Group CoM Analysis 3

library(tidyverse)
library(tidyr)
library(dplyr)
library(readr)
library(purrr)
library(ggplot2)
library(e1071)
library(emmeans)
library(lme4)
library(lmerTest)
library(patchwork)
library(brms)
library(bayesplot)
library(car)
library(effects)
library(glue)
library(scales)
library(data.table)
library(effects)
# Disable emmeans computation limits for large models
emmeans::emm_options(
  lmerTest.limit = Inf,
  pbkrtest.limit = Inf
)

The used data here is mixed: the training blocks are cleaned of all trials that had a accuracy <0.8 and also the trials with xsens errors are deleted. The Test-Blocks (4 & 5) involve all trials except the ones with xsens errors.

# -------- Step-Level Step Counts --------
step_counts <- tibble(
  Block = c(1, 2, 3, 4, 5),
  Steps = c(6, 12, 18, 18, 18)
)

# -------- Assign Steps Helper Function --------
assign_steps_by_block <- function(df, steps_df = step_counts) {
  df %>%
    inner_join(steps_df, by = "Block") %>%
    group_by(subject, Block, trial) %>%
    mutate(Step = cut_number(row_number(), n = unique(Steps), labels = FALSE)) %>%
    ungroup()
}

# -------- Tag Trial Phases Function (26 or 25 as end marker) --------
tag_trial_phases <- function(df) {
  df %>%
    group_by(subject, Block, trial) %>%
    mutate(
      start_ms = ms[which(Marker.Text == 27)[1]],
      end_ms = {
        end_candidates <- which(Marker.Text %in% c(26, 25))
        if (length(end_candidates) > 0) ms[end_candidates[1]] else NA_real_
      },
      phase = case_when(
        !is.na(start_ms) & !is.na(end_ms) & ms >= start_ms & ms <= end_ms ~ "Execution",
        !is.na(start_ms) & ms >= (start_ms - 1500) & ms < start_ms ~ "Preparation",
        TRUE ~ NA_character_
      )
    ) %>%
    ungroup() %>%
    filter(!is.na(phase))
}
# Load Data
mixed_files <- list.files("/Users/can/Documents/Uni/Thesis/Data/Xsens/cleaned_csv/merged/Cleaned", pattern = "_mixed\\.csv$", full.names = TRUE)
all_data_mixed <- map_dfr(mixed_files, read_csv)

# Tag trial phases once
tagged_data <- tag_trial_phases(all_data_mixed) %>% mutate(DataType = "Mixed")
tagged_data2 <- tag_trial_phases(all_data_mixed) %>% mutate(DataType = "Mixed")
# Compute RMS Function
compute_rms <- function(df) {
  df %>%
    group_by(subject, Block, trial, phase) %>%
    summarise(
      rms_x = sqrt(mean(CoM.acc.x^2, na.rm = TRUE)),
      rms_y = sqrt(mean(CoM.acc.y^2, na.rm = TRUE)),
      rms_z = sqrt(mean(CoM.acc.z^2, na.rm = TRUE)),
      .groups = "drop"
    ) %>%
    group_by(subject, Block, phase) %>%
    arrange(trial) %>%
    mutate(TrialInBlock = row_number()) %>%
    ungroup()
}
# Compute RMS per trial and phase (used throughout)
rms_data <- compute_rms(tagged_data) %>%
  mutate(DataType = "Mixed")


group_rms_summary <- rms_data %>%
  group_by(Block, TrialInBlock, phase) %>%
  summarise(
    mean_rms_x = mean(rms_x, na.rm = TRUE),
    se_rms_x = sd(rms_x, na.rm = TRUE) / sqrt(n()),
    mean_rms_y = mean(rms_y, na.rm = TRUE),
    se_rms_y = sd(rms_y, na.rm = TRUE) / sqrt(n()),
    mean_rms_z = mean(rms_z, na.rm = TRUE),
    se_rms_z = sd(rms_z, na.rm = TRUE) / sqrt(n()),
    .groups = "drop"
  )
# --- New Analysis: Average number of trials with trial.acc == 1 per block ---

trial_acc_summary <- tagged_data %>%
  select(subject, Block, trial, trial.acc) %>%
  distinct() %>%
  filter(trial.acc == 1) %>%
  group_by(subject, Block) %>%
  summarise(n_trials_with_acc1 = n(), .groups = "drop") %>%
  group_by(Block) %>%
  summarise(mean_trials_with_acc1 = mean(n_trials_with_acc1), 
            sd_trials_with_acc1 = sd(n_trials_with_acc1), 
            n_subjects = n())

# Show result
print(trial_acc_summary)
# A tibble: 5 × 4
  Block mean_trials_with_acc1 sd_trials_with_acc1 n_subjects
  <dbl>                 <dbl>               <dbl>      <int>
1     1                  35.5                4.26         18
2     2                  28.9                7.30         18
3     3                  22.1                9.63         18
4     4                  39.2                4.51         18
5     5                  28.9               10.0          18

1 Acceleration in Blocks and phases

#1.1 RMS Acceleration Box Plots - Execution

# ----- Execution Phase RMS Boxplots -----
exec_data <- rms_data %>% filter(phase == "Execution")

for (axis in c("x", "y", "z")) {
  axis_col <- paste0("rms_", axis)
  gg <- ggplot(exec_data, aes(x = factor(Block), y = .data[[axis_col]], fill = phase)) +
    geom_boxplot(alpha = 0.7, outlier.shape = NA) +
    geom_jitter(width = 0.2, alpha = 0.4, size = 0.6) +
    geom_vline(xintercept = 3.5, linetype = "dashed", color = "black") +
    ylim(0, 2.5) +
    labs(
      title = paste("Execution Phase:", toupper(axis), "Axis"),
      x = "Block",
      y = "RMS Acceleration"
    ) +
    theme_minimal() +
    theme(text = element_text(size = 12),
          panel.grid.major = element_blank(),
          panel.grid.minor = element_blank(),legend.position = "none")
  print(gg)
}
Warning: Removed 3 rows containing non-finite outside the scale range
(`stat_boxplot()`).
Warning: Removed 3 rows containing missing values or values outside the scale range
(`geom_point()`).

Warning: Removed 16 rows containing non-finite outside the scale range
(`stat_boxplot()`).
Warning: Removed 16 rows containing missing values or values outside the scale range
(`geom_point()`).

Warning: Removed 175 rows containing non-finite outside the scale range
(`stat_boxplot()`).
Warning: Removed 175 rows containing missing values or values outside the scale range
(`geom_point()`).

#1.2 RMS Acceleration Box Plots - Preparation

# ----- Preparation Phase RMS Boxplots -----

# Extract 1500ms Preparation Window
prep_window_ms <- 1500

extract_preparation_phase <- function(df) {
  df %>%
    group_split(subject, Block, trial) %>%
    map_dfr(function(trial_df) {
      exec_start_row <- which(trial_df$Marker.Text == 27)[1]
      if (!is.na(exec_start_row) && exec_start_row > 1) {
        exec_start_ms <- trial_df$ms[exec_start_row]
        trial_df %>%
          filter(ms >= (exec_start_ms - prep_window_ms) & ms < exec_start_ms) %>%
          mutate(phase = "Preparation")
      } else {
        NULL
      }
    })
}

prep_data <- extract_preparation_phase(tagged_data)

# Compute preparation phase RMS
prep_rms <- prep_data %>%
  group_by(subject, Block, trial, phase) %>%
  summarise(
    rms_x = sqrt(mean(CoM.acc.x^2, na.rm = TRUE)),
    rms_y = sqrt(mean(CoM.acc.y^2, na.rm = TRUE)),
    rms_z = sqrt(mean(CoM.acc.z^2, na.rm = TRUE)),
    .groups = "drop"
  )

# Plot preparation boxplots
for (axis in c("x", "y", "z")) {
  axis_col <- paste0("rms_", axis)
  fill_color <- switch(axis,
                       "x" = "skyblue",
                       "y" = "salmon",
                       "z" = "seagreen")
  
  gg <- ggplot(prep_rms, aes(x = factor(Block), y = .data[[axis_col]])) +
    geom_boxplot(fill = fill_color, alpha = 0.7, outlier.shape = NA) +
    geom_jitter(width = 0.2, alpha = 0.4, size = 0.6) +
    geom_vline(xintercept = 3.5, linetype = "dashed", color = "black") +
    ylim(0, 0.5) +
    labs(
      title = paste("Preparation Phase:", toupper(axis), "Axis"),
      x = "Block",
      y = "RMS Acceleration"
    ) +
    theme_minimal() +
    theme(text = element_text(size = 12),
          panel.grid.major = element_blank(),
          panel.grid.minor = element_blank(),legend.position = "none")
  print(gg)
}
Warning: Removed 159 rows containing non-finite outside the scale range
(`stat_boxplot()`).
Warning: Removed 159 rows containing missing values or values outside the scale range
(`geom_point()`).

Warning: Removed 159 rows containing non-finite outside the scale range
(`stat_boxplot()`).
Removed 159 rows containing missing values or values outside the scale range
(`geom_point()`).

Warning: Removed 217 rows containing non-finite outside the scale range
(`stat_boxplot()`).
Warning: Removed 217 rows containing missing values or values outside the scale range
(`geom_point()`).

#1.3 LMM to assess whether block and phase significantly influence rms (per axis)

# Combine into one dataframe for modeling
rms_combined <- bind_rows(
  prep_rms,
  exec_data
) %>%
  mutate(
    phase = factor(phase, levels = c("Preparation", "Execution")),
    Block = factor(Block),
    Trial = factor(trial)
  )

for (axis in c("x", "y", "z")) {
  cat("\n\n-----------------------------\n")
  cat(paste("Axis:", axis, "\n"))
  
  axis_col <- paste0("rms_", axis)
  formula <- as.formula(paste(axis_col, "~ Block * phase + (1 | subject) + (1 | Trial)"))
  
  model <- lmer(formula, data = rms_combined)
  summary(model)  # Fixed effects and model info
  
  # Estimated marginal means and pairwise comparisons
  emms <- emmeans(model, ~ Block * phase)
  print(emms)
  
  # Pairwise comparisons within each phase
  cat("\nPairwise comparisons between blocks within each phase:\n")
  print(contrast(emms, method = "pairwise", by = "phase", adjust = "tukey"))
  
  # Interaction significance
  # Use Type II Chi-square ANOVA from 'car' package
  cat("\nType II Chi-square ANOVA:\n")
  print(car::Anova(model, type = 2, test.statistic = "Chisq"))

}


-----------------------------
Axis: x 
boundary (singular) fit: see help('isSingular')
 Block phase       emmean     SE   df lower.CL upper.CL
 1     Preparation  0.066 0.0343 20.1 -0.00565    0.138
 2     Preparation  0.119 0.0346 20.6  0.04701    0.191
 3     Preparation  0.169 0.0350 21.6  0.09682    0.242
 4     Preparation  0.126 0.0340 19.4  0.05508    0.197
 5     Preparation  0.129 0.0340 19.3  0.05759    0.200
 1     Execution    0.855 0.0343 20.1  0.78328    0.926
 2     Execution    0.795 0.0346 20.6  0.72318    0.867
 3     Execution    0.666 0.0350 21.6  0.59381    0.739
 4     Execution    0.738 0.0340 19.4  0.66726    0.810
 5     Execution    0.585 0.0340 19.3  0.51372    0.656

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

Pairwise comparisons between blocks within each phase:
phase = Preparation:
 contrast        estimate     SE   df t.ratio p.value
 Block1 - Block2 -0.05302 0.0149 6400  -3.547  0.0036
 Block1 - Block3 -0.10350 0.0159 6424  -6.508  <.0001
 Block1 - Block4 -0.06026 0.0137 6404  -4.408  0.0001
 Block1 - Block5 -0.06273 0.0136 6403  -4.607  <.0001
 Block2 - Block3 -0.05048 0.0164 6422  -3.085  0.0175
 Block2 - Block4 -0.00724 0.0142 6398  -0.508  0.9866
 Block2 - Block5 -0.00971 0.0142 6398  -0.684  0.9599
 Block3 - Block4  0.04324 0.0152 6418   2.838  0.0368
 Block3 - Block5  0.04077 0.0152 6421   2.684  0.0564
 Block4 - Block5 -0.00247 0.0128 6383  -0.193  0.9997

phase = Execution:
 contrast        estimate     SE   df t.ratio p.value
 Block1 - Block2  0.05975 0.0149 6400   3.997  0.0006
 Block1 - Block3  0.18845 0.0159 6424  11.851  <.0001
 Block1 - Block4  0.11650 0.0137 6404   8.522  <.0001
 Block1 - Block5  0.27007 0.0136 6403  19.837  <.0001
 Block2 - Block3  0.12870 0.0164 6422   7.865  <.0001
 Block2 - Block4  0.05675 0.0142 6398   3.985  0.0007
 Block2 - Block5  0.21032 0.0142 6398  14.827  <.0001
 Block3 - Block4 -0.07195 0.0152 6418  -4.723  <.0001
 Block3 - Block5  0.08162 0.0152 6421   5.374  <.0001
 Block4 - Block5  0.15357 0.0128 6383  11.973  <.0001

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 5 estimates 

Type II Chi-square ANOVA:
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: rms_x
              Chisq Df Pr(>Chisq)    
Block        155.99  4  < 2.2e-16 ***
phase       8927.26  1  < 2.2e-16 ***
Block:phase  359.97  4  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1


-----------------------------
Axis: y 
boundary (singular) fit: see help('isSingular')
 Block phase       emmean     SE   df lower.CL upper.CL
 1     Preparation 0.0644 0.0391 20.4  -0.0170    0.146
 2     Preparation 0.1307 0.0394 21.0   0.0488    0.213
 3     Preparation 0.1767 0.0399 22.1   0.0940    0.259
 4     Preparation 0.1231 0.0387 19.6   0.0423    0.204
 5     Preparation 0.1228 0.0387 19.5   0.0421    0.204
 1     Execution   0.9022 0.0391 20.4   0.8208    0.984
 2     Execution   0.8438 0.0394 21.0   0.7619    0.926
 3     Execution   0.6963 0.0399 22.1   0.6136    0.779
 4     Execution   0.7693 0.0387 19.6   0.6885    0.850
 5     Execution   0.6083 0.0387 19.5   0.5275    0.689

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

Pairwise comparisons between blocks within each phase:
phase = Preparation:
 contrast         estimate     SE   df t.ratio p.value
 Block1 - Block2 -0.066293 0.0177 6400  -3.740  0.0017
 Block1 - Block3 -0.112259 0.0189 6424  -5.953  <.0001
 Block1 - Block4 -0.058741 0.0162 6404  -3.623  0.0027
 Block1 - Block5 -0.058438 0.0161 6403  -3.619  0.0028
 Block2 - Block3 -0.045966 0.0194 6422  -2.368  0.1241
 Block2 - Block4  0.007552 0.0169 6398   0.447  0.9917
 Block2 - Block5  0.007855 0.0168 6398   0.467  0.9903
 Block3 - Block4  0.053518 0.0181 6418   2.962  0.0255
 Block3 - Block5  0.053820 0.0180 6421   2.988  0.0236
 Block4 - Block5  0.000303 0.0152 6383   0.020  1.0000

phase = Execution:
 contrast         estimate     SE   df t.ratio p.value
 Block1 - Block2  0.058482 0.0177 6400   3.299  0.0087
 Block1 - Block3  0.205943 0.0189 6424  10.920  <.0001
 Block1 - Block4  0.132968 0.0162 6404   8.201  <.0001
 Block1 - Block5  0.293955 0.0161 6403  18.205  <.0001
 Block2 - Block3  0.147461 0.0194 6422   7.598  <.0001
 Block2 - Block4  0.074486 0.0169 6398   4.410  0.0001
 Block2 - Block5  0.235473 0.0168 6398  13.997  <.0001
 Block3 - Block4 -0.072975 0.0181 6418  -4.039  0.0005
 Block3 - Block5  0.088011 0.0180 6421   4.887  <.0001
 Block4 - Block5  0.160986 0.0152 6383  10.583  <.0001

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 5 estimates 

Type II Chi-square ANOVA:
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: rms_y
              Chisq Df Pr(>Chisq)    
Block        149.37  4  < 2.2e-16 ***
phase       7098.30  1  < 2.2e-16 ***
Block:phase  289.17  4  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1


-----------------------------
Axis: z 
 Block phase       emmean     SE   df lower.CL upper.CL
 1     Preparation 0.0673 0.0647 20.2  -0.0675    0.202
 2     Preparation 0.1724 0.0651 20.8   0.0369    0.308
 3     Preparation 0.2493 0.0659 21.8   0.1125    0.386
 4     Preparation 0.1633 0.0641 19.5   0.0295    0.297
 5     Preparation 0.1609 0.0640 19.4   0.0271    0.295
 1     Execution   1.4002 0.0647 20.2   1.2654    1.535
 2     Execution   1.3895 0.0651 20.8   1.2540    1.525
 3     Execution   1.1906 0.0659 21.8   1.0538    1.327
 4     Execution   1.2872 0.0641 19.5   1.1533    1.421
 5     Execution   1.0224 0.0640 19.4   0.8885    1.156

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

Pairwise comparisons between blocks within each phase:
phase = Preparation:
 contrast        estimate     SE   df t.ratio p.value
 Block1 - Block2 -0.10503 0.0286 6398  -3.673  0.0023
 Block1 - Block3 -0.18195 0.0304 6423  -5.979  <.0001
 Block1 - Block4 -0.09599 0.0262 6403  -3.670  0.0023
 Block1 - Block5 -0.09354 0.0260 6401  -3.591  0.0031
 Block2 - Block3 -0.07692 0.0313 6421  -2.456  0.1009
 Block2 - Block4  0.00904 0.0272 6396   0.332  0.9974
 Block2 - Block5  0.01149 0.0271 6396   0.423  0.9933
 Block3 - Block4  0.08596 0.0292 6416   2.949  0.0266
 Block3 - Block5  0.08841 0.0291 6420   3.042  0.0199
 Block4 - Block5  0.00245 0.0245 6383   0.100  1.0000

phase = Execution:
 contrast        estimate     SE   df t.ratio p.value
 Block1 - Block2  0.01063 0.0286 6398   0.372  0.9959
 Block1 - Block3  0.20954 0.0304 6423   6.886  <.0001
 Block1 - Block4  0.11298 0.0262 6403   4.320  0.0002
 Block1 - Block5  0.37780 0.0260 6401  14.504  <.0001
 Block2 - Block3  0.19891 0.0313 6421   6.352  <.0001
 Block2 - Block4  0.10235 0.0272 6396   3.757  0.0016
 Block2 - Block5  0.36717 0.0271 6396  13.529  <.0001
 Block3 - Block4 -0.09656 0.0292 6416  -3.312  0.0083
 Block3 - Block5  0.16826 0.0291 6420   5.790  <.0001
 Block4 - Block5  0.26482 0.0245 6383  10.793  <.0001

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 5 estimates 

Type II Chi-square ANOVA:
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: rms_z
              Chisq Df Pr(>Chisq)    
Block        119.90  4  < 2.2e-16 ***
phase       7973.86  1  < 2.2e-16 ***
Block:phase  206.08  4  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Combine into one dataframe for modeling
rms_combined <- bind_rows(
  prep_rms,
  exec_data
) %>%
  mutate(
    phase = factor(phase, levels = c("Preparation", "Execution")),
    Block = factor(Block),
    Trial = factor(trial)
  )

# Loop through x, y, z axes
for (axis in c("x", "y", "z")) {
  cat("\n\n=============================\n")
  cat(paste("Axis:", toupper(axis), "\n"))
  cat("=============================\n")
  
  axis_col <- paste0("rms_", axis)
  formula <- as.formula(paste(axis_col, "~ Block * phase + (1 | subject) + (1 | Trial)"))
  
  model <- lmer(formula, data = rms_combined)
  cat("\nModel Summary:\n")
  print(summary(model))
  
  # Estimated marginal means
  emms <- emmeans(model, ~ Block * phase)
  cat("\nEstimated Marginal Means:\n")
  print(emms)
  
  # Pairwise block comparisons within each phase
  cat("\nPairwise Block Comparisons within Each Phase (Axis:", toupper(axis), ")\n")
  pairwise_block <- contrast(emms, method = "pairwise", by = "phase", adjust = "tukey")
  print(pairwise_block)
  
  # Type II chi-square ANOVA
  cat("\nType II Chi-square ANOVA Table (Axis:", toupper(axis), ")\n")
  print(car::Anova(model, type = 2, test.statistic = "Chisq"))
}


=============================
Axis: X 
=============================
boundary (singular) fit: see help('isSingular')

Model Summary:
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: formula
   Data: rms_combined

REML criterion at convergence: 882.4

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-4.2111 -0.5306 -0.0978  0.3164  8.6631 

Random effects:
 Groups   Name        Variance Std.Dev.
 Trial    (Intercept) 0.00000  0.0000  
 subject  (Intercept) 0.01935  0.1391  
 Residual             0.06567  0.2563  
Number of obs: 6450, groups:  Trial, 48; subject, 18

