library(zoo)
library(quantmod)
library(dynlm)
library(urca)
library(stargazer)
library(ARDL)
library(xts)
library(strucchange)
library(tibble)
library(lmtest)
library(ggplot2)
colnames(Book1) <- c(“year”,“LNGDP”,“LNGFCE”,“LNGFC”,“LNFDI”)
Book1\(LNGDP <- log(Book1\)LNGDP)
Book1\(LNFDI <- log(Book1\)LNFDI)
Book1\(LNGFCE <- log(Book1\)LNGFCE)
Book1\(LNGFC <- log(Book1\)LNGFC)
tsdata <- ts(Book1,start = 1985)
class(Book1)
zoodata <- zoo(Book1, order.by = Book1$year)
adf.none.level.LNGDP <- ur.df(zoodata$LNGDP, type = c(“none”), selectlags = “AIC”)
summary(adf.none.level.LNGDP)
adf.drift.level.LNGDP <- ur.df(zoodata$LNGDP, type = c(“drift”), selectlags = “AIC”)
summary(adf.drift.level.LNGDP)
adf.trend.level.LNGDP <- ur.df(zoodata$LNGDP, type = “trend”, selectlags = “AIC”)
summary(adf.trend.level.LNGDP)
DLNGDP <- diff(zoodata$LNGDP)
adf.drift.after.diff.LNGDP <- ur.df(DLNGDP, type = “drift”, selectlags = “AIC”)
summary(adf.drift.after.diff.LNGDP)
adf.trend.after.diff.LNGDP <- ur.df(DLNGDP, type = “trend”, selectlags = “AIC”)
summary(adf.trend.after.diff.LNGDP)
adf.none.level.LNFDI <- ur.df(zoodata$LNFDI, type = c(“none”), selectlags = “AIC”)
summary(adf.none.level.LNFDI)
adf.drift.level.LNFDI <- ur.df(zoodata$LNFDI, type = c(“drift”), selectlags = “AIC”)
summary(adf.drift.level.LNFDI)
adf.trend.level.LNFDI <- ur.df(zoodata$LNFDI, type = “trend”, selectlags = “AIC”)
summary(adf.trend.level.LNFDI) ###### The computed |τ | does not exceed the absolute critcal |τ | we accept H1
DLNFDI <- diff(zoodata$LNFDI)
adf.drift.after.diff.LNFDI <- ur.df(DLNFDI, type = “drift”, selectlags = “AIC”) summary(adf.drift.after.diff.LNFDI)
adf.trend.after.diff.LNFDI <- ur.df(DLNFDI, type = “trend”, selectlags = “AIC”)
summary(adf.trend.after.diff.LNFDI)
adf.none.level.LNGFC <- ur.df(zoodata$LNGFC, type = c(“none”), selectlags = “AIC”) summary(adf.none.level.LNGFC)
adf.drift.level.LNGFC <- ur.df(zoodata$LNGFC, type = c(“drift”), selectlags = “AIC”) summary(adf.drift.level.LNGFC)
adf.trend.level.LNGFC <- ur.df(zoodata$LNGFC, type = “trend”, selectlags = “AIC”)
summary(adf.trend.level.LNGFC)
DLNGFC <- diff(zoodata$LNGFC)
adf.drift.after.diff.LNGFC <- ur.df(DLNGFC, type = “drift”, selectlags = “AIC”) summary(adf.drift.after.diff.LNGFC)
adf.trend.after.diff.LNGFC <- ur.df(DLNGFC, type = “trend”, selectlags = “AIC”)
summary(adf.trend.after.diff.LNGFC)
adf.none.level.LNGFCE <- ur.df(zoodata$LNGFCE, type = c(“none”), selectlags = “AIC”) summary(adf.none.level.LNGFCE)
adf.drift.level.LNGFCE <- ur.df(zoodata$LNGFCE, type = c(“drift”), selectlags = “AIC”) summary(adf.drift.level.LNGFCE)
adf.trend.level.LNGFCE <- ur.df(zoodata$LNGFCE, type = “trend”, selectlags = “AIC”)
summary(adf.trend.level.LNGFCE)
DLNGFCE <- diff(zoodata$LNGFCE)
adf.drift.after.diff.LNGFCE <- ur.df(DLNGFCE, type = “drift”, selectlags = “AIC”)
summary(adf.drift.after.diff.LNGFCE)
adf.trend.after.diff.LNGFCE <- ur.df(DLNGFCE, type = “trend”, selectlags = “AIC”)
summary(adf.trend.after.diff.LNGFCE)
models <- auto_ardl(LNGDP ~ LNGFC +LNGFCE +LNFDI, data = tsdata, max_order = 2)
models$top_orders
ardl_1110 <- models$best_model
ardl_1110$order
summary(ardl_1110)
###Bounds Test for cointegration
bounds <- bounds_f_test(ardl_1110, case = 2)
print(bounds)
bptest(ardl_1110)
bgtest(ardl_1110, order = 3)
bgtest(ardl_1110, order = 3, type = “F”)
dwtest(ardl_1110)
uecm_1110 <- uecm(ardl_1110)
summary(uecm_1110)
dwtest(uecm_1110)
bounds <- bounds_f_test(uecm_1110, case = 2)
bounds$Fstat
bounds$tab
multipliers(ardl_1110, type = “sr”)
multipliers(ardl_1110)
cusum_test <- efp(ardl_1110, data = tsdata)
plot(cusum_test, main = “CUSUM Test”, ylab = “CUSUM”, xlab = “Time”,
col = “blue”, lwd = 2) abline(h = 0.948, col = “red”, lty = 2, lwd =
2)
abline(h = -0.948, col = “red”, lty = 2, lwd = 2)