install.packages(“WDI”)
install.packages(“plm”)
install.packages(“dplyr”)
install.packages(“ggplot2”)
install.packages(“stargazer”)
library(WDI)
library(plm)
library(dplyr)
library(ggplot2)
library(stargazer)
install.packages(“WDI”)
library(WDI)
Assignment <- WDI(country <- c(“BEL”,“DEU”,“BGR”,“CZE”,“DNK”,“EST”,“IRL”,“GRC”,“ESP”,“FRA”, “HRV”,“ITA”,“CYP”,“LVA”,“LTU”,“LUX”,“HUN”,“MLT”,“NLD”,“AUT”, “POL”,“PRT”,“ROU”,“SVN”,“SVK”,“FIN”,“SWE”,“GBR”), indicator <- c(“NY.GDP.PCAP.CD”,“SE.SEC.ENRR”,“NE.GDI.TOTL.CD”,“SP.POP.GROW”), start= 2000, end= 2018, extra=FALSE)
colnames(Assignment) <- c(“country”,“ABB1”,“ABB2”, “year”,“GDP”,“Enrollment”,“capital”,“population”)
install.packages(“plm”)
library(“plm”)
Assignment\(Enrollment[is.na(Assignment\)Enrollment)]
<-
mean(Assignment$Enrollment, na.rm = TRUE)
Assignment.p <- pdata.frame(Assignment, index <- c(“country”, “year”))
inherits(Assignment.p, “pdata.frame”)
pdim(Assignment.p)
is.pbalanced(Assignment.p)
attach(Assignment.p)
cor.mat<-data.frame(GDP,Enrollment,capital,population)
cor(cor.mat)
install.packages(“dplyr”)
library(dplyr)
average_by_country<- Assignment.p %>% group_by(country) %>%
summarise_all(mean, na.rm=FALSE)
average_by_country
average_by_year<- Assignment.p %>% group_by(year) %>%
summarise_all(mean, na.rm=FALSE)
average_by_year
install.packages(“ggplot2”)
library(ggplot2)
ggplot(average_by_country,aes(x=country,y=Enrollment))+ geom_bar(stat
= “identity”,fill=“gray”)+ theme_minimal() + theme(axis.text.x =
element_text(angle = 45, hjust = 1)) +
labs(title = “Average Enrollment by Country”, x = “Country”, y =
“Enrollment”)
ggplot(average_by_country,aes(x=country,y=GDP))+ geom_bar(stat =
“identity”,fill=“black”)+ theme_minimal() + theme(axis.text.x =
element_text(angle = 45, hjust = 1)) +
labs(title = “Average GDP per capita by Country”, x = “Country”, y =
“GDP”)
ggplot(average_by_country,aes(x=country,y=capital))+ geom_bar(stat =
“identity”,fill=“red”)+ theme_minimal() + theme(axis.text.x =
element_text(angle = 45, hjust = 1)) +
labs(title = “Average Gross capital foramtion by Country”, x =
“Country”, y = “Capital”)
ggplot(average_by_country,aes(x=country,y=population))+ geom_bar(stat
= “identity”,fill=“purple”)+ theme_minimal() + theme(axis.text.x =
element_text(angle = 45, hjust = 1)) +
labs(title = “Average population growth by Country”, x = “Country”, y =
“pop”)
ggplot(average_by_country, aes(x= GDP, y= capital))+ geom_point(size= 2, shape= 23, fill=“black”)+ geom_smooth(method = lm)+ geom_label( aes(label = country), size = 3, fill=“maroon”, color=“white”)
ggplot(average_by_country, aes(x= GDP, y=Enrollment))+ geom_point(size=2, shape=23, color=“black”)+ geom_smooth(method = lm)+ geom_label(aes(label = country), size = 3, fill=“pink”, color=“black”)
ggplot(average_by_country, aes(x=GDP, y=population))+ geom_point(size=2, shape=23, color=“black”)+ geom_smooth(method = lm)+ geom_label(aes(label=country), size=3, fill=“skyblue”, color=“black”)
pooled = plm(log(GDP) ~log(capital) + log(population), data = Assignment.p, model = “pooling”)
pooled
summary(pooled)
random = plm(log(GDP) ~log(capital) + log(population), data = Assignment.p, model = “random”)
random
summary(random)
fixed = plm(log(GDP) ~ log(capital) + log(population), data = Assignment.p, model = “within”)
fixed
summary(fixed)
phtest(fixed,random)
tabel<- stargazer(fixed,random,pooled,type=“text”)