Fixed effects:
                        Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)              0.06596    0.03433   20.04918   1.921 0.069054 .  
Block2                   0.05302    0.01495 6423.27588   3.547 0.000392 ***
Block3                   0.10350    0.01590 6423.55433   6.510 8.07e-11 ***
Block4                   0.06026    0.01367 6423.07386   4.408 1.06e-05 ***
Block5                   0.06273    0.01361 6423.08045   4.608 4.15e-06 ***
phaseExecution           0.78893    0.01440 6422.99243  54.772  < 2e-16 ***
Block2:phaseExecution   -0.11277    0.02111 6422.99243  -5.341 9.58e-08 ***
Block3:phaseExecution   -0.29195    0.02243 6422.99243 -13.014  < 2e-16 ***
Block4:phaseExecution   -0.17676    0.01933 6422.99243  -9.146  < 2e-16 ***
Block5:phaseExecution   -0.33280    0.01925 6422.99243 -17.292  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) Block2 Block3 Block4 Block5 phsExc Blc2:E Blc3:E Blc4:E
Block2      -0.202                                                        
Block3      -0.190  0.439                                                 
Block4      -0.221  0.508  0.478                                          
Block5      -0.222  0.510  0.479  0.558                                   
phaseExectn -0.210  0.482  0.453  0.527  0.529                            
Blck2:phsEx  0.143 -0.706 -0.309 -0.359 -0.361 -0.682                     
Blck3:phsEx  0.135 -0.309 -0.706 -0.338 -0.340 -0.642  0.438              
Blck4:phsEx  0.156 -0.359 -0.338 -0.707 -0.394 -0.745  0.508  0.479       
Blck5:phsEx  0.157 -0.361 -0.339 -0.394 -0.707 -0.748  0.511  0.481  0.558
optimizer (nloptwrap) convergence code: 0 (OK)
boundary (singular) fit: see help('isSingular')


Estimated Marginal Means:
 Block phase       emmean     SE   df lower.CL upper.CL
 1     Preparation  0.066 0.0343 20.1 -0.00565    0.138
 2     Preparation  0.119 0.0346 20.6  0.04701    0.191
 3     Preparation  0.169 0.0350 21.6  0.09682    0.242
 4     Preparation  0.126 0.0340 19.4  0.05508    0.197
 5     Preparation  0.129 0.0340 19.3  0.05759    0.200
 1     Execution    0.855 0.0343 20.1  0.78328    0.926
 2     Execution    0.795 0.0346 20.6  0.72318    0.867
 3     Execution    0.666 0.0350 21.6  0.59381    0.739
 4     Execution    0.738 0.0340 19.4  0.66726    0.810
 5     Execution    0.585 0.0340 19.3  0.51372    0.656

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

Pairwise Block Comparisons within Each Phase (Axis: X )
phase = Preparation:
 contrast        estimate     SE   df t.ratio p.value
 Block1 - Block2 -0.05302 0.0149 6400  -3.547  0.0036
 Block1 - Block3 -0.10350 0.0159 6424  -6.508  <.0001
 Block1 - Block4 -0.06026 0.0137 6404  -4.408  0.0001
 Block1 - Block5 -0.06273 0.0136 6403  -4.607  <.0001
 Block2 - Block3 -0.05048 0.0164 6422  -3.085  0.0175
 Block2 - Block4 -0.00724 0.0142 6398  -0.508  0.9866
 Block2 - Block5 -0.00971 0.0142 6398  -0.684  0.9599
 Block3 - Block4  0.04324 0.0152 6418   2.838  0.0368
 Block3 - Block5  0.04077 0.0152 6421   2.684  0.0564
 Block4 - Block5 -0.00247 0.0128 6383  -0.193  0.9997

phase = Execution:
 contrast        estimate     SE   df t.ratio p.value
 Block1 - Block2  0.05975 0.0149 6400   3.997  0.0006
 Block1 - Block3  0.18845 0.0159 6424  11.851  <.0001
 Block1 - Block4  0.11650 0.0137 6404   8.522  <.0001
 Block1 - Block5  0.27007 0.0136 6403  19.837  <.0001
 Block2 - Block3  0.12870 0.0164 6422   7.865  <.0001
 Block2 - Block4  0.05675 0.0142 6398   3.985  0.0007
 Block2 - Block5  0.21032 0.0142 6398  14.827  <.0001
 Block3 - Block4 -0.07195 0.0152 6418  -4.723  <.0001
 Block3 - Block5  0.08162 0.0152 6421   5.374  <.0001
 Block4 - Block5  0.15357 0.0128 6383  11.973  <.0001

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 5 estimates 

Type II Chi-square ANOVA Table (Axis: X )
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: rms_x
              Chisq Df Pr(>Chisq)    
Block        155.99  4  < 2.2e-16 ***
phase       8927.26  1  < 2.2e-16 ***
Block:phase  359.97  4  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1


=============================
Axis: Y 
=============================
boundary (singular) fit: see help('isSingular')

Model Summary:
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: formula
   Data: rms_combined

REML criterion at convergence: 3077.5

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.6792 -0.5190 -0.0701  0.3330 22.7211 

Random effects:
 Groups   Name        Variance Std.Dev.
 Trial    (Intercept) 0.00000  0.0000  
 subject  (Intercept) 0.02484  0.1576  
 Residual             0.09236  0.3039  
Number of obs: 6450, groups:  Trial, 48; subject, 18

Fixed effects:
                        Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)              0.06440    0.03907   20.34777   1.648 0.114612    
Block2                   0.06629    0.01773 6423.29983   3.740 0.000186 ***
Block3                   0.11226    0.01885 6423.60420   5.954 2.75e-09 ***
Block4                   0.05874    0.01621 6423.07883   3.623 0.000293 ***
Block5                   0.05844    0.01615 6423.08604   3.620 0.000297 ***
phaseExecution           0.83784    0.01708 6422.98972  49.047  < 2e-16 ***
Block2:phaseExecution   -0.12477    0.02504 6422.98972  -4.983 6.43e-07 ***
Block3:phaseExecution   -0.31820    0.02661 6422.98972 -11.960  < 2e-16 ***
Block4:phaseExecution   -0.19171    0.02292 6422.98972  -8.364  < 2e-16 ***
Block5:phaseExecution   -0.35239    0.02283 6422.98972 -15.439  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) Block2 Block3 Block4 Block5 phsExc Blc2:E Blc3:E Blc4:E
Block2      -0.211                                                        
Block3      -0.198  0.439                                                 
Block4      -0.231  0.508  0.478                                          
Block5      -0.232  0.510  0.479  0.558                                   
phaseExectn -0.219  0.482  0.453  0.527  0.529                            
Blck2:phsEx  0.149 -0.706 -0.309 -0.359 -0.361 -0.682                     
Blck3:phsEx  0.140 -0.309 -0.706 -0.338 -0.340 -0.642  0.438              
Blck4:phsEx  0.163 -0.359 -0.338 -0.707 -0.394 -0.745  0.508  0.479       
Blck5:phsEx  0.164 -0.361 -0.339 -0.394 -0.707 -0.748  0.511  0.481  0.558
optimizer (nloptwrap) convergence code: 0 (OK)
boundary (singular) fit: see help('isSingular')


Estimated Marginal Means:
 Block phase       emmean     SE   df lower.CL upper.CL
 1     Preparation 0.0644 0.0391 20.4  -0.0170    0.146
 2     Preparation 0.1307 0.0394 21.0   0.0488    0.213
 3     Preparation 0.1767 0.0399 22.1   0.0940    0.259
 4     Preparation 0.1231 0.0387 19.6   0.0423    0.204
 5     Preparation 0.1228 0.0387 19.5   0.0421    0.204
 1     Execution   0.9022 0.0391 20.4   0.8208    0.984
 2     Execution   0.8438 0.0394 21.0   0.7619    0.926
 3     Execution   0.6963 0.0399 22.1   0.6136    0.779
 4     Execution   0.7693 0.0387 19.6   0.6885    0.850
 5     Execution   0.6083 0.0387 19.5   0.5275    0.689

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

Pairwise Block Comparisons within Each Phase (Axis: Y )
phase = Preparation:
 contrast         estimate     SE   df t.ratio p.value
 Block1 - Block2 -0.066293 0.0177 6400  -3.740  0.0017
 Block1 - Block3 -0.112259 0.0189 6424  -5.953  <.0001
 Block1 - Block4 -0.058741 0.0162 6404  -3.623  0.0027
 Block1 - Block5 -0.058438 0.0161 6403  -3.619  0.0028
 Block2 - Block3 -0.045966 0.0194 6422  -2.368  0.1241
 Block2 - Block4  0.007552 0.0169 6398   0.447  0.9917
 Block2 - Block5  0.007855 0.0168 6398   0.467  0.9903
 Block3 - Block4  0.053518 0.0181 6418   2.962  0.0255
 Block3 - Block5  0.053820 0.0180 6421   2.988  0.0236
 Block4 - Block5  0.000303 0.0152 6383   0.020  1.0000

phase = Execution:
 contrast         estimate     SE   df t.ratio p.value
 Block1 - Block2  0.058482 0.0177 6400   3.299  0.0087
 Block1 - Block3  0.205943 0.0189 6424  10.920  <.0001
 Block1 - Block4  0.132968 0.0162 6404   8.201  <.0001
 Block1 - Block5  0.293955 0.0161 6403  18.205  <.0001
 Block2 - Block3  0.147461 0.0194 6422   7.598  <.0001
 Block2 - Block4  0.074486 0.0169 6398   4.410  0.0001
 Block2 - Block5  0.235473 0.0168 6398  13.997  <.0001
 Block3 - Block4 -0.072975 0.0181 6418  -4.039  0.0005
 Block3 - Block5  0.088011 0.0180 6421   4.887  <.0001
 Block4 - Block5  0.160986 0.0152 6383  10.583  <.0001

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 5 estimates 

Type II Chi-square ANOVA Table (Axis: Y )
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: rms_y
              Chisq Df Pr(>Chisq)    
Block        149.37  4  < 2.2e-16 ***
phase       7098.30  1  < 2.2e-16 ***
Block:phase  289.17  4  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1


=============================
Axis: Z 
=============================

Model Summary:
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: formula
   Data: rms_combined

REML criterion at convergence: 9241.3

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.7337 -0.5480 -0.1334  0.3796 11.1043 

Random effects:
 Groups   Name        Variance  Std.Dev.
 Trial    (Intercept) 0.0001909 0.01382 
 subject  (Intercept) 0.0683512 0.26144 
 Residual             0.2403028 0.49021 
Number of obs: 6450, groups:  Trial, 48; subject, 18

Fixed effects:
                        Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)              0.06735    0.06467   20.19820   1.041 0.309955    
Block2                   0.10503    0.02860 6396.94989   3.673 0.000242 ***
Block3                   0.18195    0.03042 6423.29337   5.981 2.34e-09 ***
Block4                   0.09599    0.02615 6402.26087   3.670 0.000244 ***
Block5                   0.09354    0.02605 6400.39890   3.591 0.000332 ***
phaseExecution           1.33280    0.02755 6375.73377  48.370  < 2e-16 ***
Block2:phaseExecution   -0.11566    0.04039 6375.73377  -2.863 0.004204 ** 
Block3:phaseExecution   -0.39149    0.04291 6375.73377  -9.122  < 2e-16 ***
Block4:phaseExecution   -0.20897    0.03697 6375.73377  -5.652 1.65e-08 ***
Block5:phaseExecution   -0.47134    0.03682 6375.73377 -12.802  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) Block2 Block3 Block4 Block5 phsExc Blc2:E Blc3:E Blc4:E
Block2      -0.205                                                        
Block3      -0.193  0.439                                                 
Block4      -0.225  0.508  0.478                                          
Block5      -0.226  0.510  0.479  0.558                                   
phaseExectn -0.213  0.482  0.453  0.527  0.529                            
Blck2:phsEx  0.145 -0.706 -0.309 -0.359 -0.361 -0.682                     
Blck3:phsEx  0.137 -0.309 -0.705 -0.338 -0.340 -0.642  0.438              
Blck4:phsEx  0.159 -0.359 -0.338 -0.707 -0.394 -0.745  0.508  0.479       
Blck5:phsEx  0.159 -0.361 -0.339 -0.394 -0.707 -0.748  0.511  0.481  0.558

Estimated Marginal Means:
 Block phase       emmean     SE   df lower.CL upper.CL
 1     Preparation 0.0673 0.0647 20.2  -0.0675    0.202
 2     Preparation 0.1724 0.0651 20.8   0.0369    0.308
 3     Preparation 0.2493 0.0659 21.8   0.1125    0.386
 4     Preparation 0.1633 0.0641 19.5   0.0295    0.297
 5     Preparation 0.1609 0.0640 19.4   0.0271    0.295
 1     Execution   1.4002 0.0647 20.2   1.2654    1.535
 2     Execution   1.3895 0.0651 20.8   1.2540    1.525
 3     Execution   1.1906 0.0659 21.8   1.0538    1.327
 4     Execution   1.2872 0.0641 19.5   1.1533    1.421
 5     Execution   1.0224 0.0640 19.4   0.8885    1.156

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

Pairwise Block Comparisons within Each Phase (Axis: Z )
phase = Preparation:
 contrast        estimate     SE   df t.ratio p.value
 Block1 - Block2 -0.10503 0.0286 6398  -3.673  0.0023
 Block1 - Block3 -0.18195 0.0304 6423  -5.979  <.0001
 Block1 - Block4 -0.09599 0.0262 6403  -3.670  0.0023
 Block1 - Block5 -0.09354 0.0260 6401  -3.591  0.0031
 Block2 - Block3 -0.07692 0.0313 6421  -2.456  0.1009
 Block2 - Block4  0.00904 0.0272 6396   0.332  0.9974
 Block2 - Block5  0.01149 0.0271 6396   0.423  0.9933
 Block3 - Block4  0.08596 0.0292 6416   2.949  0.0266
 Block3 - Block5  0.08841 0.0291 6420   3.042  0.0199
 Block4 - Block5  0.00245 0.0245 6383   0.100  1.0000

phase = Execution:
 contrast        estimate     SE   df t.ratio p.value
 Block1 - Block2  0.01063 0.0286 6398   0.372  0.9959
 Block1 - Block3  0.20954 0.0304 6423   6.886  <.0001
 Block1 - Block4  0.11298 0.0262 6403   4.320  0.0002
 Block1 - Block5  0.37780 0.0260 6401  14.504  <.0001
 Block2 - Block3  0.19891 0.0313 6421   6.352  <.0001
 Block2 - Block4  0.10235 0.0272 6396   3.757  0.0016
 Block2 - Block5  0.36717 0.0271 6396  13.529  <.0001
 Block3 - Block4 -0.09656 0.0292 6416  -3.312  0.0083
 Block3 - Block5  0.16826 0.0291 6420   5.790  <.0001
 Block4 - Block5  0.26482 0.0245 6383  10.793  <.0001

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 5 estimates 

Type II Chi-square ANOVA Table (Axis: Z )
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: rms_z
              Chisq Df Pr(>Chisq)    
Block        119.90  4  < 2.2e-16 ***
phase       7973.86  1  < 2.2e-16 ***
Block:phase  206.08  4  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# --- Descriptive Statistics: Mean and SD of RMS per Axis, Block, and Phase ---

# Per Block and Phase
rms_summary_blockwise <- rms_combined %>%
  group_by(phase, Block) %>%
  summarise(
    mean_rms_x = mean(rms_x, na.rm = TRUE),
    sd_rms_x = sd(rms_x, na.rm = TRUE),
    mean_rms_y = mean(rms_y, na.rm = TRUE),
    sd_rms_y = sd(rms_y, na.rm = TRUE),
    mean_rms_z = mean(rms_z, na.rm = TRUE),
    sd_rms_z = sd(rms_z, na.rm = TRUE),
    .groups = "drop"
  )

# All Blocks Combined per Phase
rms_summary_allblocks <- rms_combined %>%
  group_by(phase) %>%
  summarise(
    mean_rms_x = mean(rms_x, na.rm = TRUE),
    sd_rms_x = sd(rms_x, na.rm = TRUE),
    mean_rms_y = mean(rms_y, na.rm = TRUE),
    sd_rms_y = sd(rms_y, na.rm = TRUE),
    mean_rms_z = mean(rms_z, na.rm = TRUE),
    sd_rms_z = sd(rms_z, na.rm = TRUE),
    .groups = "drop"
  ) %>%
  mutate(Block = "All") %>%
  select(phase, Block, everything())  # Reorder columns to match

# Combine both summaries
rms_summary_stats <- bind_rows(rms_summary_blockwise, rms_summary_allblocks)

# Display the combined summary
print(rms_summary_stats)
# A tibble: 12 × 8
   phase       Block mean_rms_x sd_rms_x mean_rms_y sd_rms_y mean_rms_z sd_rms_z
   <fct>       <chr>      <dbl>    <dbl>      <dbl>    <dbl>      <dbl>    <dbl>
 1 Preparation 1         0.0606   0.0587     0.0579   0.0548     0.0573   0.0857
 2 Preparation 2         0.119    0.242      0.131    0.334      0.178    0.514 
 3 Preparation 3         0.174    0.290      0.186    0.313      0.268    0.556 
 4 Preparation 4         0.127    0.219      0.124    0.223      0.164    0.379 
 5 Preparation 5         0.129    0.189      0.122    0.181      0.160    0.330 
 6 Execution   1         0.850    0.400      0.896    0.504      1.39     0.764 
 7 Execution   2         0.795    0.420      0.844    0.469      1.39     0.761 
 8 Execution   3         0.671    0.309      0.705    0.317      1.21     0.579 
 9 Execution   4         0.739    0.377      0.770    0.432      1.29     0.682 
10 Execution   5         0.585    0.241      0.608    0.345      1.02     0.569 
11 Preparation All       0.119    0.210      0.120    0.234      0.159    0.394 
12 Execution   All       0.722    0.365      0.758    0.433      1.25     0.689 
# ------------------ Grouped RMS Boxplots by Phase and Block ------------------

# Ensure Block is a factor for consistent plotting
rms_combined$Block <- factor(rms_combined$Block, levels = c("1", "2", "3", "4", "5"))

# Helper function with dynamic ylim based on phase
plot_rms_by_phase_block <- function(data, target_phase, target_blocks, plot_title) {
  df <- data %>%
    filter(phase == target_phase, Block %in% target_blocks)

  df_long <- df %>%
    select(subject, Block, phase, starts_with("rms_")) %>%
    pivot_longer(cols = starts_with("rms_"),
                 names_to = "Axis", values_to = "RMS") %>%
    mutate(
      Axis = case_when(
        Axis == "rms_x" ~ "X",
        Axis == "rms_y" ~ "Y",
        Axis == "rms_z" ~ "Z",
        TRUE ~ Axis
      )
    )

  # Choose ylim based on phase
  y_limit <- if (target_phase == "Preparation") c(0, 0.3) else c(0, 2.75)

  # Plot
  ggplot(df_long, aes(x = Block, y = RMS)) +
    geom_boxplot(aes(fill = Block), outlier.shape = NA, alpha = 0.6) +
    geom_jitter(width = 0.2, alpha = 0.3, size = 0.7) +
    facet_wrap(~ Axis, ncol = 3, scales = "free_y") +
    ylim(y_limit) +
    labs(
      title = plot_title,
      x = "Block",
      y = "RMS Acceleration"
    ) +
    theme_minimal() +
    theme(
      text = element_text(size = 12),
      panel.grid.major = element_blank(),
      panel.grid.minor = element_blank(),
      strip.text = element_text(size = 13, face = "bold"),
      legend.position = "none"
    )
}

# ------------------ Generate the 4 Requested Plots ------------------

# Plot 1: Preparation Phase, Blocks 1–3
plot_rms_by_phase_block(rms_combined, "Preparation", c("1", "2", "3"),
                        "Preparation Phase – Blocks 1–3")
Warning: Removed 381 rows containing non-finite outside the scale range
(`stat_boxplot()`).
Warning: Removed 381 rows containing missing values or values outside the scale range
(`geom_point()`).

# Plot 2: Execution Phase, Blocks 1–3
plot_rms_by_phase_block(rms_combined, "Execution", c("1", "2", "3"),
                        "Execution Phase – Blocks 1–3")
Warning: Removed 91 rows containing non-finite outside the scale range
(`stat_boxplot()`).
Warning: Removed 91 rows containing missing values or values outside the scale range
(`geom_point()`).

# Plot 3: Preparation Phase, Blocks 4–5
plot_rms_by_phase_block(rms_combined, "Preparation", c("4", "5"),
                        "Preparation Phase – Blocks 4–5")
Warning: Removed 410 rows containing non-finite outside the scale range
(`stat_boxplot()`).
Warning: Removed 410 rows containing missing values or values outside the scale range
(`geom_point()`).

# Plot 4: Execution Phase, Blocks 4–5
plot_rms_by_phase_block(rms_combined, "Execution", c("4", "5"),
                        "Execution Phase – Blocks 4–5")
Warning: Removed 42 rows containing non-finite outside the scale range
(`stat_boxplot()`).
Warning: Removed 42 rows containing missing values or values outside the scale range
(`geom_point()`).

