#Across the United States, which types of events are most harmful with respect to population health?
# Summarize total fatalities and injuries by event type
harmful_events <- repdata_data_StormData %>%
group_by(EVTYPE) %>%
summarise(
total_fatalities = sum(FATALITIES, na.rm = TRUE),
total_injuries = sum(INJURIES, na.rm = TRUE),
total_harmed = total_fatalities + total_injuries
) %>%
arrange(desc(total_harmed))
head(harmful_events, 10)
## # A tibble: 10 × 4
## EVTYPE total_fatalities total_injuries total_harmed
## <chr> <dbl> <dbl> <dbl>
## 1 TORNADO 5633 91346 96979
## 2 EXCESSIVE HEAT 1903 6525 8428
## 3 TSTM WIND 504 6957 7461
## 4 FLOOD 470 6789 7259
## 5 LIGHTNING 816 5230 6046
## 6 HEAT 937 2100 3037
## 7 FLASH FLOOD 978 1777 2755
## 8 ICE STORM 89 1975 2064
## 9 THUNDERSTORM WIND 133 1488 1621
## 10 WINTER STORM 206 1321 1527
top10 <- harmful_events %>% top_n(10, total_harmed)
ggplot(top10, aes(x = reorder(EVTYPE, total_harmed), y = total_harmed)) +
geom_bar(stat = "identity") +
coord_flip() +
labs(
title = "Top 10 Most Harmful Weather Events in the US (Population Health)",
x = "Event Type", y = "Total Fatalities + Injuries"
)
#Across the United States, which types of events have the greatest economic consequences?
convert_exp <- function(e) {
e <- toupper(as.character(e))
val <- rep(1, length(e))
val[e == "K"] <- 1e3
val[e == "M"] <- 1e6
val[e == "B"] <- 1e9
val[e %in% c("H")] <- 1e2
val[!e %in% c("", "K", "M", "B", "H", "0")] <- NA
return(val)
}
repdata_data_StormData <- repdata_data_StormData %>%
mutate(
prop_dmg_exp = convert_exp(PROPDMGEXP),
crop_dmg_exp = convert_exp(CROPDMGEXP),
prop_dmg_val = PROPDMG * prop_dmg_exp,
crop_dmg_val = CROPDMG * crop_dmg_exp,
total_damage = prop_dmg_val + crop_dmg_val
)
econ_damage <- repdata_data_StormData %>%
group_by(EVTYPE) %>%
summarise(
property_damage = sum(prop_dmg_val, na.rm = TRUE),
crop_damage = sum(crop_dmg_val, na.rm = TRUE),
total_damage = sum(total_damage, na.rm = TRUE)
) %>%
arrange(desc(total_damage))
head(econ_damage, 10)
## # A tibble: 10 × 4
## EVTYPE property_damage crop_damage total_damage
## <chr> <dbl> <dbl> <dbl>
## 1 FLOOD 144657709800 5661968450 138007444500
## 2 HURRICANE/TYPHOON 69305840000 2607872800 29348167800
## 3 TORNADO 56937160614. 414953270 16570326363
## 4 HURRICANE 11868319010 2741910000 12405268000
## 5 RIVER FLOOD 5118945500 5029459000 10108369000
## 6 HAIL 15732267456. 3025954470 10020596590
## 7 FLASH FLOOD 16140861772. 1421317100 8715455177
## 8 ICE STORM 3944927860 5022113500 5925150850
## 9 STORM SURGE/TIDE 4641188000 850000 4641493000
## 10 THUNDERSTORM WIND 3483121270 414843050 3813647990
##Plot Top 10 Economically Damaging Events
top10_econ <- econ_damage %>% top_n(10, total_damage)
ggplot(top10_econ, aes(x = reorder(EVTYPE, total_damage), y = total_damage)) +
geom_bar(stat = "identity") +
coord_flip() +
labs(
title = "Top 10 Weather Events with Greatest Economic Damage in the US",
x = "Event Type", y = "Total Economic Damage (USD)"
)