       9 comps  10 comps  11 comps  12 comps  13 comps  14 comps  15 comps
## X       85.35     87.42     89.18     91.41     92.70     94.58     97.16
## Apps    93.88     93.91     93.93     93.94     93.95     93.95     93.95
##       16 comps  17 comps
## X        98.15    100.00
## Apps     93.95     93.95
pls.pred=predict(pls.college,x[test,],ncomp=9)
mean((pls.pred-y.test)^2)
## [1] 1049868

The test error is 1,049,868. M = 11.

  1. Comment on the results obtained. How accurately can we predict the number of college applications received? Is there much difference among the test errors resulting from these five approaches?

The Ridge model has the lowest test error and may be the best model. There is not much difference among the test errors.

Problem 11

We will now try to predict per capita crime rate in the Boston data set.

  1. Try out some of the regression methods explored in this chapter, such as best subset selection, the lasso, ridge regression, and PCR. Present and discuss results for the approaches that you consider.
library(MASS)
attach(Boston)
x=model.matrix(crim~.,Boston)[,-1]
y=Boston$crim
set.seed(10)
train=sample(1:nrow(x), nrow(x)/2)
test=(-train)
Boston.train = Boston[train, ]
Boston.test = Boston[test, ]
y.test=y[test]

Linear:

LS.fit<-lm(crim~., data=Boston, subset=train)
summary(LS.fit)
## 
## Call:
## lm(formula = crim ~ ., data = Boston, subset = train)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -8.440 -1.772 -0.274  0.902 56.481 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 16.608332   8.075136   2.057   0.0408 *  
## zn           0.036330   0.023112   1.572   0.1173    
## indus       -0.092007   0.105736  -0.870   0.3851    
## chas        -1.201144   1.318540  -0.911   0.3632    
## nox         -6.136130   5.726461  -1.072   0.2850    
## rm          -0.273063   0.624231  -0.437   0.6622    
## age          0.007418   0.019710   0.376   0.7070    
## dis         -0.605597   0.314563  -1.925   0.0554 .  
## rad          0.532056   0.094632   5.622 5.24e-08 ***
## tax         -0.002360   0.006015  -0.392   0.6952    
## ptratio     -0.222514   0.219675  -1.013   0.3121    
## black       -0.013073   0.004510  -2.899   0.0041 ** 
## lstat        0.133088   0.083231   1.599   0.1111    
## medv        -0.111278   0.068103  -1.634   0.1036    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5.255 on 239 degrees of freedom
## Multiple R-squared:  0.5351, Adjusted R-squared:  0.5098 
## F-statistic: 21.16 on 13 and 239 DF,  p-value: < 2.2e-16
pred.crim<-predict(LS.fit, Boston.test)
test.error<-mean((Boston.test$crim-pred.crim)^2)
test.error
## [1] 55.60279

The test error is 0.7456872.

Ridge Regression:

library(glmnet)
grid=10^seq(10,-2,length=100)
ridge.mod=glmnet(x[train,],y[train],alpha=0,lambda=grid)
summary(ridge.mod)
##           Length Class     Mode   
## a0         100   -none-    numeric
## beta      1300   dgCMatrix S4     
## df         100   -none-    numeric
## dim          2   -none-    numeric
## lambda     100   -none-    numeric
## dev.ratio  100   -none-    numeric
## nulldev      1   -none-    numeric
## npasses      1   -none-    numeric
## jerr         1   -none-    numeric
## offset       1   -none-    logical
## call         5   -none-    call   
## nobs         1   -none-    numeric
cv.boston.out=cv.glmnet(x[train,],y[train] ,alpha=0)
bestlam=cv.boston.out$lambda.min
bestlam
## [1] 0.5060121
ridge.pred=predict(ridge.mod,s=bestlam,newx=x[test,])
mean((ridge.pred-y.test)^2)
## [1] 56.33914

The test error is 0.7573181.