#2. #2.1 6 steps Block 1,4 & 5 - preparation for rms analysis, skip completely to part 3

# --- Step-Wise RMS: Blocks 1, 4, 5 — First 6 Steps ---
plot_stepwise_rms_blocks_145_first6 <- function(tagged_data2) {
  step_markers <- c(14, 15, 16, 17)
  buffer <- 3

  step_data <- tagged_data2 %>%
    filter(phase == "Execution", Marker.Text %in% step_markers) %>%
    assign_steps_by_block() %>%
    arrange(subject, Block, trial, ms) %>%
    group_by(subject, Block, trial) %>%
    mutate(row_id = row_number()) %>%
    ungroup()

  step_indices <- step_data %>%
    select(subject, Block, trial, row_id, Step)

  window_data <- map_dfr(1:nrow(step_indices), function(i) {
    step <- step_indices[i, ]
    rows <- (step$row_id - buffer):(step$row_id + buffer)

    step_data %>%
      filter(subject == step$subject,
             Block == step$Block,
             trial == step$trial,
             row_id %in% rows) %>%
      mutate(Step = step$Step)
  })

  step_summary <- window_data %>%
    group_by(subject, Block, trial, Step) %>%
    summarise(
      rms_x = sqrt(mean(CoM.acc.x^2, na.rm = TRUE)),
      rms_y = sqrt(mean(CoM.acc.y^2, na.rm = TRUE)),
      rms_z = sqrt(mean(CoM.acc.z^2, na.rm = TRUE)),
      .groups = "drop"
    ) %>%
    pivot_longer(cols = starts_with("rms_"), names_to = "Axis", values_to = "RMS") %>%
    mutate(
      Axis = toupper(gsub("rms_", "", Axis)),
      Step = factor(Step),
      Block = factor(Block),
      subject = factor(subject),
      trial_id = interaction(subject, trial, drop = TRUE)
    ) %>%
    filter(Block %in% c("1", "4", "5"), Step %in% 1:6)

  plot_data <- step_summary %>%
    group_by(Block, Step, Axis) %>%
    summarise(
      mean_rms = mean(RMS, na.rm = TRUE),
      se_rms = sd(RMS, na.rm = TRUE) / sqrt(n()),
      .groups = "drop"
    )

  axis_labels <- unique(plot_data$Axis)
  plots <- map(axis_labels, function(ax) {
    axis_data <- filter(plot_data, Axis == ax)

    ggplot(axis_data, aes(x = Step, y = mean_rms, fill = Block)) +
      geom_col(position = position_dodge(width = 0.8), width = 0.7) +
      geom_errorbar(
        aes(ymin = mean_rms - se_rms, ymax = mean_rms + se_rms),
        position = position_dodge(width = 0.8),
        width = 0.3
      ) +
      ylim(0, 3.25) +
      labs(
        title = paste("Step-wise CoM RMS — Axis", ax),
        x = "Step Number ",
        y = "RMS Acceleration (m/s²)",
        fill = "Block"
      ) +
      theme_minimal() +
      theme(
        panel.grid.major = element_blank(),
        panel.grid.minor = element_blank(),
        text = element_text(size = 12),
        plot.title = element_text(face = "bold"),
        axis.text.x = element_text(angle = 0, vjust = 0.5)
      )
  })

  names(plots) <- axis_labels
  return(list(
    plots = plots,
    step_summary = step_summary,
    plot_data = plot_data,
    window_data = window_data
  ))
}

# -------- Run the Analysis Pipeline --------
result <- plot_stepwise_rms_blocks_145_first6(tagged_data2)

stepwise_block145_plots <- result$plots
step_summary <- result$step_summary
plot_data <- result$plot_data
window_data <- result$window_data

# -------- Print Plots --------
for (plot_name in names(stepwise_block145_plots)) {
  cat("\n\n==== Axis:", plot_name, "====\n\n")
  print(stepwise_block145_plots[[plot_name]])
}


==== Axis: X ====



==== Axis: Y ====



==== Axis: Z ====

# -------- RMS LMMs: Blocks 1, 4, 5 --------
print_stepwise_lmm_diagnostics <- function(results_list, dataset_name = "Mixed") {
  cat(glue::glue("\n=========== STEPWISE LMM DIAGNOSTICS: {dataset_name} ===========\n"))
  for (key in names(results_list)) {
    cat("\n---", key, "---\n")
    cat("ANOVA:\n")
    print(results_list[[key]]$ANOVA)

    cat("\nEstimated Marginal Means (Step | Block):\n")
    print(results_list[[key]]$EmmeansStepBlock)

    cat("\nPairwise Comparisons:\n")
    print(results_list[[key]]$Pairwise)

    cat("\nFixed Effects:\n")
    print(results_list[[key]]$FixedEffects)

    cat("\nRandom Effects:\n")
    print(results_list[[key]]$RandomEffects)

    cat("\nSample Scaled Residuals:\n")
    print(head(results_list[[key]]$ScaledResiduals))

    cat("\n=============================================================\n")
  }
}

rms_lmm_results_6step <- list()
axes <- c("X", "Y", "Z")

for (ax in axes) {
  cat(glue("\n\n========== Running models for 6-step Axis: {ax} ==========\n\n"))

  df_rms <- step_summary %>% filter(Axis == ax)
  rms_model <- lmer(RMS ~ Block + Step + (1 | subject) + (1 | trial_id), data = df_rms)

  emmeans_step_block <- emmeans(rms_model, ~ Step | Block)

  rms_lmm_results_6step[[paste0("RMS_", ax)]] <- list(
    Model = rms_model,
    ANOVA = anova(rms_model, type = 3),
    Pairwise = emmeans(rms_model, pairwise ~ Block)$contrasts,
    EmmeansStepBlock = summary(emmeans_step_block),
    FixedEffects = fixef(rms_model),
    RandomEffects = ranef(rms_model),
    ScaledResiduals = resid(rms_model, scaled = TRUE)
  )
}

========== Running models for 6-step Axis: X ==========

========== Running models for 6-step Axis: Y ==========

========== Running models for 6-step Axis: Z ==========
print_stepwise_lmm_diagnostics(rms_lmm_results_6step, dataset_name = "6-Step RMS Acceleration")
=========== STEPWISE LMM DIAGNOSTICS: 6-Step RMS Acceleration ===========
--- RMS_X ---
ANOVA:
Type III Analysis of Variance Table with Satterthwaite's method
      Sum Sq Mean Sq NumDF  DenDF  F value Pr(>F)    
Block 95.556  47.778     2 9758.5 369.5428 <2e-16 ***
Step   0.295   0.059     5 9344.7   0.4566 0.8087    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Marginal Means (Step | Block):
Block = 1:
 Step emmean     SE   df lower.CL upper.CL
 1     0.844 0.0741 17.5    0.688    1.000
 2     0.853 0.0741 17.6    0.697    1.009
 3     0.855 0.0743 17.7    0.699    1.011
 4     0.848 0.0741 17.5    0.692    1.004
 5     0.859 0.0741 17.6    0.703    1.015
 6     0.846 0.0743 17.7    0.689    1.002

Block = 4:
 Step emmean     SE   df lower.CL upper.CL
 1     0.695 0.0740 17.4    0.539    0.851
 2     0.704 0.0742 17.6    0.548    0.860
 3     0.706 0.0745 17.9    0.550    0.863
 4     0.699 0.0740 17.4    0.543    0.855
 5     0.710 0.0742 17.6    0.554    0.866
 6     0.697 0.0745 17.9    0.540    0.853

Block = 5:
 Step emmean     SE   df lower.CL upper.CL
 1     0.594 0.0740 17.4    0.438    0.750
 2     0.604 0.0742 17.6    0.447    0.760
 3     0.605 0.0745 17.9    0.449    0.762
 4     0.598 0.0740 17.4    0.442    0.754
 5     0.609 0.0742 17.6    0.453    0.765
 6     0.596 0.0745 17.9    0.439    0.752

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

Pairwise Comparisons:
 contrast        estimate      SE   df t.ratio p.value
 Block1 - Block4    0.149 0.00926 9844  16.090  <.0001
 Block1 - Block5    0.250 0.00925 9822  26.994  <.0001
 Block4 - Block5    0.101 0.00933 9686  10.802  <.0001

Results are averaged over the levels of: Step 
Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 3 estimates 

Fixed Effects:
 (Intercept)       Block4       Block5        Step2        Step3        Step4 
 0.843703357 -0.149009353 -0.249748774  0.009610432  0.011513087  0.004198155 
       Step5        Step6 
 0.015092115  0.001937280 

Random Effects:
$trial_id
        (Intercept)
3.1   -0.2422485371
4.1    0.1665601188
5.1    0.0040796703
7.1   -0.0221494591
8.1   -0.1422793133
10.1  -0.0887999321
11.1  -0.5423133285
13.1   0.0638958041
14.1   0.1040226145
15.1   0.0723346523
16.1   0.0427365754
17.1  -0.0240787701
18.1   0.0010327475
19.1   0.1487967904
20.1   0.0501203097
22.1   0.1511697248
23.1  -0.3129587503
2.2    0.0185587619
3.2   -0.1671991428
4.2    0.0840589302
5.2   -0.0272489593
7.2   -0.0093849254
8.2   -0.3098901263
10.2   0.2445621236
11.2  -0.1726072429
13.2   0.0349961870
14.2  -0.1113606675
15.2   0.2560216920
16.2  -0.0105412199
17.2   0.0158435567
18.2  -0.3014491414
19.2   0.0494165142
20.2  -0.1410008957
22.2   0.1591766005
23.2   0.9399708184
2.3    0.1556953035
3.3   -0.1484241267
4.3    0.0126275157
5.3   -0.0287668302
7.3    0.0429892943
10.3   0.2168034755
11.3  -0.3340829507
13.3   0.1149074525
14.3  -0.1125153613
15.3   0.1121603029
16.3   0.0477317826
17.3  -0.1204963768
18.3   0.0264114170
19.3  -0.0062586830
22.3   0.0634685103
23.3   0.0127806815
2.4   -0.2108775310
3.4   -0.1515624121
4.4   -0.0532072369
5.4   -0.0058353467
7.4   -0.1913619731
8.4   -0.2178064043
10.4  -0.4698513704
11.4  -0.4775652851
13.4   0.0394805740
14.4   0.1157207475
15.4   0.1997862197
16.4  -0.0982597779
17.4  -0.0915791656
18.4  -0.0962530786
19.4   0.1317614630
20.4  -0.1115260795
22.4   0.1725189791
23.4  -0.0772204817
2.5   -0.0053147333
3.5    0.0278462145
4.5   -0.0712078149
5.5   -0.0319068216
7.5   -0.0601610989
8.5   -0.2081448562
10.5  -0.3901011094
11.5  -0.5040226684
13.5  -0.0349908994
14.5   0.1809234646
15.5   0.1371233345
16.5  -0.0903140910
17.5   0.1274249313
18.5  -0.0699732385
19.5  -0.1583602249
20.5  -0.1568036544
22.5  -0.0667260336
23.5  -0.2116332830
2.6   -0.0136826981
3.6    0.0040040266
4.6   -0.0370470482
5.6   -0.0165190802
7.6    0.1346135815
8.6    0.1919760965
10.6   0.0727777418
11.6   0.0286932495
13.6   0.0793052692
14.6   0.0664008446
15.6   0.1373489634
16.6   0.0364559443
17.6  -0.2207002446
18.6  -0.0935419592
19.6  -0.0217620692
20.6  -0.0754658532
22.6   0.0481480569
23.6   0.0274854824
2.7   -0.0563742988
3.7    0.0819953948
4.7   -0.0175268584
5.7   -0.1361321718
7.7    0.1304425743
8.7   -0.1661622149
10.7  -0.2502992808
11.7   0.0805977911
13.7  -0.0202435879
14.7  -0.1320976637
15.7   0.0139673332
16.7   0.1075444065
17.7  -0.0500113096
18.7  -0.1570330526
19.7   0.0700799083
20.7  -0.0136402198
22.7  -0.0904059356
23.7   0.3310065258
2.8   -0.1876581233
3.8    0.0447738638
4.8    0.1720205797
5.8   -0.1211490862
7.8    0.0338277742
8.8   -0.3788013169
10.8   0.3651378486
11.8   0.0416118455
13.8  -0.0242779261
14.8  -0.0382511872
15.8  -0.0849688674
16.8   0.0527220093
17.8  -0.1112555814
18.8  -0.0293542094
19.8  -0.0570304367
20.8   0.0268527665
22.8  -0.0747461858
23.8  -0.3692059840
2.9   -0.1503064715
3.9    0.2188944543
4.9   -0.0894039782
5.9   -0.0430642176
7.9   -0.2316201204
8.9   -0.2770739116
10.9   0.1282263278
11.9   0.0092995955
13.9  -0.1193505853
14.9  -0.0658660700
15.9  -0.0281208685
16.9  -0.1671124574
17.9  -0.0515088410
18.9  -0.2061843394
19.9   0.0836375092
20.9  -0.0264891912
22.9   0.0267231199
23.9  -0.3109017614
2.10  -0.1475801969
3.10   0.3233484664
4.10   0.0503739670
5.10  -0.0490087151
7.10  -0.1652829888
8.10  -0.2454215893
10.10  0.3558932232
11.10  0.5070594206
13.10 -0.0144536669
14.10  0.1367017467
15.10 -0.2904887281
16.10 -0.0192445599
17.10 -0.0127776341
18.10  0.0380882803
19.10  0.1433064625
20.10 -0.0172575545
22.10  0.2201194044
23.10 -0.5272024670
2.11   0.3318366394
3.11   0.0663996889
4.11   0.0285237005
5.11  -0.0501558025
7.11  -0.0348117425
8.11  -0.3735384034
10.11  0.4049274235
11.11  0.0784171327
13.11 -0.0749176154
14.11  0.0015227541
15.11 -0.0308746107
16.11 -0.0481241348
17.11 -0.0435459123
18.11 -0.0263967696
19.11 -0.0909363162
20.11  0.0846239862
22.11 -0.0392903621
23.11 -0.1364623790
2.12   0.0902404110
3.12   0.0470944511
4.12   0.0892422369
5.12  -0.0098248194
7.12  -0.1104187936
8.12  -0.1349210222
10.12 -0.2451099208
11.12 -0.2785857897
13.12  0.0350174135
14.12  0.0370965146
15.12 -0.0036122804
16.12 -0.1967710381
17.12 -0.0523462807
18.12 -0.0587881106
19.12 -0.0663292102
20.12 -0.1109499392
22.12  0.0372140237
23.12  0.1383137538
2.13   0.0479691556
3.13   0.0919016236
4.13  -0.0489711287
5.13  -0.0285151517
7.13  -0.1038983566
8.13  -0.1069270943
10.13 -0.1380113578
11.13 -0.1085077829
13.13  0.0160230858
14.13  0.0977784949
15.13 -0.1906220826
16.13  0.0436578010
17.13 -0.0412370805
18.13 -0.0213466338
19.13  0.0023689690
20.13  0.2281982278
22.13 -0.0313518911
23.13  0.3734208530
2.14  -0.1089657986
3.14   0.0356337375
4.14  -0.0170156649
5.14  -0.0997473726
7.14  -0.0162800611
8.14   0.0062217642
10.14  0.2481914834
11.14  0.0471107913
13.14 -0.0636379863
14.14 -0.1411166199
15.14 -0.1856605207
16.14 -0.0907871562
17.14  0.2118912921
18.14 -0.0649949019
19.14  0.1833268349
20.14 -0.0278250233
22.14 -0.0129618816
23.14  0.4265270483
2.15  -0.0310321276
3.15  -0.1255453464
4.15  -0.0370206198
5.15   0.0114209252
7.15  -0.0637963221
8.15  -0.2827883897
10.15  0.0285703992
11.15 -0.2100021391
13.15  0.1570660793
14.15 -0.2823610579
15.15 -0.0039585043
16.15 -0.1068762363
17.15 -0.0045763672
18.15 -0.0236069623
19.15 -0.0949219410
20.15  0.0549166059
22.15  0.1084516134
23.15 -0.0532567363
2.16   0.0138862982
3.16  -0.0470287604
4.16   0.0041432204
5.16   0.0224206926
7.16   0.0062018726
8.16  -0.2181449499
10.16 -0.1403390340
11.16 -0.1265701966
13.16  0.1857049985
14.16 -0.0023339630
15.16 -0.1859215556
16.16 -0.1058022322
17.16  0.0243601232
18.16  0.0116717633
19.16  0.0065087872
20.16  0.0097234111
22.16 -0.0118344756
23.16  0.0700301184
2.17  -0.0710228942
3.17  -0.0123279564
4.17  -0.0966834836
5.17   0.0846269179
7.17  -0.0171059861
8.17  -0.1129906061
10.17 -0.2737530241
11.17 -0.1439456119
13.17 -0.0134979010
14.17 -0.0643964295
15.17 -0.0265163136
16.17 -0.1587172920
17.17 -0.0697899832
18.17 -0.1231997420
19.17 -0.0672279296
20.17 -0.0447756417
22.17 -0.1220653850
23.17  0.5883923499
2.18  -0.1072072553
3.18  -0.1649074504
4.18  -0.0458559394
5.18  -0.0542849992
7.18   0.0451657504
8.18   0.7128053000
10.18 -0.0533564600
11.18 -0.3493913675
13.18 -0.1015228937
14.18 -0.2550396646
15.18  0.1550925983
16.18 -0.1377370570
17.18  0.0312697651
18.18 -0.0730416660
19.18  0.1402271484
20.18 -0.0386888537
22.18 -0.0214004409
23.18  0.2068091800
2.19  -0.0430864928
3.19   0.1316410153
4.19   0.0434504249
5.19  -0.0298074827
7.19   0.0461201287
8.19  -0.2171669977
10.19 -0.3896010494
11.19  0.4589349624
13.19 -0.0105726075
14.19  0.2245594495
15.19  0.0421565823
16.19 -0.1665985198
17.19 -0.0421747977
18.19 -0.0405453819
19.19 -0.0983270213
20.19 -0.0501701076
22.19 -0.0027620422
23.19 -0.1147398619
2.20  -0.0908532359
3.20   0.0406783155
4.20  -0.0844758007
5.20  -0.0549564894
7.20  -0.1145734053
8.20  -0.1940576709
10.20  0.0004379728
11.20 -0.3851125042
13.20 -0.1625353659
14.20 -0.1129034951
15.20  0.0059847033
16.20 -0.1785492777
17.20 -0.0288660914
18.20  0.0276082916
19.20 -0.0473335682
20.20 -0.0106722286
22.20 -0.1153716344
23.20  0.4447624368
2.21  -0.1160499931
3.21  -0.1578967809
4.21   0.1846219034
5.21  -0.0913180412
7.21  -0.0894921250
8.21   0.2520624519
10.21  0.2795877088
11.21 -0.3641344426
13.21 -0.0408792425
14.21 -0.0334263813
15.21 -0.0751491596
16.21  0.0310086273
17.21  0.0008318191
18.21  0.0808209915
19.21 -0.1085087197
20.21 -0.1519799179
22.21  0.1019493499
23.21  0.0823669039
2.22  -0.2304788558
3.22  -0.1535617795
4.22   0.0383224618
5.22   0.0867338426
7.22   0.0208645865
8.22   0.1355762080
10.22  0.3125308135
11.22 -0.1289761933
13.22  0.1366227425
14.22  0.1520412862
15.22 -0.1015661156
16.22 -0.0813596686
17.22 -0.0833419004
18.22  0.3234878280
19.22 -0.0428100254
20.22 -0.0651647262
22.22 -0.0269567728
23.22  0.6836211585
2.23  -0.0088823063
3.23  -0.2296065819
4.23   0.2972265067
5.23  -0.0325184066
7.23  -0.0220566603
8.23   0.2552738435
10.23  0.4302218420
11.23  0.1865599148
13.23  0.0198899680
14.23 -0.2084037154
15.23  0.0640780444
16.23  0.2082505853
17.23  0.0558397274
18.23 -0.0183376120
19.23 -0.0038971736
20.23  0.1117132194
22.23 -0.0990241454
23.23 -0.3604109743
2.24   0.0098183320
3.24   0.1136220695
4.24   0.0536950073
5.24  -0.0363067812
7.24   0.0099923680
8.24   0.1817445341
10.24  0.1538140256
11.24 -0.3649023873
13.24  0.0179346140
14.24 -0.0981567661
15.24 -0.0102426656
16.24  0.1477381546
17.24  0.0505260104
18.24  0.0610057306
19.24  0.0953504540
20.24  0.1518729708
22.24 -0.0334427384
23.24 -0.1682650006
2.25  -0.0520084653
3.25  -0.0665484330
4.25  -0.0651641836
5.25  -0.0233871289
7.25  -0.1190603947
8.25   0.1177431381
10.25 -0.1810365808
11.25 -0.0550401206
13.25  0.0265340614
14.25  0.0994604550
15.25 -0.0222800717
16.25  0.0491645057
17.25 -0.1060849945
18.25 -0.0573053559
19.25  0.0423683051
20.25  0.0050710228
22.25  0.0141908486
23.25 -0.2169981432
2.26  -0.0904946181
3.26  -0.0792273541
4.26  -0.0344216285
5.26   0.0607171539
7.26   0.0226357210
8.26   0.1147978942
10.26  0.2110674082
11.26 -0.1328338088
13.26  0.1044379843
14.26  0.2447994433
15.26  0.0891787196
16.26  0.0653663013
17.26 -0.0004390581
18.26  0.0925437661
19.26 -0.1273174489
20.26  0.0087830388
22.26  0.1620518112
23.26 -0.2876107043
2.27  -0.0797416874
3.27  -0.0067428876
4.27  -0.0169018623
5.27   0.0444672624
7.27   0.0675901264
8.27   1.1501790442
10.27  0.3389440563
11.27 -0.1832820130
13.27  0.1817166297
14.27 -0.1336805296
15.27  0.0867195974
16.27 -0.1001086409
17.27 -0.0130833558
18.27  0.1077414937
19.27 -0.0565981540
20.27  0.1418348643
22.27 -0.0389449351
23.27 -0.0616215146
2.28  -0.0742537651
3.28  -0.2497050144
4.28  -0.1369179263
5.28   0.1392552532
7.28  -0.1078049736
8.28   0.6019411237
10.28  0.1249654254
11.28  0.1469137534
13.28  0.3363935758
14.28 -0.3039369523
15.28  0.1060300551
16.28  0.0375148830
17.28 -0.1784238374
18.28  0.1210584106
19.28  0.0209260101
20.28 -0.1088057486
22.28 -0.0086254513
23.28  0.2468239013
2.29  -0.2066918762
3.29   0.0182326468
4.29  -0.0682967938
5.29  -0.0607642276
7.29   0.0517348075
8.29  -0.2183305573
10.29 -0.0182103643
11.29  0.0817158392
13.29  0.3117846855
14.29  0.0832203001
15.29  0.0552860456
16.29  0.1595523822
17.29  0.1106618649
18.29 -0.0446245159
19.29  0.1587698787
20.29 -0.1028304026
22.29  0.0118450337
23.29 -0.2344387253
2.30  -0.2135946927
3.30   0.1780344820
4.30  -0.0664466638
5.30   0.0062434184
7.30   0.1030836762
8.30   0.0324831350
10.30  0.3965182061
11.30  0.5071631396
13.30  0.0041561995
14.30  0.0816095035
15.30 -0.0279950062
16.30  0.5190248311
17.30  0.1977070333
18.30  0.2637680269
19.30 -0.1013810030
20.30 -0.1441074362
22.30 -0.0830985418
23.30 -0.1278287480
2.31  -0.0887935897
3.31  -0.0006673297
4.31  -0.0745864012
5.31  -0.0470061028
7.31  -0.0188602404
8.31   0.1205741965
10.31  0.3533753374
11.31  0.3411727000
13.31 -0.0546407249
14.31  0.1542977736
15.31 -0.1768275461
16.31  0.1969176557
17.31  0.0206024540
18.31  0.0902199150
19.31 -0.0654602229
20.31 -0.0025888289
22.31 -0.0149241618
23.31  0.0916750854
2.32  -0.0710196667
3.32   0.0687231806
4.32   0.1166260791
5.32  -0.0506704971
7.32   0.1113436462
8.32   0.4584114321
10.32 -0.0140336260
11.32  0.3624978988
13.32 -0.0715313829
14.32 -0.0819111893
15.32  0.5812305560
16.32  0.1147941913
17.32  0.0063407279
18.32 -0.0188982605
19.32 -0.0665468900
20.32  0.0189212533
22.32  0.0620300447
23.32  0.8829171291
2.33  -0.1291092769
3.33  -0.1701510418
4.33  -0.0352067015
5.33   0.0029834502
7.33  -0.0194729429
8.33   0.0677425203
10.33  0.8326449602
11.33  0.7345084275
13.33  0.1413648710
14.33 -0.1292743610
15.33  0.0330235167
16.33  0.0687152312
17.33 -0.0245632514
18.33 -0.0356465658
19.33 -0.1311661848
20.33  0.1854833329
22.33  0.0672488423
23.33 -0.2731100127
2.34   0.0289262966
3.34   0.0397096291
4.34   0.1130909543
5.34   0.2549985401
7.34   0.0439430113
8.34  -0.0626014254
10.34  0.7621541101
11.34  0.5195858867
13.34  0.2723114666
14.34 -0.0804284529
15.34  0.0199700737
16.34  0.2348870941
17.34  0.1033754450
18.34 -0.2171221455
19.34 -0.0488430338
20.34  0.1713999443
22.34  0.0959851564
23.34 -0.1910400913
2.35   0.0204540631
3.35  -0.0207958880
4.35  -0.1516115575
5.35   0.0037015298
7.35   0.1821805154
8.35   0.1222448714
10.35  0.1397204386
11.35  0.1473663067
13.35  0.0631240919
14.35  0.2026872596
15.35 -0.1575833133
16.35  0.1237953526
17.35  0.0148452216
18.35  0.0207312204
19.35 -0.0313711225
20.35 -0.0024722693
22.35  0.0367229676
23.35 -0.4266207460
2.36   0.1976316246
3.36   0.0551866534
4.36   0.0947837958
5.36  -0.0797259800
7.36   0.1014065188
8.36  -0.0058315012
10.36 -0.2677776404
11.36  0.3577614211
13.36  0.2147559080
14.36  0.2797418957
15.36  0.0444377217
16.36  0.2237485973
17.36  0.2702899569
18.36 -0.0881239466
19.36  0.1621286231
20.36  0.0170894875
22.36  0.1297813818
23.36  0.3626002307
2.37   0.1503802705
3.37  -0.0889889782
4.37   0.0079685862
5.37  -0.0433495187
7.37   0.1790644619
8.37   0.0880009198
10.37 -0.0304923454
11.37 -0.0111892102
13.37 -0.2346330214
14.37  0.2033326275
15.37 -0.0105737177
16.37  0.1879408590
17.37  0.0453884770
18.37 -0.0706900862
19.37 -0.0634691343
20.37 -0.1054133932
22.37 -0.0207091368
23.37  0.0385238975
2.38   0.4262476367
3.38   0.1505283741
4.38  -0.0852099208
5.38  -0.1097981715
7.38  -0.1579772790
8.38  -0.0146485941
10.38 -0.5253500316
11.38  0.1106903555
13.38 -0.2354407873
14.38  0.1577397721
15.38 -0.1029349239
16.38 -0.0992370588
17.38  0.1208171406
18.38 -0.0693234998
19.38  0.1839290461
20.38 -0.0936776119
22.38 -0.0666373262
23.38 -0.1499105042
2.39   1.1401044300
3.39   0.0561797587
4.39  -0.1351763855
5.39   0.0222744796
7.39  -0.1008850145
8.39  -0.3402674796
10.39 -0.0760019469
11.39  0.4905724382
13.39 -0.1226099119
14.39  0.1270668935
15.39  0.0076635415
16.39  0.0523274686
17.39  0.0968526563
18.39 -0.0283413249
19.39  0.0036925205
20.39  0.1353633528
22.39 -0.0262723559
23.39 -0.3674729437
2.40   0.2250082391
3.40  -0.0391937663
4.40   0.0772533973
5.40   0.0774316690
7.40   0.3751966841
8.40   0.2072082814
10.40 -0.2461649449
11.40  0.0514874913
13.40 -0.2594252189
14.40  0.2204149404
15.40 -0.0995701648
16.40 -0.2404671081
17.40  0.1340521783
18.40 -0.1235856730
19.40 -0.0393775943
20.40 -0.0215483099
22.40  0.0510214871
23.40 -0.3838674888
2.41   0.0037498612
3.41  -0.0822060296
4.41  -0.0887462758
5.41   0.0302206357
7.41  -0.0062464976
8.41   0.0821926344
10.41 -0.4036673937
11.41 -0.1791239454
13.41 -0.1850799174
14.41 -0.0938312092
15.41  0.1104296319
16.41 -0.0337167096
17.41  0.0604438918
18.41  0.2490500317
19.41 -0.0988925970
20.41  0.0528768436
22.41  0.0514949355
23.41 -0.0163240822
2.42   0.1219905473
3.42   0.2896982622
4.42  -0.0858038544
5.42   0.1129305367
7.42   0.1669360554
8.42   0.1392134763
10.42 -0.0032588534
11.42 -0.2000378908
13.42 -0.2892656488
14.42  0.1364264497
15.42 -0.2153067708
16.42  0.0734184636
17.42 -0.0648183576
18.42  0.0680158717
19.42 -0.0288038405
20.42  0.0769158286
22.42 -0.0528336248
23.42 -0.1606168076
2.43  -0.0878715452
3.43  -0.3052337797
4.43  -0.1717207828
5.43   0.0112618381
7.43   0.0552276230
8.43  -0.2488370438
10.43 -0.2255605103
11.43 -0.0832131283
13.43 -0.2468784407
14.43  0.1482643114
15.43  0.1689457797
16.43 -0.0371340647
17.43 -0.1725366800
18.43  0.1070009015
19.43 -0.0266243078
20.43  0.0826133614
22.43 -0.2394799714
23.43 -0.0108596878
2.44  -0.1879056771
3.44   0.0914582300
4.44   0.1037911407
5.44   0.0640205806
7.44  -0.0475481624
8.44   0.4489202803
10.44 -0.0633534644
11.44  0.4309773401
13.44 -0.0479943772
14.44 -0.2618879578
15.44  0.0787242783
16.44 -0.0205666463
17.44  0.1486484954
18.44  0.4543283140
19.44 -0.0718967020
20.44 -0.0124721271
22.44 -0.1635912703
23.44 -0.0437311182
2.45   0.5066808696
3.45   0.2037310140
4.45  -0.1147468904
5.45   0.0785646003
7.45  -0.0505675623
8.45   0.0659562231
10.45 -0.6189985830
11.45  0.2150225925
13.45 -0.0821802705
14.45 -0.0142962420
15.45 -0.1680096468
16.45 -0.1116607035
17.45 -0.1693285611
18.45  0.3060175049
19.45  0.0299478254
20.45  0.0594659534
22.45 -0.1674255685
23.45  0.0939231466
2.46  -0.2057082754
3.46  -0.1113115715
4.46   0.1517901319
5.46   0.0035278269
7.46  -0.0841969991
8.46  -0.4660838556
10.46 -0.4094211796
11.46 -0.1541061136
13.46  0.0119928579
14.46 -0.1747875876
15.46 -0.1109957930
16.46 -0.2193407908
17.46 -0.1560029478
18.46 -0.1440785982
19.46  0.2026337585
20.46 -0.0860298018
22.46 -0.0447936306
23.46 -0.0211584575
2.47  -0.2244673330
3.47   0.5023167387
4.47  -0.0739345520
5.47  -0.0231779338
7.47  -0.0414102469
8.47  -0.4213461455
10.47 -0.5328043598
11.47 -0.1703716150
13.47 -0.1562095863
14.47 -0.2867037588
15.47 -0.2538868468
16.47 -0.3561506464
17.47 -0.0541010926
18.47 -0.2066832452
19.47 -0.1860098929
20.47 -0.0776458937
22.47 -0.1752398300
23.47 -0.2502827839
2.48  -0.2183148308
5.48   0.0922480197
23.48 -0.0192926151

$subject
   (Intercept)
2  -0.04108480
3   0.12334123
4  -0.23045720
5  -0.34794958
7  -0.15453173
8   0.38541068
10  0.70421693
11  0.56180134
13 -0.19830516
14  0.07508729
15  0.02857434
16 -0.10218127
17 -0.28447438
18 -0.11787434
19 -0.30205126
20 -0.25698797
22 -0.16215057
23  0.31961647

with conditional variances for "trial_id" "subject" 

Sample Scaled Residuals:
         1          2          3          4          5          6 
-0.2474358 -0.1978208 -0.2560971 -0.2357535 -0.1494968 -0.2801900 

=============================================================

--- RMS_Y ---
ANOVA:
Type III Analysis of Variance Table with Satterthwaite's method
      Sum Sq Mean Sq NumDF  DenDF  F value Pr(>F)    
Block 50.402 25.2009     2 9674.4 127.0965 <2e-16 ***
Step   1.148  0.2296     5 9345.5   1.1578 0.3274    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Marginal Means (Step | Block):
Block = 1:
 Step emmean     SE   df lower.CL upper.CL
 1     0.837 0.0866 17.6    0.655    1.019
 2     0.844 0.0867 17.6    0.661    1.026
 3     0.837 0.0869 17.8    0.654    1.019
 4     0.827 0.0866 17.6    0.645    1.010
 5     0.825 0.0867 17.6    0.643    1.007
 6     0.807 0.0869 17.8    0.624    0.990

Block = 4:
 Step emmean     SE   df lower.CL upper.CL
 1     0.801 0.0865 17.5    0.619    0.983
 2     0.808 0.0867 17.7    0.625    0.990
 3     0.800 0.0871 18.0    0.617    0.983
 4     0.791 0.0865 17.5    0.609    0.973
 5     0.789 0.0867 17.7    0.606    0.971
 6     0.771 0.0871 18.0    0.588    0.954

Block = 5:
 Step emmean     SE   df lower.CL upper.CL
 1     0.663 0.0865 17.5    0.481    0.845
 2     0.670 0.0867 17.7    0.487    0.852
 3     0.662 0.0871 18.0    0.479    0.845
 4     0.653 0.0865 17.5    0.471    0.835
 5     0.651 0.0867 17.7    0.468    0.833
 6     0.633 0.0871 18.0    0.450    0.816

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

Pairwise Comparisons:
 contrast        estimate     SE   df t.ratio p.value
 Block1 - Block4   0.0362 0.0115 9743   3.143  0.0048
 Block1 - Block5   0.1742 0.0115 9725  15.142  <.0001
 Block4 - Block5   0.1380 0.0116 9612  11.917  <.0001

Results are averaged over the levels of: Step 
Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 3 estimates 

Fixed Effects:
  (Intercept)        Block4        Block5         Step2         Step3 
 0.8371517380 -0.0361966738 -0.1742103616  0.0066161521 -0.0005467238 
        Step4         Step5         Step6 
-0.0098333406 -0.0121150988 -0.0302241623 