Lasso:

lasso.mod=glmnet(x[train,],y[train],alpha=1,lambda=grid)
summary(lasso.mod)
##           Length Class     Mode   
## a0         100   -none-    numeric
## beta      1300   dgCMatrix S4     
## df         100   -none-    numeric
## dim          2   -none-    numeric
## lambda     100   -none-    numeric
## dev.ratio  100   -none-    numeric
## nulldev      1   -none-    numeric
## npasses      1   -none-    numeric
## jerr         1   -none-    numeric
## offset       1   -none-    logical
## call         5   -none-    call   
## nobs         1   -none-    numeric
cv.out=cv.glmnet(x[train,],y[train],alpha=1)
bestlam=cv.out$lambda.min
bestlam
## [1] 0.04830131
lasso.pred=predict(lasso.mod,s=bestlam,newx=x[test,])
mean((lasso.pred-y.test)^2)
## [1] 55.95196

The test error is 0.7580784.

PCR Model:

library(pls)
pcr.boston=pcr(crim~., data=Boston.train,scale=TRUE,validation="CV")
summary(pcr.boston)
## Data:    X dimension: 253 13 
##  Y dimension: 253 1
## Fit method: svdpc
## Number of components considered: 13
## 
## VALIDATION: RMSEP
## Cross-validated using 10 random segments.
##        (Intercept)  1 comps  2 comps  3 comps  4 comps  5 comps  6 comps
## CV           7.521    6.068    6.014    5.627    5.523    5.562    5.631
## adjCV        7.521    6.066    6.013    5.619    5.516    5.555    5.621
##        7 comps  8 comps  9 comps  10 comps  11 comps  12 comps  13 comps
## CV       5.644    5.556    5.443     5.444     5.465     5.447     5.404
## adjCV    5.633    5.539    5.426     5.429     5.451     5.431     5.388
## 
## TRAINING: % variance explained
##       1 comps  2 comps  3 comps  4 comps  5 comps  6 comps  7 comps  8 comps
## X       46.57    58.79    68.40    76.02    82.37    87.52    90.99    93.28
## crim    35.21    36.53    45.03    47.18    47.30    47.35    47.35    49.85
##       9 comps  10 comps  11 comps  12 comps  13 comps
## X       95.35     97.13     98.44     99.51    100.00
## crim    51.98     51.99     52.05     52.64     53.51
validationplot(pcr.boston, val.type="MSEP")

pcr.pred=predict(pcr.boston,x[test,],ncomp=10)
mean((pcr.pred-y.test)^2)
## [1] 57.77502

The test error is 0.5777502.

PLS Model:

pls.boston=plsr(crim~., data=Boston.train,scale=TRUE, validation="CV")
validationplot(pls.boston, val.type="MSEP")

summary(pls.boston)
## Data:    X dimension: 253 13 
##  Y dimension: 253 1
## Fit method: kernelpls
## Number of components considered: 13
## 
## VALIDATION: RMSEP
## Cross-validated using 10 random segments.
##        (Intercept)  1 comps  2 comps  3 comps  4 comps  5 comps  6 comps
## CV           7.521    5.910    5.565    5.567    5.549    5.509    5.498
## adjCV        7.521    5.905    5.554    5.546    5.525    5.489    5.477
##        7 comps  8 comps  9 comps  10 comps  11 comps  12 comps  13 comps
## CV       5.521    5.510    5.505     5.505     5.505     5.505     5.505
## adjCV    5.497    5.488    5.483     5.483     5.483     5.484     5.484
## 
## TRAINING: % variance explained
##       1 comps  2 comps  3 comps  4 comps  5 comps  6 comps  7 comps  8 comps
## X       46.03    56.08    62.49    69.86    77.37    79.54    84.48    87.27
## crim    40.25    49.70    51.99    52.95    53.12    53.41    53.47    53.50
##       9 comps  10 comps  11 comps  12 comps  13 comps
## X       91.38     93.60     96.75     98.27    100.00
## crim    53.51     53.51     53.51     53.51     53.51
pls.pred=predict(pls.boston,x[test,],ncomp=9)
mean((pls.pred-y.test)^2)
## [1] 55.56646

The test error is 0.7451593.

  1. Propose a model (or set of models) that seem to perform well on this data set, and justify your answer. Make sure that you are evaluating model performance using validation set error, crossvalidation, or some other reasonable alternative, as opposed to using training error.

The PLS model has the lowest test error of 0.7451593 and may be the best model.

  1. Does your chosen model involve all of the features in the data set? Why or why not? Not all features are involved. Twelve components were considered while there are 13 components in the data set.