Random Effects:
$trial_id
        (Intercept)
3.1   -0.0747720660
4.1   -0.0291511826
5.1    0.0416491345
7.1   -0.0008021772
8.1   -0.0176312079
10.1  -0.3075630154
11.1  -0.8151880276
13.1  -0.1166414637
14.1  -0.0486039973
15.1  -0.0406677600
16.1  -0.1291213826
17.1   0.0552034659
18.1   0.1222974306
19.1   0.0227066184
20.1  -0.0367377208
22.1   0.0397024924
23.1  -0.2618375437
2.2   -0.0254809478
3.2   -0.1157983172
4.2   -0.0014931885
5.2    0.0172002440
7.2   -0.2153924671
8.2   -0.2484283180
10.2  -0.1377735606
11.2  -0.5140231396
13.2  -0.0449319352
14.2  -0.0843426171
15.2   0.0075546309
16.2   0.0733381218
17.2   0.0499922357
18.2  -0.2348379635
19.2   0.1199548347
20.2  -0.0539715599
22.2   0.2432174936
23.2   4.5934039319
2.3   -0.1315917558
3.3    0.0071783424
4.3   -0.0179443510
5.3    0.0502717403
7.3   -0.0200427634
10.3  -0.3093637940
11.3  -0.1960498569
13.3  -0.1751774331
14.3  -0.1894752572
15.3  -0.0557103247
16.3  -0.0698851441
17.3  -0.1296314479
18.3   0.1058472489
19.3  -0.1042066664
22.3   0.0300299583
23.3  -0.1183873648
2.4   -0.1761147591
3.4    0.1475881197
4.4   -0.0017522821
5.4    0.0120573023
7.4   -0.0473477346
8.4   -0.0526970828
10.4  -0.5706905800
11.4  -0.7804695851
13.4   0.0124025223
14.4  -0.0188579104
15.4   0.0499117801
16.4   0.0419697255
17.4  -0.1158321355
18.4   0.0573826121
19.4  -0.0131499127
20.4  -0.1017953620
22.4   0.0575486960
23.4  -0.2540225779
2.5    0.2174891625
3.5   -0.2587765526
4.5   -0.1239176789
5.5   -0.1253650412
7.5   -0.0794159851
8.5   -0.2269462576
10.5  -0.1119314098
11.5  -0.6462073013
13.5  -0.0204313238
14.5   0.2826041268
15.5   0.1897931195
16.5   0.0384311929
17.5   0.1717462470
18.5  -0.1007798965
19.5  -0.0861029198
20.5  -0.0118835180
22.5   0.0326548229
23.5  -0.4846811574
2.6    0.0182790472
3.6   -0.1300854272
4.6    0.1291354985
5.6   -0.0238062852
7.6    0.1060446694
8.6   -0.0417307797
10.6   0.2509620880
11.6  -0.2801493653
13.6   0.0395692202
14.6   0.1122581315
15.6  -0.0933907983
16.6  -0.1936363146
17.6  -0.1635910689
18.6  -0.0984248367
19.6  -0.0495766491
20.6  -0.0125985798
22.6  -0.0752893864
23.6  -0.3071586694
2.7   -0.0852714438
3.7   -0.1939140500
4.7   -0.1185473317
5.7   -0.0580074104
7.7    0.2415831916
8.7   -0.2116242443
10.7  -0.0912413140
11.7   0.1355862576
13.7   0.0700119209
14.7  -0.2234668179
15.7  -0.1568941079
16.7   0.1029067926
17.7  -0.0525170603
18.7  -0.1381113050
19.7  -0.0525017371
20.7  -0.0873456060
22.7   0.0154270199
23.7   0.7318692032
2.8   -0.0415032307
3.8   -0.0945723365
4.8   -0.1289636150
5.8   -0.0804443882
7.8   -0.0421189592
8.8   -0.2749874947
10.8   0.2965776086
11.8  -0.1321856491
13.8  -0.1877487065
14.8   0.0999509009
15.8   0.0255989793
16.8   0.0230901623
17.8  -0.1852435882
18.8   0.0086791634
19.8  -0.0810706817
20.8  -0.0382966556
22.8  -0.0291957681
23.8  -0.4727041793
2.9   -0.0312475570
3.9   -0.2334113550
4.9   -0.0002820696
5.9    0.2302950533
7.9   -0.0201917972
8.9   -0.1901659318
10.9  -0.0631799006
11.9  -0.1281606503
13.9  -0.0115507819
14.9   0.1930617654
15.9  -0.0552827577
16.9   0.1949409385
17.9  -0.0991712927
18.9  -0.1027213861
19.9  -0.0760520916
20.9  -0.0384655516
22.9  -0.0554785578
23.9  -0.0436919895
2.10  -0.2108007693
3.10   0.1045786201
4.10  -0.0018679468
5.10  -0.0650464756
7.10  -0.1185655444
8.10  -0.0668419021
10.10  0.1195155775
11.10  0.3477945177
13.10 -0.1288175763
14.10  0.1126111862
15.10  0.0787524512
16.10  0.0638299399
17.10  0.0867117642
18.10 -0.0021870933
19.10  0.1187566624
20.10  0.0070214490
22.10  0.0620512622
23.10 -0.6290991948
2.11   0.4356802504
3.11   0.3302245155
4.11  -0.0499654192
5.11   0.0041422164
7.11   0.1180230152
8.11   0.2158807881
10.11  0.4773050835
11.11 -0.1697300614
13.11 -0.0741171822
14.11  0.0483006958
15.11  0.0101111639
16.11  0.0122292828
17.11 -0.0954722926
18.11 -0.0119428461
19.11 -0.0993555460
20.11  0.2275665824
22.11  0.0454611505
23.11 -0.0827659331
2.12  -0.1348052544
3.12   0.2753569101
4.12  -0.0414965239
5.12   0.0660598941
7.12  -0.0712359621
8.12  -0.2862323721
10.12 -0.1197708439
11.12 -0.4917010117
13.12 -0.0067796241
14.12 -0.0069404651
15.12 -0.1125723075
16.12  0.0322056669
17.12 -0.0402590412
18.12 -0.2225109060
19.12  0.0360856934
20.12 -0.0673578470
22.12 -0.0348746417
23.12  0.1229794310
2.13   0.0478546218
3.13  -0.0668919704
4.13  -0.1064543309
5.13  -0.0333098910
7.13  -0.0608477005
8.13   0.1209029413
10.13 -0.2673292514
11.13 -0.4729003240
13.13 -0.1970900543
14.13  0.2322074210
15.13 -0.1540791933
16.13 -0.0094718292
17.13 -0.1093886946
18.13  0.0981763269
19.13 -0.0289692699
20.13  0.0315907119
22.13 -0.0357839398
23.13  0.1902369251
2.14  -0.0773694490
3.14  -0.1663381821
4.14  -0.1192801029
5.14  -0.0551494615
7.14  -0.0776509044
8.14   0.5225526063
10.14 -0.0362000211
11.14 -0.2234396239
13.14 -0.0504317121
14.14 -0.0607469117
15.14  0.0683134219
16.14 -0.1657160955
17.14 -0.0658329024
18.14  0.1007254293
19.14  0.1409588187
20.14 -0.0696455825
22.14 -0.0782382362
23.14 -0.1523356887
2.15  -0.0891971808
3.15   0.1804075233
4.15   0.0043701463
5.15   0.0229348322
7.15  -0.0454556778
8.15  -0.0888367083
10.15  0.1813496235
11.15 -0.1602367082
13.15  0.0644250524
14.15 -0.2636698595
15.15 -0.0640991979
16.15  0.0611384551
17.15 -0.0118683138
18.15 -0.0110504421
19.15 -0.0574183165
20.15 -0.0680693186
22.15 -0.0395311667
23.15 -0.1621591915
2.16  -0.0259404834
3.16  -0.0892575146
4.16  -0.1836550708
5.16  -0.0289123537
7.16  -0.1196260643
8.16  -0.0297038049
10.16 -0.1486373246
11.16 -0.0578515047
13.16 -0.1114356145
14.16 -0.0347656049
15.16  0.1096201180
16.16 -0.0507644434
17.16  0.0975095095
18.16  0.1941858697
19.16 -0.0391498681
20.16 -0.1343195373
22.16 -0.0989527309
23.16  0.0797201488
2.17   0.2137287978
3.17   0.2103735717
4.17  -0.1321220018
5.17  -0.1190147400
7.17  -0.1686603519
8.17  -0.0518676433
10.17  0.1249406714
11.17 -0.5476789267
13.17 -0.0299794505
14.17 -0.0484318348
15.17  0.1356456732
16.17 -0.1914768667
17.17 -0.0766866945
18.17 -0.0383299071
19.17 -0.0808322888
20.17 -0.0625301028
22.17 -0.0412424373
23.17 -0.3007039723
2.18  -0.0760723505
3.18   0.1232510047
4.18  -0.0169504520
5.18  -0.1106482320
7.18  -0.0517678150
8.18   0.1134241779
10.18 -0.1383778235
11.18 -0.7526835939
13.18 -0.0881774725
14.18 -0.2465412784
15.18  0.0855402122
16.18 -0.0776888419
17.18 -0.0089232768
18.18 -0.1505462637
19.18 -0.0933163850
20.18  0.0412962845
22.18  0.0881213488
23.18  0.3895074584
2.19   0.2456933882
3.19  -0.0703796889
4.19  -0.1656992848
5.19  -0.1700907883
7.19  -0.0934045536
8.19  -0.1072493265
10.19 -0.3256385006
11.19  0.2070430214
13.19 -0.0815248234
14.19 -0.0066156654
15.19  0.0087940776
16.19 -0.1868436921
17.19 -0.0389699627
18.19 -0.0460718261
19.19  0.0415308741
20.19 -0.0800163312
22.19 -0.0673813070
23.19 -0.2635171095
2.20   0.3122384598
3.20   0.3517677053
4.20  -0.0648751250
5.20   0.0104056554
7.20  -0.0792885186
8.20  -0.0859293609
10.20  0.7368901066
11.20 -0.6525423053
13.20  0.0153512565
14.20 -0.1269929688
15.20 -0.0599983630
16.20 -0.2523327291
17.20  0.0270484309
18.20 -0.0423572909
19.20 -0.0724854486
20.20 -0.0365091290
22.20 -0.0013633085
23.20 -0.2583668662
2.21   0.0782572829
3.21  -0.0005502396
4.21   0.0136696130
5.21  -0.0527468944
7.21   0.0325556429
8.21  -0.0320171843
10.21  0.8819915652
11.21 -0.3553452393
13.21 -0.0522237197
14.21 -0.2247754719
15.21 -0.0671092875
16.21 -0.1589934657
17.21 -0.1109119529
18.21  0.0436315247
19.21  0.0028206169
20.21  0.0142179412
22.21  0.0062641459
23.21  0.5662646950
2.22   0.0186050148
3.22   0.0414290871
4.22   0.1961448725
5.22   0.1462874862
7.22  -0.1466086338
8.22   0.3604108360
10.22  0.2705309870
11.22 -0.2729380738
13.22  0.0486506816
14.22  0.0092517756
15.22 -0.1162981239
16.22 -0.0019169204
17.22  0.0131614758
18.22 -0.0081587669
19.22 -0.0245990640
20.22 -0.1120270445
22.22  0.0050388038
23.22  0.1598425075
2.23  -0.1856865870
3.23   0.4052230906
4.23  -0.0061041121
5.23   0.0894066052
7.23  -0.0498839599
8.23   0.2513388078
10.23  0.5693201936
11.23  0.1380789906
13.23 -0.0256915401
14.23 -0.3145036555
15.23 -0.0645270052
16.23  0.2905974290
17.23 -0.0162999843
18.23  0.0001546562
19.23 -0.0116091064
20.23  0.0175558570
22.23 -0.0369288927
23.23 -0.2529243011
2.24  -0.1420062984
3.24   0.0476675460
4.24  -0.0120411100
5.24   0.0430577853
7.24  -0.0574766901
8.24   0.4590127669
10.24  0.0665595682
11.24 -0.4620924361
13.24  0.0419827297
14.24  0.0640935701
15.24 -0.2256259571
16.24 -0.1209552135
17.24  0.0202390629
18.24  0.1094660962
19.24  0.0155997891
20.24  0.0031556079
22.24 -0.0579164664
23.24  0.0557724296
2.25   0.2977883107
3.25  -0.0688289666
4.25  -0.0518805291
5.25  -0.0101034716
7.25  -0.0295421987
8.25   0.0578377076
10.25 -0.2095193288
11.25  0.4775318738
13.25  0.0326067798
14.25 -0.0548543800
15.25 -0.0889790676
16.25  0.1458271856
17.25 -0.1871074588
18.25  0.1105160172
19.25 -0.0867861664
20.25 -0.0569788736
22.25 -0.0812481214
23.25  0.0531481886
2.26  -0.1320312472
3.26  -0.1435549144
4.26  -0.0458504394
5.26  -0.0166267630
7.26  -0.1534638627
8.26  -0.1851101889
10.26  0.6597949585
11.26  0.0710791966
13.26  0.0315178640
14.26  0.1315350688
15.26  0.0867652131
16.26  0.1470802082
17.26  0.0617552192
18.26 -0.0953857627
19.26 -0.0472548386
20.26  0.0579368128
22.26 -0.0058925205
23.26 -0.4776419921
2.27  -0.0264879778
3.27  -0.1050854950
4.27  -0.1125777497
5.27   0.0189410965
7.27  -0.0581423276
8.27  -0.0064008348
10.27  0.0875621369
11.27 -0.2257119577
13.27 -0.0118575168
14.27 -0.0748667400
15.27 -0.1614447484
16.27  0.0205951330
17.27 -0.0999013635
18.27  0.1118363865
19.27  0.0520449911
20.27  0.0068645494
22.27  0.0076162045
23.27  0.2334561162
2.28  -0.1925172190
3.28  -0.0955071585
4.28  -0.1467129131
5.28   0.0202062034
7.28  -0.0390955617
8.28   0.9998782632
10.28 -0.1584398517
11.28 -0.2198201464
13.28  0.3099484121
14.28 -0.2474688071
15.28  0.0238770352
16.28 -0.0897609663
17.28 -0.1927664988
18.28 -0.1045321207
19.28 -0.0410003109
20.28 -0.0472010486
22.28  0.0238849355
23.28 -0.1722676362
2.29  -0.0095994298
3.29   0.1706675515
4.29   0.0048872693
5.29  -0.1020920008
7.29  -0.2014540553
8.29  -0.0555710829
10.29 -0.0350375337
11.29 -0.6472118167
13.29  0.1064089416
14.29  0.1647982852
15.29  0.0390511032
16.29  0.0407156603
17.29  0.0743028021
18.29  0.0171548456
19.29  0.2191662660
20.29 -0.1010098836
22.29 -0.0833933012
23.29 -0.3010408018
2.30  -0.1415429219
3.30   0.0423761545
4.30   0.1019175473
5.30  -0.0029900600
7.30   0.0384458875
8.30   0.2780510163
10.30  0.6621008990
11.30  0.3922583684
13.30  0.1024180061
14.30  0.0778865101
15.30  0.0097096580
16.30  0.5612100069
17.30  0.1584340005
18.30 -0.0471685075
19.30  0.0092963566
20.30 -0.0681486002
22.30 -0.1108905266
23.30 -0.0825340229
2.31   0.2331952431
3.31   0.2860842875
4.31   0.0799054787
5.31   0.0179759613
7.31  -0.1873073976
8.31  -0.0206649954
10.31  0.1873660928
11.31  1.8396992406
13.31 -0.0886149356
14.31  0.1381967145
15.31 -0.1970035391
16.31  0.1449614911
17.31  0.2347840411
18.31  0.0776836015
19.31 -0.0373422425
20.31  0.0074792745
22.31 -0.0210955944
23.31  0.3431769652
2.32  -0.0763340326
3.32   0.1740065549
4.32   0.2419067245
5.32   0.0978708604
7.32   0.3020549639
8.32   0.4003212876
10.32 -0.0232408165
11.32  1.6228245011
13.32 -0.1689108541
14.32 -0.1262641077
15.32  0.0832388122
16.32  0.2009530311
17.32  0.1467257497
18.32 -0.0455488386
19.32 -0.0231524238
20.32 -0.1219743181
22.32  0.0712473020
23.32  0.2404400863
2.33  -0.1017751930
3.33  -0.0099523267
4.33  -0.0930147290
5.33  -0.0167340577
7.33   0.1329631185
8.33   0.4255882465
10.33 -0.1799356756
11.33  1.6906372506
13.33  0.0318543680
14.33 -0.3129813226
15.33 -0.1333413081
16.33 -0.1717190878
17.33 -0.0492588386
18.33  0.0327461159
19.33  0.0161509338
20.33  0.0318240379
22.33 -0.0799321359
23.33 -0.0354950549
2.34   0.0737433757
3.34   0.1203255075
4.34  -0.1560257792
5.34  -0.0094285426
7.34   0.0772302705
8.34   0.4096521234
10.34  1.5289931652
11.34  0.6562039486
13.34  0.4582397202
14.34 -0.1485452631
15.34 -0.0098109345
16.34  0.0770602805
17.34  0.1240286218
18.34  0.0651120154
19.34  0.0209877674
20.34  0.1036742039
22.34  0.0273323591
23.34 -0.2377825802
2.35   0.1872218080
3.35  -0.3210394810
4.35  -0.0956326925
5.35  -0.0589436855
7.35  -0.0194798878
8.35  -0.3141003065
10.35  0.6059555946
11.35  0.4248476845
13.35  0.2954222888
14.35  0.3725498381
15.35  0.2227529741
16.35  0.0745751471
17.35  0.0512735174
18.35  0.0554965503
19.35 -0.0595232594
20.35  0.0122151007
22.35  0.0422235954
23.35 -0.4280524064
2.36  -0.0149385432
3.36   0.0468926894
4.36   0.1156902499
5.36  -0.0232607115
7.36   0.1356940231
8.36  -0.3008030505
10.36  0.0224905658
11.36  0.1341509682
13.36  0.2059342132
14.36  0.0819582583
15.36  0.0523170602
16.36  0.5767252208
17.36  0.0226601532
18.36  0.0364777536
19.36  0.1070329005
20.36 -0.0205331915
22.36  0.2977811914
23.36  0.1762999871
2.37   0.3928032047
3.37  -0.0379275738
4.37   0.1206786108
5.37  -0.0439390180
7.37   0.1375228200
8.37   0.9197467111
10.37 -0.7173379797
11.37 -0.2638465159
13.37 -0.1585226311
14.37  0.0666157346
15.37 -0.0099331540
16.37  0.0467414672
17.37  0.1009756822
18.37  0.2569422452
19.37  0.0899198449
20.37  0.0166364954
22.37  0.0791212472
23.37 -0.0757342903
2.38   0.3141781453
3.38   0.0483326068
4.38  -0.0676834084
5.38  -0.0981792783
7.38   0.2110154487
8.38  -0.1832478523
10.38 -0.8953600345
11.38  0.4650340430
13.38 -0.3106434257
14.38 -0.0849606040
15.38  0.0767003631
16.38 -0.0742953691
17.38  0.0067421959
18.38  0.0837433210
19.38 -0.0119889905
20.38 -0.0498671893
22.38 -0.0811244879
23.38 -0.2607317762
2.39   0.3592098317
3.39  -0.1909201609
4.39   0.0088667894
5.39   0.0267637998
7.39   0.1138121144
8.39  -0.4647778497
10.39  0.3255144877
11.39  0.6699376063
13.39 -0.0201812601
14.39  0.3709694971
15.39  0.0987408428
16.39 -0.2359549742
17.39  0.0314005215
18.39 -0.0061436342
19.39 -0.1284635350
20.39  0.1679044581
22.39  0.0942859535
23.39 -0.4000667775
2.40  -0.1268129998
3.40  -0.1249666002
4.40   0.1719539374
5.40  -0.0040823430
7.40   0.4910456918
8.40   0.4374432275
10.40 -0.0157060337
11.40  0.8133419744
13.40 -0.3488015852
14.40  0.1517070901
15.40 -0.0558105540
16.40  0.0470140635
17.40  0.0332788016
18.40  0.1722675965
19.40 -0.0318983344
20.40  0.1164891790
22.40 -0.0305631932
23.40 -0.4245129791
2.41  -0.0146962287
3.41   0.0388394750
4.41   0.1182072956
5.41  -0.0890039509
7.41  -0.0696480621
8.41  -0.1798787154
10.41 -0.2083254988
11.41 -0.3081448404
13.41 -0.3085665526
14.41  0.1434034224
15.41 -0.1148072052
16.41 -0.0648460541
17.41  0.2727966485
18.41 -0.0752698116
19.41  0.0883707352
20.41 -0.0890186953
22.41  0.1590251577
23.41 -0.4098739584
2.42   0.1062364811
3.42   0.1106915578
4.42   0.3495848964
5.42   0.2327575294
7.42   0.1043858672
8.42  -0.1393794574
10.42 -0.2364372092
11.42 -0.5542321982
13.42 -0.3154739527
14.42  0.1278515457
15.42 -0.1370561680
16.42  0.1833148213
17.42 -0.0708678463
18.42  0.2969305344
19.42  0.0970807014
20.42 -0.0460157323
22.42  0.0511541096
23.42  0.8463862910
2.43   0.1511460611
3.43  -0.0967948175
4.43   0.0206377873
5.43  -0.0201525297
7.43   0.0790190828
8.43  -0.3295143216
10.43 -0.6134676000
11.43  0.3140805151
13.43 -0.3451375455
14.43  0.2754575451
15.43  0.0235964811
16.43 -0.1427241346
17.43 -0.1325913613
18.43  0.0442883406
19.43 -0.0015661795
20.43  0.2423447904
22.43 -0.1705496200
23.43 -0.3927203663
2.44  -0.3114548922
3.44  -0.0758087144
4.44  -0.0018867917
5.44  -0.0428804466
7.44   0.0612954246
8.44  -0.3757452193
10.44 -0.0016296657
11.44  0.1084402383
13.44  0.1107204877
14.44  0.1074974110
15.44  0.4009769681
16.44 -0.2431852968
17.44  0.0497201799
18.44  0.0843620431
19.44  0.1096528585
20.44  0.1454081977
22.44 -0.0572622096
23.44 -0.2104338834
2.45   0.0071252638
3.45   0.1156659502
4.45   0.1986036660
5.45   0.0870250362
7.45  -0.1529461932
8.45  -0.5604468305
10.45 -0.8470201371
11.45 -0.3536834295
13.45  0.2819114285
14.45 -0.1516531837
15.45 -0.0150081601
16.45 -0.1370423808
17.45  0.2888468658
18.45 -0.1559571599
19.45 -0.0311965023
20.45  0.1471612147
22.45 -0.0414297265
23.45 -0.5294271457
2.46  -0.1916280854
3.46  -0.3355493341
4.46   0.1187662608
5.46   0.0152980194
7.46  -0.0062930407
8.46  -0.0459146233
10.46  0.2081862915
11.46 -0.3512396582
13.46 -0.0291241385
14.46 -0.1097175021
15.46 -0.0222828572
16.46 -0.2918146539
17.46 -0.1759185341
18.46 -0.3308109314
19.46 -0.0752899956
20.46  0.0743584622
22.46 -0.2173855989
23.46 -0.4607858137
2.47  -0.3859922339
3.47  -0.1542085715
4.47  -0.1393638084
5.47  -0.0541220723
7.47  -0.0793229767
8.47  -0.5152250443
10.47 -0.7757054869
11.47  0.9425069714
13.47  1.1055007560
14.47 -0.0652023777
15.47  0.1891069536
16.47 -0.2272546708
17.47 -0.1573957333
18.47 -0.2723464898
19.47 -0.0483394540
20.47 -0.0779592322
22.47 -0.1311358915
23.47  0.2107969546
2.48  -0.4041030773
5.48  -0.0126962806
23.48  0.2829466379

$subject
   (Intercept)
2   0.18389241
3   0.15466965
4  -0.29710936
5  -0.34562309
7  -0.22419067
8   0.35210832
10  0.89662888
11  0.51825649
13 -0.17919952
14  0.11163096
15 -0.16866965
16 -0.10717580
17 -0.25820991
18 -0.06869581
19 -0.35673383
20 -0.27130912
22 -0.35524943
23  0.41497948

with conditional variances for "trial_id" "subject" 

Sample Scaled Residuals:
        1         2         3         4         5         6 
-1.443951 -1.375905 -1.304274 -1.283419 -1.268344 -1.210523 

=============================================================

--- RMS_Z ---
ANOVA:
Type III Analysis of Variance Table with Satterthwaite's method
      Sum Sq Mean Sq NumDF  DenDF  F value Pr(>F)    
Block 268.68  134.34     2 9700.9 278.4811 <2e-16 ***
Step    4.00    0.80     5 9340.3   1.6583  0.141    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Marginal Means (Step | Block):
Block = 1:
 Step emmean    SE   df lower.CL upper.CL
 1      1.76 0.163 17.4    1.421     2.11
 2      1.80 0.163 17.4    1.458     2.14
 3      1.79 0.163 17.6    1.444     2.13
 4      1.76 0.163 17.4    1.417     2.10
 5      1.77 0.163 17.4    1.429     2.11
 6      1.73 0.163 17.6    1.388     2.07

Block = 4:
 Step emmean    SE   df lower.CL upper.CL
 1      1.63 0.163 17.4    1.285     1.97
 2      1.66 0.163 17.5    1.322     2.01
 3      1.65 0.163 17.7    1.307     1.99
 4      1.62 0.163 17.4    1.280     1.97
 5      1.64 0.163 17.5    1.293     1.98
 6      1.60 0.163 17.7    1.251     1.94

Block = 5:
 Step emmean    SE   df lower.CL upper.CL
 1      1.35 0.163 17.3    1.006     1.69
 2      1.39 0.163 17.5    1.043     1.73
 3      1.37 0.163 17.7    1.028     1.72
 4      1.34 0.163 17.3    1.002     1.69
 5      1.36 0.163 17.5    1.014     1.70
 6      1.32 0.163 17.7    0.973     1.66

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

Pairwise Comparisons:
 contrast        estimate     SE   df t.ratio p.value
 Block1 - Block4    0.137 0.0179 9778   7.611  <.0001
 Block1 - Block5    0.415 0.0179 9759  23.184  <.0001
 Block4 - Block5    0.279 0.0180 9637  15.456  <.0001

Results are averaged over the levels of: Step 
Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 3 estimates 

Fixed Effects:
 (Intercept)       Block4       Block5        Step2        Step3        Step4 
 1.764024497 -0.136534990 -0.415469325  0.037007987  0.023266920 -0.004502529 
       Step5        Step6 
 0.008011831 -0.032360684 

Random Effects:
$trial_id
        (Intercept)
3.1   -6.734647e-02
4.1   -4.340312e-02
5.1    2.627693e-01
7.1    3.687433e-01
8.1   -1.868739e-01
10.1   3.383499e-01
11.1  -3.951901e-01
13.1  -2.749718e-01
14.1   8.202932e-02
15.1  -2.275977e-02
16.1  -5.842531e-02
17.1   1.942368e-01
18.1   3.966266e-01
19.1  -2.208507e-02
20.1   1.491734e-01
22.1   1.937104e-01
23.1  -4.575966e-01
2.2    2.877592e-01
3.2   -5.349266e-01
4.2   -2.067404e-02
5.2    1.355011e-01
7.2    2.813439e-01
8.2   -3.496384e-01
10.2  -2.254852e-01
11.2  -1.017973e+00
13.2   1.589128e-01
14.2   1.669277e-01
15.2   6.446999e-02
16.2   2.077812e-01
17.2   1.978077e-01
18.2  -1.259568e+00
19.2  -4.440017e-02
20.2  -9.662948e-02
22.2   7.900167e-02
23.2   9.241357e-01
2.3    4.686837e-01
3.3   -8.619428e-02
4.3    1.296488e-01
5.3   -1.660622e-01
7.3    2.660280e-01
10.3   3.387398e-01
11.3  -3.568346e-01
13.3  -1.686166e-01
14.3   6.312426e-02
15.3   2.397034e-01
16.3  -1.993420e-01
17.3  -1.864477e-02
18.3  -5.885038e-02
19.3   8.571670e-02
22.3   6.200153e-02
23.3  -7.342200e-01
2.4   -4.373061e-01
3.4   -3.451696e-01
4.4   -1.103931e-01
5.4    5.504223e-02
7.4    1.115995e-01
8.4   -6.566528e-01
10.4   1.185385e+00
11.4  -6.500700e-01
13.4  -6.347131e-02
14.4   2.306236e-01
15.4   3.104884e-01
16.4   1.708304e-01
17.4  -7.795399e-02
18.4   3.335372e-01
19.4   2.143843e-02
20.4  -2.869241e-01
22.4   1.104226e-01
23.4  -6.392681e-01
2.5    1.024552e-01
3.5   -4.988836e-01
4.5   -1.582336e-01
5.5   -1.617113e-01
7.5    2.896266e-01
8.5   -5.903034e-01
10.5   4.557020e-01
11.5  -7.082031e-01
13.5   2.688752e-01
14.5  -5.562277e-02
15.5   3.612557e-01
16.5   3.727609e-01
17.5   3.473906e-01
18.5  -1.816657e-01
19.5  -4.125548e-01
20.5  -3.023728e-01
22.5  -9.007757e-02
23.5  -8.370615e-01
2.6   -2.573757e-01
3.6   -1.197564e-01
4.6    2.238582e-04
5.6   -3.709287e-03
7.6    4.967813e-01
8.6    9.289814e-01
10.6  -3.431727e-02
11.6  -4.040544e-01
13.6   6.643263e-02
14.6   2.002523e-02
15.6  -1.966388e-01
16.6  -4.787397e-01
17.6  -3.370657e-01
18.6   1.059997e-01
19.6  -1.296020e-01
20.6  -2.751773e-01
22.6  -7.584439e-02
23.6  -3.826139e-01
2.7   -2.076631e-01
3.7   -2.395399e-01
4.7    8.018129e-02
5.7   -7.848165e-02
7.7   -9.119282e-02
8.7   -5.389728e-01
10.7   1.126476e-01
11.7  -7.717728e-01
13.7   1.172328e+00
14.7   4.917879e-01
15.7  -1.559337e-01
16.7   1.257269e-01
17.7  -2.195657e-01
18.7  -2.573297e-01
19.7  -2.059414e-02
20.7  -2.452917e-01
22.7   1.990007e-02
23.7   3.932047e-01
2.8    8.612976e-05
3.8    7.418105e-02
4.8   -1.494669e-01
5.8   -1.591011e-01
7.8    5.037797e-01
8.8   -9.033086e-01
10.8   1.424437e+00
11.8   1.170315e+00
13.8   2.990133e-01
14.8   1.814116e-02
15.8   5.481221e-02
16.8  -1.546727e-01
17.8  -1.510448e-01
18.8  -1.923686e-02
19.8  -1.478375e-01
20.8  -4.071023e-02
22.8  -6.502255e-02
23.8  -7.845598e-01
2.9   -6.108042e-02
3.9   -9.673508e-02
4.9   -6.776792e-02
5.9   -5.160550e-02
7.9    3.842239e-01
8.9   -4.139613e-01
10.9   2.636409e-01
11.9  -2.814188e-01
13.9   1.708920e-01
14.9  -2.078020e-01
15.9   6.239317e-02
16.9  -1.284020e-02
17.9   5.299747e-02
18.9  -2.844631e-01
19.9  -4.178232e-02
20.9  -3.266780e-01
22.9  -1.915684e-02
23.9  -3.840258e-01
2.10  -2.423852e-01
3.10   3.284991e-01
4.10   2.390514e-01
5.10  -2.639558e-01
7.10   2.471425e-01
8.10  -4.091327e-01
10.10  2.039485e+00
11.10 -4.365449e-01
13.10 -3.734353e-01
14.10 -5.079546e-02
15.10  4.471460e-01
16.10  2.620310e-01
17.10  2.527789e-02
18.10  7.267870e-02
19.10  3.603659e-02
20.10  1.033174e-01
22.10  2.072848e-01
23.10 -8.579295e-01
2.11   2.251617e-02
3.11  -1.268743e-01
4.11  -8.621554e-03
5.11  -1.424614e-02
7.11   4.396296e-01
8.11  -3.329900e-02
10.11  2.022323e+00
11.11 -5.402459e-01
13.11 -2.096564e-01
14.11 -2.283917e-01
15.11  3.196727e-01
16.11 -4.021348e-02
17.11 -1.345512e-01
18.11  4.292453e-02
19.11 -2.051945e-01
20.11  6.276908e-01
22.11  5.187641e-02
23.11 -6.541169e-01
2.12   3.655771e-02
3.12   1.283005e-01
4.12  -3.885879e-02
5.12   2.095216e-01
7.12   2.996644e-01
8.12  -3.999789e-01
10.12  4.604712e-02
11.12 -5.492592e-01
13.12  4.196428e-01
14.12 -2.961488e-01
15.12  2.240729e-01
16.12  1.498210e-01
17.12 -1.574225e-02
18.12  2.502572e-01
19.12  1.988972e-01
20.12 -2.005961e-01
22.12  2.494084e-01
23.12  1.902298e-01
2.13  -2.293128e-01
3.13  -8.996795e-02
4.13  -1.222509e-01
5.13  -1.679392e-01
7.13   2.980366e-02
8.13  -3.290090e-01
10.13 -2.726002e-01
11.13 -4.077923e-01
13.13  5.465351e-02
14.13  2.011636e-01
15.13 -2.008691e-01
16.13 -1.772261e-01
17.13 -1.522185e-01
18.13 -1.103564e-02
19.13 -1.293539e-01
20.13  4.410530e-01
22.13 -3.543069e-02
23.13  4.051303e-01
2.14  -4.133662e-01
3.14   3.095843e-01
4.14  -2.229204e-01
5.14  -3.331376e-01
7.14   3.317809e-01
8.14  -3.058788e-01
10.14 -3.076177e-02
11.14 -4.493005e-01
13.14  5.100892e-01
14.14  2.244193e-01
15.14 -2.091027e-03
16.14 -8.015424e-02
17.14 -9.075962e-02
18.14 -6.481051e-02
19.14  1.625854e-01
20.14  5.886099e-02
22.14 -1.397200e-01
23.14 -7.484730e-02
2.15  -4.840017e-01
3.15  -2.691518e-01
4.15  -2.180994e-01
5.15  -4.109973e-02
7.15   1.739968e-01
8.15  -2.809371e-01
10.15 -1.084010e-02
11.15  2.094616e-01
13.15  4.993362e-01
14.15  2.063581e-01
15.15 -5.213168e-02
16.15  6.346754e-02
17.15  4.901888e-02
18.15 -1.983667e-01
19.15 -1.363849e-01
20.15 -1.239543e-01
22.15  1.267423e-01
23.15  2.651234e-01
2.16  -2.345902e-03
3.16  -1.746693e-01
4.16  -3.193356e-02
5.16  -8.121846e-02
7.16  -2.473581e-02
8.16   1.852835e-01
10.16 -3.670940e-01
11.16  1.089703e-01
13.16  4.996751e-02
14.16 -5.825660e-02
15.16  4.053673e-01
16.16  1.780484e-01
17.16  1.284456e-01
18.16  1.019269e-01
19.16 -2.446420e-01
20.16 -6.536581e-02
22.16  5.311238e-03
23.16 -7.400659e-02
2.17   1.033954e-02
3.17  -2.604683e-01
4.17   1.520150e-01
5.17  -3.726562e-03
7.17  -4.831494e-01
8.17   9.456970e-02
10.17  5.589575e-01
11.17 -3.493710e-01
13.17  2.188612e-01
14.17 -7.189108e-02
15.17  3.728093e-01
16.17 -2.293734e-01
17.17 -4.494222e-02
18.17 -1.321059e-01
19.17 -1.478255e-01
20.17 -1.339133e-01
22.17  9.165046e-02
23.17 -9.226558e-03
2.18   3.759004e-02
3.18  -4.647414e-02
4.18  -7.699809e-03
5.18  -2.434550e-01
7.18  -2.941262e-03
8.18   1.595708e-01
10.18 -2.522990e-02
11.18 -3.750076e-01
13.18 -8.679684e-02
14.18  2.202739e-01
15.18  4.715375e-01
16.18 -1.859611e-01
17.18  7.152112e-02
18.18 -4.532099e-01
19.18 -2.609839e-03
20.18  4.577247e-02
22.18  2.030777e-01
23.18  2.382060e-01
2.19  -1.513590e-02
3.19  -1.392005e-01
4.19  -2.393300e-01
5.19  -8.324382e-02
7.19   2.022388e-01
8.19  -7.517748e-02
10.19 -2.500841e-01
11.19  7.718080e-01
13.19  4.333983e-01
14.19 -3.650912e-01
15.19  5.635189e-01
16.19 -5.881359e-02
17.19 -9.180759e-02
18.19 -5.423949e-01
19.19  1.129543e-01
20.19  8.343724e-02
22.19  4.778406e-02
23.19  4.718013e-01
2.20   1.275312e-01
3.20  -4.098971e-01
4.20  -1.998817e-01
5.20  -3.222600e-01
7.20   1.487069e-01
8.20   1.636172e-01
10.20  7.544470e-01
11.20 -6.489435e-01
13.20  5.595965e-01
14.20  1.248320e-01
15.20  1.108183e-01
16.20 -1.491478e-01
17.20 -2.658335e-03
18.20 -3.404769e-01
19.20  3.491021e-02
20.20 -2.590338e-01
22.20 -7.809226e-02
23.20  9.177538e-01
2.21  -1.561110e-01
3.21  -1.274490e-01
4.21   1.433668e-01
5.21  -1.331074e-01
7.21  -2.272776e-01
8.21   8.914192e-02
10.21  1.104246e+00
11.21 -1.359583e-01
13.21 -6.426375e-02
14.21 -1.582071e-02
15.21 -1.152660e-01
16.21 -1.731083e-01
17.21 -5.474197e-02
18.21 -2.668199e-01
19.21  1.986759e-01
20.21  7.119244e-02
22.21  1.210895e-01
23.21  1.778167e+00
2.22  -2.492854e-01
3.22  -1.876598e-01
4.22   2.799045e-01
5.22   3.094156e-01
7.22   5.600313e-02
8.22   5.985196e-02
10.22  5.649189e-01
11.22  1.092532e-01
13.22  3.623842e-01
14.22  1.225635e-02
15.22  8.309865e-02
16.22 -2.338452e-01
17.22 -9.016784e-03
18.22 -6.367800e-02
19.22 -1.925307e-02
20.22 -1.407891e-01
22.22 -2.721114e-02
23.22  5.993944e-01
2.23  -2.462142e-01
3.23   9.589215e-02
4.23   1.288704e-01
5.23   9.253370e-02
7.23   3.372170e-02
8.23   7.031242e-01
10.23  8.554553e-02
11.23 -8.932767e-02
13.23  8.868736e-02
14.23 -2.543418e-01
15.23 -9.744329e-02
16.23  1.044600e-01
17.23 -3.059724e-02
18.23  4.966299e-02
19.23  2.007359e-01
20.23 -1.765730e-01
22.23 -6.637083e-02
23.23 -3.595458e-01
2.24  -1.117383e-01
3.24   2.130195e-01
4.24   1.377022e-01
5.24  -1.415687e-01
7.24   1.209691e-01
8.24  -1.713672e-01
10.24  4.966500e-01
11.24 -5.286774e-01
13.24  2.279915e-02
14.24  2.581755e-01
15.24 -4.122909e-01
16.24  2.361574e-01
17.24  1.430357e-02
18.24 -6.101059e-02
19.24 -4.274791e-02
20.24 -3.077827e-02
22.24 -8.321999e-02
23.24  1.958060e-01
2.25  -4.715686e-02
3.25  -4.971637e-01
4.25  -4.511611e-02
5.25   1.376921e-01
7.25   1.166154e-01
8.25  -1.405567e-01
10.25  2.748096e-01
11.25 -1.981295e-01
13.25  1.056010e+00
14.25 -5.097271e-02
15.25 -1.309295e-01
16.25  5.577705e-01
17.25 -4.153726e-02
18.25 -7.523537e-02
19.25  1.544759e-02
20.25 -9.417038e-02
22.25 -1.114230e-02
23.25  4.160865e-01
2.26  -5.888253e-02
3.26  -2.998976e-02
4.26  -2.420961e-01
5.26   3.196466e-02
7.26   1.989656e-01
8.26   8.134732e-01
10.26  2.571165e-01
11.26  3.914857e-01
13.26  5.331134e-01
14.26 -2.528450e-01
15.26  1.247155e-01
16.26 -3.576596e-02
17.26  9.057424e-02
18.26 -1.697044e-01
19.26 -3.440744e-02
20.26  2.368214e-02
22.26  1.359951e-01
23.26 -7.274194e-01
2.27   1.512569e-01
3.27   7.469694e-01
4.27  -7.703384e-03
5.27   2.553082e-01
7.27  -1.613813e-02
8.27   7.073523e-01
10.27  7.352029e-02
11.27 -1.790064e-01
13.27  2.556681e-01
14.27 -1.739598e-01
15.27 -3.454611e-01
16.27  1.084596e-01
17.27  3.030576e-02
18.27  5.808681e-02
19.27  1.748405e-02
20.27  2.557399e-01
22.27  5.099823e-02
23.27  6.157856e-01
2.28   9.646447e-02
3.28  -1.010185e-01
4.28   5.324049e-02
5.28   1.592802e-02
7.28   2.324190e-01
8.28   1.275885e+00
10.28  3.811409e-01
11.28 -2.274201e-01
13.28  9.906283e-01
14.28  8.444613e-02
15.28 -1.964594e-01
16.28  7.773945e-03
17.28 -3.647923e-01
18.28 -1.907644e-01
19.28 -2.152363e-02
20.28 -1.217441e-01
22.28 -2.409180e-01
23.28 -1.693097e-01
2.29   2.548056e-01
3.29   8.517834e-01
4.29  -1.924902e-01
5.29   1.076435e-01
7.29   3.239782e-01
8.29  -2.169763e-02
10.29  4.054363e-01
11.29 -2.019707e-02
13.29  3.875746e-01
14.29  1.101749e-01
15.29  3.256547e-01
16.29  2.084133e-01
17.29  9.826422e-02
18.29 -2.909241e-01
19.29  2.415278e-01
20.29 -1.782679e-01
22.29  6.193477e-02
23.29  8.122713e-02
2.30  -2.498569e-01
3.30   3.793556e-02
4.30   2.905008e-02
5.30   1.436684e-01
7.30   1.446820e-01
8.30   3.988858e-01
10.30  1.192697e-01
11.30  1.708102e+00
13.30  7.798765e-02
14.30  5.484811e-01
15.30 -8.846706e-02
16.30 -1.183363e-01
17.30  5.478660e-01
18.30  4.017959e-01
19.30  4.856165e-03
20.30 -1.143205e-01
22.30 -1.118628e-01
23.30  2.214546e-01
2.31  -1.268358e-01
3.31   3.162701e-01
4.31  -1.148182e-02
5.31  -2.514963e-02
7.31   5.109181e-02
8.31   2.270797e-01
10.31 -2.029053e-01
11.31  2.250860e+00
13.31 -2.040282e-01
14.31 -2.507676e-01
15.31 -3.142143e-01
16.31  2.742209e-01
17.31 -7.776126e-02
18.31  4.136313e-01
19.31  9.488043e-03
20.31 -3.154241e-01
22.31 -1.267891e-01
23.31  1.405784e+00
2.32   1.685443e-02
3.32  -7.337911e-02
4.32   1.650047e-01
5.32  -1.224386e-01
7.32  -2.940803e-01
8.32   6.478559e-01
10.32  1.341584e+00
11.32  2.363985e+00
13.32 -1.214338e-01
14.32 -1.520361e-01
15.32  2.071235e-01
16.32  1.248052e-03
17.32  6.623109e-02
18.32  2.775452e-01
19.32  6.699551e-02
20.32  2.780055e-01
22.32  8.492593e-02
23.32  2.427625e+00
2.33  -2.443098e-01
3.33  -4.216822e-02
4.33   1.608897e-01
5.33  -3.688526e-02
7.33  -3.258910e-01
8.33   1.016881e+00
10.33 -7.114586e-02
11.33  7.378767e-01
13.33  1.191734e-02
14.33  9.095497e-02
15.33 -1.794352e-01
16.33 -3.984256e-01
17.33  2.217997e-02
18.33  1.421382e-01
19.33 -2.107832e-02
20.33  1.730324e-01
22.33  7.107411e-02
23.33  2.198360e-01
2.34   2.317831e-01
3.34   1.584052e-02
4.34  -3.053235e-02
5.34   8.935672e-02
7.34  -4.883249e-01
8.34   1.127566e+00
10.34  1.194928e-02
11.34  1.082239e+00
13.34  1.030262e+00
14.34  4.294317e-02
15.34 -2.359216e-01
16.34 -3.521499e-01
17.34 -4.981878e-02
18.34 -8.016248e-02
19.34  9.404983e-02
20.34  1.313016e-01
22.34  2.149818e-01
23.34 -6.593841e-02
2.35   7.054974e-01
3.35   2.166910e-01
4.35  -3.367819e-01
5.35   3.409485e-02
7.35  -1.918950e-01
8.35   3.807607e-01
10.35  3.867610e-01
11.35  2.640810e-01
13.35 -1.813428e-01
14.35  4.181355e-01
15.35 -1.093688e-01
16.35  4.897072e-02
17.35  6.188829e-02
18.35  5.485263e-01
19.35  6.083406e-02
20.35  2.670309e-01
22.35 -2.223851e-02
23.35  3.455396e-01
2.36   9.817755e-02
3.36   7.033720e-02
4.36  -5.216366e-02
5.36  -5.743703e-03
7.36  -1.128517e-02
8.36  -7.734937e-02
10.36 -4.856845e-01
11.36  1.467143e+00
13.36 -3.657021e-02
14.36  2.590994e-01
15.36  5.501796e-02
16.36  5.639635e-01
17.36 -1.550791e-01
18.36  1.207438e-01
19.36 -2.106718e-01
20.36  2.777811e-02
22.36 -8.451213e-02
23.36  8.882720e-02
2.37   2.917145e-01
3.37   8.142671e-01
4.37   1.061265e-01
5.37  -4.945440e-02
7.37   3.231748e-01
8.37   8.805566e-01
10.37 -5.340130e-01
11.37 -5.131595e-01
13.37 -8.190905e-01
14.37  4.804734e-02
15.37 -1.080033e-01
16.37  1.471645e-01
17.37  8.946377e-02
18.37  2.496604e-01
19.37 -1.487271e-02
20.37  8.677701e-02
22.37  1.013191e-01
23.37  2.528939e-02
2.38   1.364070e+00
3.38   4.082397e-01
4.38  -1.209072e-01
5.38  -1.979767e-01
7.38  -2.319337e-01
8.38  -2.516837e-01
10.38 -1.567592e+00
11.38 -1.428931e-01
13.38 -9.943212e-01
14.38 -2.426783e-01
15.38 -1.688099e-01
16.38  3.157563e-01
17.38 -3.296531e-02
18.38  1.144955e-01
19.38 -8.118251e-02
20.38  1.009683e-01
22.38  2.472636e-02
23.38 -7.124177e-01
2.39   9.415338e-01
3.39  -2.720136e-01
4.39   1.010997e-01
5.39   2.903589e-01
7.39  -2.332277e-01
8.39  -5.211893e-01
10.39 -6.353837e-01
11.39  4.413054e-01
13.39 -5.966090e-01
14.39  5.808807e-02
15.39 -2.198507e-01
16.39  2.874245e-02
17.39 -6.424704e-02
18.39 -7.174568e-02
19.39  4.488465e-02
20.39  2.348871e-01
22.39  1.358203e-01
23.39 -2.035957e-01
2.40   3.563012e-02
3.40   2.571848e-01
4.40   2.477936e-01
5.40   2.926763e-03
7.40  -4.227186e-01
8.40   1.922108e-01
10.40 -4.167169e-01
11.40  1.106394e+00
13.40 -1.023160e+00
14.40  7.781499e-02
15.40 -4.216507e-01
16.40  1.657891e-01
17.40  3.252859e-01
18.40  4.197009e-01
19.40 -1.301005e-01
20.40 -1.194646e-02
22.40 -1.745729e-01
23.40  3.562989e-02
2.41   2.263375e-01
3.41   1.535321e-02
4.41  -2.829009e-03
5.41   2.772282e-02
7.41  -4.477450e-01
8.41  -7.335962e-01
10.41 -1.880667e+00
11.41 -5.968171e-01
13.41 -9.721078e-01
14.41 -9.079569e-02
15.41  2.811367e-01
16.41 -1.290724e-01
17.41  1.128712e-02
18.41  6.299503e-01
19.41 -4.417408e-03
20.41 -1.058524e-03
22.41 -3.136854e-03
23.41 -3.020288e-01
2.42   6.973404e-03
3.42   4.507341e-01
4.42   1.228680e-01
5.42   3.360594e-01
7.42  -2.097632e-01
8.42   7.954175e-01
10.42 -8.615449e-01
11.42 -8.575679e-01
13.42 -1.108396e+00
14.42  2.958513e-01
15.42 -4.213407e-01
16.42  7.289382e-02
17.42 -2.466091e-01
18.42 -5.147511e-02
19.42  9.222583e-02
20.42 -7.466975e-02
22.42  1.173063e-01
23.42 -7.341554e-01
2.43   1.303708e-02
3.43  -4.978391e-01
4.43  -3.135135e-01
5.43   1.282683e-01
7.43  -4.339483e-01
8.43  -6.331264e-01
10.43 -1.019275e+00
11.43 -9.206275e-02
13.43 -1.042176e+00
14.43  3.921767e-02
15.43  2.886497e-01
16.43 -1.589483e-02
17.43 -2.078898e-01
18.43 -1.682711e-01
19.43 -1.183684e-01
20.43  5.110050e-01
22.43 -2.618663e-01
23.43 -3.493532e-01
2.44  -7.027992e-01
3.44   2.531621e-01
4.44   4.285720e-01
5.44   5.955837e-02
7.44  -5.931051e-01
8.44  -6.394728e-01
10.44 -1.017606e+00
11.44  2.806301e-01
13.44 -1.936346e-01
14.44 -4.359391e-01
15.44 -3.621063e-01
16.44 -2.158879e-01
17.44  3.161099e-03
18.44  3.448711e-01
19.44  7.574989e-02
20.44 -2.284181e-01
22.44 -2.692724e-01
23.44 -1.649336e-01
2.45   6.291565e-02
3.45   2.849142e-01
4.45   7.938436e-02
5.45   3.389282e-02
7.45  -3.782864e-01
8.45  -1.067031e+00
10.45 -1.396054e+00
11.45 -7.341349e-01
13.45 -4.776445e-01
14.45 -2.821107e-01
15.45 -4.804285e-02
16.45 -2.745234e-02
17.45  1.602162e-01
18.45 -5.019158e-02
19.45  4.984070e-01
20.45  8.847132e-02
22.45 -5.942079e-01
23.45 -1.176079e+00
2.46  -9.626070e-02
3.46  -6.874577e-01
4.46   9.701088e-02
5.46   9.959214e-02
7.46  -6.762635e-01
8.46  -4.815281e-01
10.46 -1.721598e+00
11.46 -8.238979e-01
13.46 -5.081294e-01
14.46 -4.996988e-01
15.46 -4.750416e-01
16.46 -7.780598e-01
17.46 -8.951590e-02
18.46  4.203109e-01
19.46 -2.254788e-01
20.46 -6.129208e-02
22.46 -9.885504e-02
23.46 -1.011122e+00
2.47  -5.984065e-01
3.47   3.805718e-01
4.47  -1.568450e-01
5.47  -1.247052e-01
7.47  -2.477900e-01
8.47  -3.198929e-01
10.47 -1.323333e+00
11.47 -5.624013e-01
13.47 -1.075371e-01
14.47 -5.903209e-01
15.47 -2.719422e-01
16.47 -1.550460e-01
17.47 -2.143024e-01
18.47 -2.041255e-02
19.47 -3.031220e-02
20.47 -1.329407e-01
22.47 -1.800124e-01
23.47  3.025542e-01
2.48  -4.869513e-01
5.48  -2.491299e-01
23.48 -2.966408e-01

$subject
   (Intercept)
2  -0.28069995
3   0.51939457
4  -0.56468289
5  -0.84139260
7   0.30330350
8   0.66185221
10  1.44977223
11  0.87900390
13  0.14983097
14 -0.48709647
15  0.04390682
16 -0.17924635
17 -0.81171912
18  0.27432234
19 -0.76418929
20 -0.58533061
22 -0.60902037
23  0.84199112

with conditional variances for "trial_id" "subject" 

Sample Scaled Residuals:
         1          2          3          4          5          6 
-0.3910858 -0.5386600 -0.5396268 -0.4996448 -0.4546655 -0.2833216 

=============================================================
# -------- Identify Stepwise EMM Outliers vs. Overall Mean (per Axis × Block) --------

# Bind all EMMs into one dataframe
all_emm_6step <- bind_rows(lapply(rms_lmm_results_6step, function(res) res$EmmeansStepBlock), .id = "AxisLabel")

# Extract axis from label (e.g., "RMS_X" -> "X")
all_emm_6step <- all_emm_6step %>%
  mutate(
    Axis = gsub("RMS_", "", AxisLabel),
    Step = as.numeric(as.character(Step)),
    Block = as.factor(Block)
  )

# Compute overall mean ± 1.96*SE per Block × Axis
overall_stats_6step <- all_emm_6step %>%
  group_by(Block, Axis) %>%
  summarise(
    overall_mean = mean(emmean, na.rm = TRUE),
    overall_se = sd(emmean, na.rm = TRUE) / sqrt(n()),
    lower_bound = overall_mean - 1.96 * overall_se,
    upper_bound = overall_mean + 1.96 * overall_se,
    .groups = "drop"
  )

# Join back and flag outliers
emm_outliers_6step <- left_join(all_emm_6step, overall_stats_6step, by = c("Block", "Axis")) %>%
  mutate(
    is_outlier = emmean < lower_bound | emmean > upper_bound
  ) %>%
  filter(is_outlier)

# View flagged outlier steps
print(emm_outliers_6step)
   AxisLabel Step Block    emmean         SE       df  lower.CL  upper.CL Axis
1      RMS_X    1     1 0.8437034 0.07406303 17.50140 0.6877844 0.9996224    X
2      RMS_X    5     1 0.8587955 0.07413965 17.57393 0.7027627 1.0148282    X
3      RMS_X    6     1 0.8456406 0.07430551 17.73171 0.6893611 1.0019202    X
4      RMS_X    1     4 0.6946940 0.07400917 17.45059 0.5388549 0.8505331    X
5      RMS_X    5     4 0.7097861 0.07416780 17.60066 0.5537116 0.8658607    X
6      RMS_X    6     4 0.6966313 0.07447367 17.89277 0.5401007 0.8531619    X
7      RMS_X    1     5 0.5939546 0.07400382 17.44555 0.4381234 0.7497858    X
8      RMS_X    5     5 0.6090467 0.07416782 17.60068 0.4529721 0.7651213    X
9      RMS_X    6     5 0.5958919 0.07447870 17.89761 0.4393537 0.7524300    X
10     RMS_Y    2     1 0.8437679 0.08666179 17.64793 0.6614375 1.0260983    Y
11     RMS_Y    6     1 0.8069276 0.08688169 17.82773 0.6242694 0.9895857    Y
12     RMS_Y    2     4 0.8075712 0.08669749 17.67706 0.6251877 0.9899547    Y
13     RMS_Y    6     4 0.7707309 0.08710140 18.00876 0.5877440 0.9537178    Y
14     RMS_Y    2     5 0.6695575 0.08669761 17.67716 0.4871739 0.8519412    Y
15     RMS_Y    6     5 0.6327172 0.08710762 18.01390 0.4497210 0.8157134    Y
16     RMS_Z    2     1 1.8010325 0.16280504 17.44198 1.4582057 2.1438593    Z
17     RMS_Z    6     1 1.7316638 0.16308976 17.56431 1.3884147 2.0749129    Z
18     RMS_Z    2     4 1.6644975 0.16285206 17.46215 1.3216011 2.0073939    Z
19     RMS_Z    6     4 1.5951288 0.16337503 17.68752 1.2514555 1.9388022    Z
20     RMS_Z    2     5 1.3855632 0.16285235 17.46228 1.0426663 1.7284600    Z
21     RMS_Z    6     5 1.3161945 0.16338325 17.69109 0.9725089 1.6598801    Z
   overall_mean  overall_se lower_bound upper_bound is_outlier
1     0.8507619 0.002416096   0.8460263   0.8554974       TRUE
2     0.8507619 0.002416096   0.8460263   0.8554974       TRUE
3     0.8507619 0.002416096   0.8460263   0.8554974       TRUE
4     0.7017525 0.002416096   0.6970170   0.7064881       TRUE
5     0.7017525 0.002416096   0.6970170   0.7064881       TRUE
6     0.7017525 0.002416096   0.6970170   0.7064881       TRUE
7     0.6010131 0.002416096   0.5962775   0.6057486       TRUE
8     0.6010131 0.002416096   0.5962775   0.6057486       TRUE
9     0.6010131 0.002416096   0.5962775   0.6057486       TRUE
10    0.8294679 0.005312853   0.8190547   0.8398811       TRUE
11    0.8294679 0.005312853   0.8190547   0.8398811       TRUE
12    0.7932712 0.005312853   0.7828580   0.8036844       TRUE
13    0.7932712 0.005312853   0.7828580   0.8036844       TRUE
14    0.6552575 0.005312853   0.6448443   0.6656707       TRUE
15    0.6552575 0.005312853   0.6448443   0.6656707       TRUE
16    1.7692618 0.009794631   1.7500643   1.7884592       TRUE
17    1.7692618 0.009794631   1.7500643   1.7884592       TRUE
18    1.6327268 0.009794631   1.6135293   1.6519242       TRUE
19    1.6327268 0.009794631   1.6135293   1.6519242       TRUE
20    1.3537924 0.009794631   1.3345949   1.3729899       TRUE
21    1.3537924 0.009794631   1.3345949   1.3729899       TRUE

#2.2 12 steps Block 2,4 & 5 - preparation for rms analysis, skip completely to part 3

# --- Step-Wise RMS: Blocks 2, 4, 5 — First 12 Steps ---
plot_stepwise_rms_blocks_245_12steps <- function(tagged_data2) {
  step_markers <- c(14, 15, 16, 17)
  buffer <- 3

  step_data <- tagged_data2 %>%
    filter(phase == "Execution", Marker.Text %in% step_markers) %>%
    assign_steps_by_block() %>%
    filter(Block %in% c(2, 4, 5)) %>%
    mutate(Step = as.numeric(Step)) %>%
    group_by(subject, Block, trial) %>%
    mutate(step_count = max(Step, na.rm = TRUE)) %>%
    ungroup() %>%
    filter(step_count %in% c(12, 18)) %>%
    arrange(subject, Block, trial, ms) %>%
    group_by(subject, Block, trial) %>%
    mutate(row_id = row_number()) %>%
    ungroup() %>%
    filter(Step <= 12)

  step_indices <- step_data %>%
    select(subject, Block, trial, row_id, Step)

  window_data <- map_dfr(1:nrow(step_indices), function(i) {
    step <- step_indices[i, ]
    rows <- (step$row_id - buffer):(step$row_id + buffer)

    step_data %>%
      filter(subject == step$subject,
             Block == step$Block,
             trial == step$trial,
             row_id %in% rows) %>%
      mutate(Step = step$Step)
  })

  step_summary <- window_data %>%
    group_by(subject, Block, trial, Step) %>%
    summarise(
      rms_x = sqrt(mean(CoM.acc.x^2, na.rm = TRUE)),
      rms_y = sqrt(mean(CoM.acc.y^2, na.rm = TRUE)),
      rms_z = sqrt(mean(CoM.acc.z^2, na.rm = TRUE)),
      .groups = "drop"
    ) %>%
    pivot_longer(cols = starts_with("rms_"), names_to = "Axis", values_to = "RMS") %>%
    mutate(
      Axis = toupper(gsub("rms_", "", Axis)),
      Step = factor(Step),
      Block = factor(Block),
      subject = factor(subject),
      trial_id = interaction(subject, trial, drop = TRUE)
    ) %>%
    filter(Step %in% 1:12)

  plot_data <- step_summary %>%
    group_by(Block, Step, Axis) %>%
    summarise(
      mean_rms = mean(RMS, na.rm = TRUE),
      se_rms = sd(RMS, na.rm = TRUE) / sqrt(n()),
      .groups = "drop"
    )

  axis_labels <- unique(plot_data$Axis)
  plots <- map(axis_labels, function(ax) {
    axis_data <- filter(plot_data, Axis == ax)

    ggplot(axis_data, aes(x = Step, y = mean_rms, fill = Block)) +
      geom_col(position = position_dodge(width = 0.8), width = 0.7) +
      geom_errorbar(
        aes(ymin = mean_rms - se_rms, ymax = mean_rms + se_rms),
        position = position_dodge(width = 0.8),
        width = 0.3
      ) +
      ylim(0, 3.25) +
      labs(
        title = paste("Step-wise CoM RMS — Axis", ax),
        x = "Step Number",
        y = "RMS Acceleration (m/s²)",
        fill = "Block"
      ) +
      theme_minimal() +
      theme(
        panel.grid.major = element_blank(),
        panel.grid.minor = element_blank(),
        text = element_text(size = 12),
        plot.title = element_text(face = "bold"),
        axis.text.x = element_text(angle = 0, vjust = 0.5)
      )
  })

  names(plots) <- axis_labels
  return(list(
    plots = plots,
    step_summary = step_summary,
    plot_data = plot_data,
    window_data = window_data
  ))
}

# --- Run function and extract results ---
result <- plot_stepwise_rms_blocks_245_12steps(tagged_data2)

stepwise_block245_plots <- result$plots
step_summary <- result$step_summary
plot_data <- result$plot_data
window_data <- result$window_data

# --- Print plots ---
for (plot_name in names(stepwise_block245_plots)) {
  cat("\n\n==== Axis:", plot_name, "====\n\n")
  print(stepwise_block245_plots[[plot_name]])
}


==== Axis: X ====



==== Axis: Y ====



==== Axis: Z ====

# --- RMS LMMs: Blocks 2, 4, 5 --------
print_stepwise_lmm_diagnostics <- function(results_list, dataset_name = "Mixed") {
  cat(glue::glue("\n=========== STEPWISE LMM DIAGNOSTICS: {dataset_name} ===========\n"))
  for (key in names(results_list)) {
    cat("\n---", key, "---\n")
    cat("ANOVA:\n")
    print(results_list[[key]]$ANOVA)

    cat("\nEstimated Marginal Means (Step | Block):\n")
    print(results_list[[key]]$EmmeansStepBlock)

    cat("\nPairwise Comparisons:\n")
    print(results_list[[key]]$Pairwise)

    cat("\nFixed Effects:\n")
    print(results_list[[key]]$FixedEffects)

    cat("\nRandom Effects:\n")
    print(results_list[[key]]$RandomEffects)

    cat("\nSample Scaled Residuals:\n")
    print(head(results_list[[key]]$ScaledResiduals))

    cat("\n=============================================================\n")
  }
}

rms_lmm_results <- list()
axes <- c("X", "Y", "Z")

for (ax in axes) {
  cat(glue("\n\n========== Running models for Axis: {ax} ==========\n\n"))

  df_rms <- step_summary %>% filter(Axis == ax)
  rms_model <- lmer(RMS ~ Block + Step + (1 | subject) + (1 | trial_id), data = df_rms)

  emmeans_step_block <- emmeans(rms_model, ~ Step | Block)

  rms_lmm_results[[paste0("RMS_", ax)]] <- list(
    Model = rms_model,
    ANOVA = anova(rms_model, type = 3),
    Pairwise = emmeans(rms_model, pairwise ~ Block)$contrasts,
    EmmeansStepBlock = summary(emmeans_step_block),
    FixedEffects = fixef(rms_model),
    RandomEffects = ranef(rms_model),
    ScaledResiduals = resid(rms_model, scaled = TRUE)
  )
}

========== Running models for Axis: X ==========

========== Running models for Axis: Y ==========

========== Running models for Axis: Z ==========
print_stepwise_lmm_diagnostics(rms_lmm_results, dataset_name = "12-Step RMS Acceleration")
=========== STEPWISE LMM DIAGNOSTICS: 12-Step RMS Acceleration ===========
--- RMS_X ---
ANOVA:
Type III Analysis of Variance Table with Satterthwaite's method
      Sum Sq Mean Sq NumDF DenDF  F value    Pr(>F)    
Block 45.310 22.6551     2 19014 184.3048 < 2.2e-16 ***
Step  13.019  1.1835    11 18552   9.6284 < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Marginal Means (Step | Block):
Block = 2:
 Step emmean     SE   df lower.CL upper.CL
 1     0.718 0.0617 17.6    0.588    0.848
 2     0.731 0.0619 17.8    0.601    0.861
 3     0.752 0.0621 18.1    0.621    0.882
 4     0.724 0.0617 17.6    0.594    0.854
 5     0.731 0.0619 17.8    0.601    0.861
 6     0.719 0.0621 18.1    0.589    0.850
 7     0.707 0.0619 17.8    0.577    0.837
 8     0.697 0.0619 17.8    0.567    0.827
 9     0.686 0.0619 17.8    0.556    0.817
 10    0.675 0.0619 17.8    0.545    0.805
 11    0.670 0.0619 17.8    0.540    0.800
 12    0.661 0.0619 17.8    0.531    0.791

Block = 4:
 Step emmean     SE   df lower.CL upper.CL
 1     0.705 0.0617 17.6    0.575    0.835
 2     0.718 0.0618 17.8    0.588    0.848
 3     0.739 0.0622 18.2    0.608    0.869
 4     0.711 0.0617 17.6    0.581    0.841
 5     0.718 0.0618 17.8    0.588    0.848
 6     0.706 0.0622 18.2    0.576    0.837
 7     0.694 0.0618 17.8    0.564    0.824
 8     0.684 0.0618 17.8    0.554    0.814
 9     0.673 0.0618 17.8    0.543    0.804
 10    0.662 0.0618 17.8    0.532    0.792
 11    0.657 0.0618 17.8    0.527    0.787
 12    0.648 0.0618 17.8    0.518    0.778

Block = 5:
 Step emmean     SE   df lower.CL upper.CL
 1     0.603 0.0617 17.6    0.473    0.733
 2     0.616 0.0618 17.8    0.486    0.746
 3     0.637 0.0622 18.2    0.506    0.767
 4     0.609 0.0617 17.6    0.479    0.739
 5     0.616 0.0618 17.8    0.486    0.746
 6     0.604 0.0622 18.2    0.474    0.735
 7     0.592 0.0618 17.8    0.462    0.722
 8     0.582 0.0618 17.8    0.452    0.712
 9     0.571 0.0618 17.8    0.441    0.702
 10    0.560 0.0618 17.8    0.430    0.690
 11    0.555 0.0618 17.8    0.425    0.685
 12    0.546 0.0618 17.8    0.416    0.676

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

Pairwise Comparisons:
 contrast        estimate      SE    df t.ratio p.value
 Block2 - Block4    0.013 0.00668 19078   1.948  0.1255
 Block2 - Block5    0.115 0.00667 19086  17.239  <.0001
 Block4 - Block5    0.102 0.00648 18923  15.745  <.0001

Results are averaged over the levels of: Step 
Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 3 estimates 

Fixed Effects:
 (Intercept)       Block4       Block5        Step2        Step3        Step4 
 0.717758146 -0.013007771 -0.115014938  0.012872078  0.033802008  0.006520064 
       Step5        Step6        Step7        Step8        Step9       Step10 
 0.012913655  0.001603176 -0.011128241 -0.020645452 -0.031261518 -0.042552604 
      Step11       Step12 
-0.048039693 -0.056437266 

Random Effects:
$trial_id
        (Intercept)
3.1   -2.468751e-01
4.1    1.024657e-01
5.1   -5.584796e-02
7.1    4.183326e-02
8.1   -1.957584e-01
10.1  -1.342055e-01
11.1  -5.386706e-01
13.1   8.050233e-02
14.1  -2.225802e-01
15.1   1.174188e-01
16.1  -2.255247e-02
17.1  -1.554903e-01
18.1  -1.131007e-01
19.1   1.127393e-02
20.1   3.408906e-02
22.1   6.862464e-02
23.1  -5.283726e-03
2.2    3.489156e-02
3.2   -1.856873e-01
4.2    1.379374e-01
5.2   -5.700111e-02
7.2   -1.510064e-01
8.2   -2.245720e-01
10.2   3.945719e-01
11.2  -6.524696e-03
13.2   6.150733e-02
14.2   8.083234e-02
15.2   5.340765e-01
16.2  -6.176581e-02
17.2  -1.374549e-01
19.2   2.833108e-02
20.2   2.763554e-02
22.2   1.151475e-01
23.2   1.677737e+00
2.3   -1.533058e-02
3.3    1.850398e-02
4.3   -2.607371e-02
5.3   -5.660524e-02
7.3    5.952432e-02
10.3   4.831796e-01
11.3  -3.508192e-01
13.3   1.230211e-01
14.3  -1.119444e-01
15.3   5.483077e-02
16.3   3.914223e-02
17.3  -6.722175e-02
18.3  -1.005017e-01
19.3  -3.660073e-02
20.3   9.010507e-02
22.3  -2.192142e-02
23.3   2.060028e-01
2.4   -3.436818e-01
3.4   -1.103278e-01
4.4   -6.480357e-02
5.4   -6.830617e-02
7.4   -3.419831e-02
8.4   -6.923761e-02
10.4   1.011349e-03
11.4  -4.732885e-01
13.4  -9.447929e-03
14.4   5.867083e-02
15.4  -8.483914e-02
16.4  -5.853758e-02
17.4  -9.899702e-03
18.4  -1.338653e-01
19.4  -4.154879e-02
20.4  -7.973134e-02
22.4   1.878542e-02
23.4   1.146561e-01
2.5   -3.194843e-02
3.5   -4.978143e-02
4.5    5.156155e-02
5.5   -1.883256e-02
7.5    1.729399e-02
8.5   -1.222553e-01
10.5   8.885492e-02
11.5  -1.971838e-01
13.5   2.489148e-01
14.5   1.598379e-01
15.5   2.266137e-01
16.5  -8.552455e-02
17.5  -3.154001e-02
18.5  -8.367965e-02
19.5  -6.826474e-02
20.5  -3.061010e-02
22.5   5.189887e-02
23.5  -7.007147e-02
2.6   -1.379120e-01
3.6    5.987377e-02
4.6   -5.182350e-02
5.6   -2.173391e-02
7.6    1.780177e-01
8.6   -1.398396e-02
10.6   5.580913e-01
11.6  -1.674128e-02
13.6   5.945830e-02
14.6   1.224238e-01
15.6  -7.516571e-02
16.6  -4.689234e-02
17.6  -1.572497e-01
18.6   5.293448e-02
19.6   8.126654e-03
20.6  -1.998828e-02
22.6   4.858251e-02
23.6   4.483005e-01
2.7   -1.877337e-01
3.7    2.310604e-01
4.7   -1.880636e-02
5.7   -3.208055e-03
7.7    1.723597e-01
8.7   -5.780523e-02
10.7  -4.202827e-02
11.7   9.526421e-02
13.7  -4.070819e-02
14.7   7.420249e-02
15.7  -1.111688e-02
16.7   4.942945e-02
17.7  -9.158214e-02
18.7  -9.276125e-02
19.7  -3.843028e-02
20.7   6.647350e-03
22.7  -1.009542e-01
23.7  -7.850091e-02
2.8   -3.307173e-01
3.8    4.230682e-02
4.8    4.140049e-02
5.8   -1.608120e-02
7.8   -4.717953e-02
8.8   -3.823258e-02
10.8   8.234224e-02
11.8  -1.451589e-01
13.8  -2.391574e-02
14.8   2.258456e-01
15.8  -8.099153e-02
16.8   2.747550e-02
17.8  -1.237267e-01
18.8  -6.748546e-02
19.8  -2.506003e-03
20.8  -2.602943e-02
22.8  -3.257780e-02
23.8  -1.050611e-01
2.9    1.340269e-02
3.9    5.537559e-02
4.9    3.075692e-03
5.9    5.052772e-03
7.9   -2.631606e-02
8.9   -2.204693e-01
10.9   4.318613e-01
11.9  -3.218579e-01
13.9  -1.565215e-01
14.9  -7.019877e-02
15.9   1.556721e-04
16.9  -1.349004e-01
17.9   8.649978e-02
18.9  -1.364388e-01
19.9   4.933070e-02
20.9  -7.951358e-02
22.9  -4.223303e-03
23.9  -9.860677e-02
2.10   1.596400e-01
3.10  -9.436775e-02
4.10   5.863676e-02
5.10  -3.247379e-02
7.10  -1.304889e-01
8.10  -2.238137e-01
10.10  3.588058e-01
11.10  8.583326e-01
13.10 -1.114967e-02
14.10  7.959950e-02
15.10 -1.488175e-01
16.10 -9.291293e-02
17.10 -4.093862e-02
18.10 -3.547807e-02
19.10 -1.334951e-02
20.10 -1.256909e-01
22.10  1.378440e-02
23.10 -2.167830e-01
2.11   3.096896e-02
3.11  -9.908810e-02
4.11  -3.091801e-02
5.11  -3.552153e-02
7.11  -1.394151e-01
8.11  -1.190020e-01
10.11  2.905222e-01
11.11 -1.771284e-01
13.11 -1.048879e-01
14.11 -8.460636e-02
15.11 -6.736351e-02
16.11  1.188831e-01
17.11 -3.047865e-02
18.11 -1.162951e-01
19.11 -8.498870e-02
20.11  2.748276e-03
22.11  4.825333e-03
23.11 -2.089352e-01
2.12   4.134914e-03
3.12  -4.751889e-03
4.12   6.588057e-02
5.12   9.472998e-06
7.12  -6.062492e-02
8.12   4.486674e-01
10.12  3.727584e-02
11.12 -1.869031e-01
13.12  4.828378e-03
14.12 -1.384090e-01
15.12  1.309628e-01
16.12 -2.170941e-01
17.12 -7.300976e-02
18.12 -1.950394e-02
19.12  9.123958e-02
20.12 -1.416480e-01
22.12 -8.475731e-02
23.12 -2.253148e-01
2.13  -1.493493e-01
3.13   2.809570e-02
4.13  -1.105175e-01
5.13  -1.474598e-02
7.13  -1.387414e-01
8.13   1.322222e-01
10.13  2.945024e-01
11.13  2.094825e-01
13.13  2.743151e-02
14.13  1.998744e-01
15.13 -1.549953e-01
16.13 -8.746830e-02
17.13 -1.799051e-02
18.13  3.829389e-02
19.13  2.776796e-02
20.13  2.026356e-01
22.13  6.527365e-02
23.13 -2.344469e-01
2.14   4.812846e-01
3.14  -9.265254e-02
4.14   6.280027e-02
5.14  -1.361521e-01
7.14  -1.696087e-01
8.14   2.491427e-01
10.14  3.613091e-01
11.14 -2.530487e-01
13.14 -7.511413e-02
14.14 -1.932303e-01
15.14 -9.856368e-02
16.14 -2.200419e-03
17.14  1.007279e-01
18.14 -1.547041e-01
19.14  3.978578e-03
20.14 -7.703179e-02
22.14 -9.754953e-03
23.14 -1.670576e-01
2.15  -3.703311e-02
3.15  -1.219153e-01
4.15  -4.028558e-02
5.15   3.463876e-02
7.15  -1.312319e-01
8.15  -3.496375e-01
10.15  3.546321e-01
11.15  7.003993e-02
13.15  2.024248e-02
14.15  7.906153e-03
15.15  6.065136e-04
16.15 -1.277759e-01
17.15  1.196835e-02
18.15 -1.394008e-01
19.15 -1.008052e-01
20.15  3.647287e-02
22.15  5.961050e-02
23.15 -4.093223e-02
2.16  -3.498411e-02
3.16   2.856486e-02
4.16  -1.000398e-01
5.16  -2.404316e-02
7.16   1.187568e-02
8.16  -1.871305e-02
10.16 -1.000902e-02
11.16  3.723294e-01
13.16  9.914333e-02
14.16 -6.801390e-02
15.16 -5.650520e-02
16.16 -1.053475e-01
17.16 -7.874022e-02
18.16 -8.174859e-02
19.16 -7.322972e-02
20.16 -4.733468e-02
22.16 -5.884682e-02
23.16 -8.843744e-02
2.17  -7.371516e-02
3.17   3.202271e-02
4.17   9.265133e-03
5.17   5.900539e-02
7.17  -5.638148e-02
8.17   2.125982e-01
10.17  4.334147e-01
11.17 -5.013596e-02
13.17 -1.636841e-02
14.17  1.621384e-01
15.17 -1.688019e-01
16.17 -1.586151e-01
17.17 -6.871247e-02
18.17 -6.090619e-02
19.17  1.896946e-02
20.17 -6.506929e-02
22.17 -8.816692e-02
23.17 -2.196464e-01
2.18  -1.422118e-01
3.18  -2.381154e-02
4.18   3.376427e-02
5.18  -5.976962e-02
7.18  -8.710733e-02
8.18   5.183197e-01
10.18  2.843915e-01
11.18 -1.660078e-01
13.18  4.581221e-03
14.18 -2.566936e-01
15.18  7.917756e-02
16.18 -1.034599e-01
17.18 -3.742638e-02
18.18  1.567826e-01
19.18  5.579790e-02
20.18  1.590640e-03
22.18  7.816584e-02
23.18 -1.167891e-01
2.19  -2.347299e-01
3.19  -6.498326e-02
4.19  -2.328044e-02
5.19   6.208875e-02
7.19   2.103409e-01
8.19  -1.895915e-01
10.19  2.655209e-01
11.19  6.781744e-02
13.19  1.282560e-01
14.19  1.846772e-01
15.19  1.048097e-01
16.19 -1.682121e-01
17.19 -5.203017e-02
18.19 -1.240311e-01
19.19 -6.376370e-02
20.19  1.531864e-02
22.19  9.602284e-03
23.19 -7.729966e-02
2.20  -1.704030e-01
3.20   8.626034e-02
4.20  -6.097084e-02
5.20   4.537900e-02
7.20  -5.171594e-02
8.20  -8.019914e-02
10.20  3.247558e-01
11.20  6.142768e-02
13.20 -7.074474e-02
14.20 -1.260255e-01
15.20 -1.014516e-01
16.20 -2.228193e-01
17.20 -2.910426e-02
18.20  1.728624e-01
19.20  1.086985e-01
20.20  4.436379e-02
22.20 -3.836689e-02
23.20  1.015197e-02
2.21   1.313774e-01
3.21  -6.336302e-03
4.21   9.525129e-02
5.21  -1.338965e-02
7.21  -2.436933e-02
8.21   4.523794e-01
10.21  3.343827e-01
11.21 -3.999372e-01
13.21 -2.913695e-02
14.21  1.508181e-01
15.21 -6.527623e-02
16.21  1.329457e-02
17.21 -2.101389e-02
18.21 -3.606699e-02
19.21 -1.276206e-02
20.21 -3.136674e-02
22.21  1.975363e-01
23.21 -1.676665e-01
2.22  -2.460777e-01
3.22   1.397407e-02
4.22  -6.533351e-02
5.22   1.464792e-02
7.22  -3.041647e-02
8.22   1.967355e-01
10.22  3.969953e-01
11.22 -3.263602e-01
13.22 -7.764582e-02
14.22  5.333092e-02
15.22 -1.677732e-01
16.22 -2.018180e-02
17.22 -2.006868e-02
18.22  2.602338e-01
19.22 -9.435235e-02
20.22 -5.678685e-02
22.22  1.234583e-02
23.22 -1.120228e-01
2.23   1.415867e-01
3.23   4.798672e-02
4.23   1.129212e-01
5.23   2.123844e-02
7.23  -1.215638e-01
8.23   4.620596e-01
10.23  6.674055e-01
11.23  3.424289e-01
13.23 -4.208067e-02
14.23  2.759866e-02
15.23  1.612743e-01
16.23  6.993481e-03
17.23  1.809466e-02
18.23 -1.409198e-01
19.23 -4.554233e-02
20.23 -3.878664e-03
22.23 -6.361511e-02
23.23  1.642842e-02
2.24   3.072626e-02
3.24   2.105053e-01
4.24  -3.761824e-02
5.24  -4.159186e-02
7.24  -6.702909e-02
8.24   4.129433e-02
10.24 -2.833402e-02
11.24  3.840093e-01
13.24  9.538893e-04
14.24 -1.980114e-01
15.24 -1.382964e-01
16.24  2.150039e-01
17.24  1.464586e-02
18.24  8.409062e-02
19.24  1.262918e-01
20.24  9.833996e-02
22.24  1.182654e-02
23.24 -1.111438e-01
2.25  -9.883855e-02
3.25   1.211331e-02
4.25   3.819536e-02
5.25  -6.368026e-02
7.25  -1.003659e-01
8.25   1.592985e-01
10.25  3.729111e-01
11.25  9.278238e-03
13.25 -5.690642e-02
14.25 -6.103827e-02
15.25  1.439688e-01
16.25 -1.846265e-02
17.25  1.982713e-02
18.25 -4.362318e-02
19.25  7.536511e-02
20.25 -3.015204e-02
22.25  5.048324e-02
23.25  1.519114e-01
2.26   5.061767e-02
3.26  -4.397994e-02
4.26  -1.160756e-01
5.26   2.811003e-02
7.26  -3.408876e-02
8.26   1.383228e-01
10.26  5.228149e-01
11.26  1.339425e+00
13.26  2.166085e-03
14.26 -1.738793e-01
15.26  1.140542e-01
16.26  7.584765e-02
17.26 -4.593251e-03
18.26 -3.626841e-02
19.26 -1.324015e-01
20.26  7.579319e-02
22.26  7.309477e-02
23.26 -9.561211e-02
2.27  -1.353765e-02
3.27  -7.624074e-02
4.27  -2.328272e-02
5.27  -1.063875e-02
7.27   3.053139e-02
8.27   6.348419e-01
10.27  2.112100e-01
11.27  5.652108e-01
13.27  1.663995e-01
14.27 -7.991471e-02
15.27 -4.197826e-02
16.27 -1.558108e-02
17.27  7.004876e-02
18.27 -7.479737e-02
19.27 -4.997889e-02
20.27  8.282680e-03
22.27 -2.414660e-03
23.27  3.526419e-01
2.28  -4.310753e-03
3.28   2.205158e-02
4.28  -1.092947e-01
5.28   6.264555e-02
7.28  -1.130164e-01
8.28   3.498564e-01
10.28 -5.996066e-02
11.28 -2.822512e-01
13.28  2.930499e-01
14.28 -2.721815e-01
15.28  8.757885e-03
16.28 -3.575315e-02
17.28 -1.077563e-02
18.28  2.408924e-02
19.28 -9.888949e-02
20.28 -9.806029e-02
22.28 -6.938481e-02
23.28  3.252292e-01
2.29   2.769849e-01
3.29   2.860718e-01
4.29  -3.387737e-02
5.29   2.469836e-03
7.29   1.282327e-01
8.29   7.922254e-02
10.29  7.520001e-02
11.29  1.591620e-01
13.29  5.677825e-01
14.29  2.169771e-01
15.29  5.303430e-02
16.29  1.264138e-01
17.29  1.993550e-01
18.29 -1.465873e-01
19.29  5.050857e-02
20.29 -8.668195e-03
22.29  1.216317e-01
23.29  6.190191e-02
2.30  -2.167998e-01
3.30   3.655992e-01
4.30  -6.697763e-02
5.30   1.015152e-01
7.30   5.102048e-02
8.30   1.591368e-01
10.30 -1.147402e-01
11.30 -1.116360e-01
13.30  2.410691e-03
14.30 -2.359662e-02
15.30  3.066176e-03
16.30  3.144438e-01
17.30  9.113774e-02
18.30  5.435628e-02
19.30 -5.549413e-02
20.30 -8.578664e-02
22.30  5.457306e-04
23.30  2.141975e-01
2.31   2.281851e-01
3.31   5.373542e-03
4.31   7.237299e-02
5.31   9.628055e-02
7.31   1.530440e-01
8.31   1.610771e-01
10.31 -2.761124e-03
11.31  3.227008e-01
13.31 -7.498159e-02
14.31  1.019414e-01
15.31 -8.732335e-02
16.31  2.000200e-01
17.31  1.321845e-01
18.31 -1.143329e-02
19.31  7.572108e-03
20.31  1.460005e-01
22.31 -4.721800e-03
23.31  2.069874e-01
2.32   6.539289e-02
3.32   8.240201e-02
4.32   1.822074e-01
5.32   1.537401e-01
7.32   1.120816e-01
8.32   3.646804e-01
10.32 -8.128529e-02
11.32  8.069070e-01
13.32 -1.615210e-02
14.32 -1.249571e-01
15.32  7.697606e-01
16.32  9.213656e-02
17.32  1.310646e-01
18.32 -7.310411e-02
19.32 -1.081965e-01
20.32  6.855071e-02
22.32 -1.405715e-02
23.32  3.393866e-01
2.33  -4.117332e-02
3.33   1.820796e-01
4.33  -3.075289e-03
5.33   8.014101e-02
7.33   1.090802e-01
8.33   3.211465e-02
10.33  4.536811e-01
11.33  3.296268e-01
13.33  2.151761e-01
14.33 -1.678675e-01
15.33 -1.512869e-01
16.33  3.437199e-01
17.33  1.243199e-01
18.33 -4.795066e-02
19.33 -1.294971e-01
20.33  1.045076e-01
22.33  1.355830e-01
23.33 -1.216070e-01
2.34   1.989142e-01
3.34  -2.203838e-01
4.34   4.908590e-02
5.34  -3.950835e-02
7.34   1.285864e-01
8.34  -5.485770e-02
10.34  9.623307e-02
11.34  7.596759e-01
13.34  3.290866e-01
14.34  5.872352e-02
15.34  2.370898e-01
16.34  6.013768e-01
17.34  4.212556e-02
18.34 -1.191474e-01
19.34  1.508749e-03
20.34  1.360984e-01
22.34  3.152209e-01
23.34  1.074737e-01
2.35   3.293977e-01
3.35   1.341615e-01
4.35  -6.226122e-02
5.35   7.273617e-02
7.35   5.429837e-03
8.35  -1.992591e-01
10.35 -4.579769e-02
11.35  3.937598e-01
13.35  3.217278e-01
14.35  8.602119e-02
15.35  8.430212e-02
16.35  6.882065e-02
17.35 -2.637235e-02
18.35  1.409766e-01
19.35  5.192727e-02
20.35  9.344383e-02
22.35 -1.149880e-02
23.35 -1.050988e-01
2.36   2.738416e-01
3.36   1.791962e-01
4.36   1.684649e-01
5.36  -7.047357e-02
7.36   3.510190e-01
8.36   2.053824e-01
10.36 -5.803719e-01
11.36  1.255679e-01
13.36  1.438534e-01
14.36  3.333618e-01
15.36  4.491617e-02
16.36  4.039281e-01
17.36  2.446643e-01
18.36  1.004378e-01
19.36 -1.649983e-02
20.36  4.416003e-03
22.36 -3.012952e-02
23.36  2.971974e-01
2.37  -5.829975e-02
3.37   5.627920e-02
4.37   1.351028e-02
5.37  -8.474602e-02
7.37   4.093317e-01
8.37  -1.668260e-01
10.37  8.054523e-03
11.37  2.894946e-01
13.37 -6.490011e-02
14.37  1.568742e-01
15.37 -6.530417e-02
16.37  2.048192e-01
17.37  2.603739e-01
18.37  2.834207e-01
19.37  6.288176e-02
20.37 -1.424860e-01
22.37  4.209409e-01
23.37  3.990612e-02
2.38   3.544568e-01
3.38   1.574537e-01
4.38  -6.341400e-02
5.38  -1.537760e-01
7.38  -9.640575e-02
8.38  -2.382918e-02
10.38 -5.967320e-01
11.38 -3.304064e-01
13.38 -1.229592e-01
14.38  4.950414e-01
15.38 -4.050436e-02
16.38 -2.690193e-02
17.38  2.237517e-01
18.38  1.951876e-01
19.38  6.146824e-02
20.38 -1.074887e-01
22.38  5.189504e-02
23.38  1.347720e-02
2.39   7.438552e-01
3.39  -4.164050e-02
4.39   7.897022e-03
5.39  -1.824344e-02
7.39   1.749637e-01
8.39  -4.936699e-01
10.39 -5.773912e-01
11.39 -2.157994e-01
13.39 -4.379279e-02
14.39  7.451766e-02
15.39  7.173517e-02
16.39 -2.154481e-03
17.39  2.170538e-01
18.39 -2.546962e-02
19.39 -8.309305e-02
20.39  4.619307e-02
22.39 -2.490202e-02
23.39 -3.059686e-01
2.40   5.364446e-01
3.40   5.124302e-02
4.40   7.964389e-02
5.40   8.357995e-02
7.40   5.607615e-02
8.40   9.963482e-02
10.40  8.081480e-02
11.40 -4.528619e-01
13.40 -2.704276e-01
14.40  1.550048e-01
15.40 -1.066478e-01
16.40  3.917801e-02
17.40  1.242523e-01
18.40 -1.483313e-02
19.40  3.291512e-02
20.40 -7.599283e-02
22.40  1.949805e-01
23.40 -3.425731e-01
2.41   2.724224e-01
3.41  -1.753693e-01
4.41   2.602195e-02
5.41   1.600585e-01
7.41   1.523877e-02
8.41  -2.302760e-01
10.41 -1.193203e+00
11.41 -1.380318e-01
13.41 -1.810715e-01
14.41 -6.070735e-02
15.41  1.340019e-02
16.41 -5.173318e-02
17.41  6.615731e-02
18.41  1.975066e-01
19.41  1.728263e-01
20.41 -7.818691e-02
22.41 -6.345192e-03
23.41  1.916161e-01
2.42   2.043420e-01
3.42  -8.225178e-02
4.42  -8.918268e-02
5.42   9.751589e-02
7.42   6.882531e-02
8.42  -8.471967e-02
10.42 -9.386470e-01
11.42 -4.561624e-01
13.42 -3.384406e-01
14.42  4.819912e-01
15.42 -2.914724e-01
16.42  8.238830e-02
17.42 -8.102148e-02
18.42  2.800659e-01
19.42  6.973439e-02
20.42  7.539102e-02
22.42  9.491278e-03
23.42 -2.185760e-01
2.43  -3.353268e-01
3.43   1.549182e-01
4.43  -1.391707e-01
5.43   6.352833e-02
7.43  -8.798918e-02
8.43  -6.139329e-01
10.43 -3.319159e-01
11.43 -1.134726e-01
13.43 -3.702428e-01
14.43 -2.819937e-02
15.43 -1.487703e-01
16.43 -9.283657e-02
17.43 -2.785466e-01
18.43  3.652876e-02
19.43  3.326068e-02
20.43  2.764662e-02
22.43 -3.294515e-01
23.43 -2.081508e-01
2.44  -3.949549e-01
3.44  -1.104208e-01
4.44  -5.911769e-02
5.44   8.357683e-03
7.44   8.678449e-02
8.44  -6.618380e-02
10.44 -2.741549e-01
11.44 -1.567536e-01
13.44 -2.794608e-01
14.44 -1.926346e-01
15.44 -9.570308e-02
16.44 -5.824601e-02
17.44  4.640851e-02
18.44  6.146800e-01
19.44  2.228497e-02
20.44  8.448140e-03
22.44 -2.735694e-01
23.44 -1.671452e-01
2.45  -1.619930e-01
3.45  -1.835070e-02
4.45  -3.118473e-01
5.45  -7.427762e-02
7.45  -3.400812e-01
8.45   3.615117e-01
10.45 -8.598205e-01
11.45 -5.752664e-01
13.45 -5.761135e-02
14.45 -2.726633e-01
15.45  3.788120e-03
16.45 -2.405106e-01
17.45 -2.247451e-01
18.45  2.600418e-01
19.45  2.545691e-02
20.45  2.092703e-02
22.45 -3.928135e-01
23.45 -3.995642e-01
2.46  -1.066826e-01
3.46  -1.968958e-01
4.46   1.612042e-01
5.46  -1.407436e-01
7.46  -2.863495e-01
8.46  -5.789390e-01
10.46 -7.718879e-01
11.46 -2.382881e-01
13.46 -3.392106e-01
14.46 -3.937027e-01
15.46 -2.032275e-01
16.46 -3.829473e-01
17.46 -3.137307e-01
18.46 -3.665283e-01
19.46  1.328775e-01
20.46 -4.687148e-02
22.46 -2.022548e-01
23.46 -4.400984e-01
2.47  -4.729630e-01
3.47  -4.543597e-01
4.47  -4.373815e-02
5.47  -2.057359e-01
7.47  -1.462395e-01
8.47  -7.750444e-01
10.47 -1.015136e+00
11.47 -5.507336e-01
13.47 -2.019484e-01
14.47 -3.922085e-01
15.47 -3.012417e-01
16.47 -4.163859e-01
17.47 -2.003197e-01
18.47 -3.900173e-01
19.47 -1.601447e-01
20.47 -1.008867e-01
22.47 -3.244284e-01
2.48  -4.269041e-01

$subject
   (Intercept)
2   0.11242328
3   0.02714702
4  -0.21034139
5  -0.31203683
7  -0.11854082
8   0.29232920
10  0.71564423
11  0.39007704
13 -0.20693336
14  0.04124467
15  0.00517220
16 -0.04066873
17 -0.18779951
18 -0.04031469
19 -0.21237556
20 -0.21670502
22 -0.06996322
23  0.03164148

with conditional variances for "trial_id" "subject" 

Sample Scaled Residuals:
          1           2           3           4           5           6 
-0.34841504 -0.35685139 -0.41824705 -0.15532180 -0.15324890  0.05888468 

=============================================================

--- RMS_Y ---
ANOVA:
Type III Analysis of Variance Table with Satterthwaite's method
      Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
Block 64.280  32.140     2 18687  229.60 < 2.2e-16 ***
Step  28.456   2.587    11 18524   18.48 < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Marginal Means (Step | Block):
Block = 2:
 Step emmean     SE   df lower.CL upper.CL
 1     0.794 0.0698 17.6    0.647    0.941
 2     0.800 0.0700 17.7    0.653    0.948
 3     0.795 0.0702 18.0    0.647    0.942
 4     0.788 0.0698 17.6    0.641    0.935
 5     0.782 0.0700 17.7    0.634    0.929
 6     0.755 0.0702 18.0    0.607    0.902
 7     0.753 0.0700 17.7    0.606    0.900
 8     0.744 0.0700 17.7    0.597    0.891
 9     0.724 0.0700 17.7    0.576    0.871
 10    0.710 0.0700 17.7    0.563    0.857
 11    0.714 0.0700 17.7    0.567    0.861
 12    0.681 0.0700 17.7    0.533    0.828

Block = 4:
 Step emmean     SE   df lower.CL upper.CL
 1     0.801 0.0698 17.5    0.654    0.948
 2     0.808 0.0699 17.7    0.661    0.955
 3     0.802 0.0703 18.0    0.654    0.950
 4     0.795 0.0698 17.5    0.648    0.942
 5     0.789 0.0699 17.7    0.642    0.936
 6     0.762 0.0703 18.0    0.614    0.910
 7     0.760 0.0699 17.7    0.613    0.907
 8     0.751 0.0699 17.7    0.604    0.898
 9     0.731 0.0699 17.7    0.584    0.878
 10    0.717 0.0699 17.7    0.570    0.864
 11    0.721 0.0699 17.7    0.574    0.868
 12    0.688 0.0699 17.7    0.541    0.835

Block = 5:
 Step emmean     SE   df lower.CL upper.CL
 1     0.668 0.0698 17.5    0.521    0.815
 2     0.674 0.0699 17.7    0.527    0.821
 3     0.669 0.0703 18.0    0.521    0.816
 4     0.661 0.0698 17.5    0.515    0.808
 5     0.655 0.0699 17.7    0.508    0.802
 6     0.629 0.0703 18.0    0.481    0.776
 7     0.627 0.0699 17.7    0.480    0.774
 8     0.618 0.0699 17.7    0.471    0.765
 9     0.597 0.0699 17.7    0.450    0.745
 10    0.584 0.0699 17.7    0.437    0.731
 11    0.588 0.0699 17.7    0.441    0.735
 12    0.554 0.0699 17.7    0.407    0.701

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

Pairwise Comparisons:
 contrast        estimate      SE    df t.ratio p.value
 Block2 - Block4 -0.00726 0.00717 18721  -1.012  0.5695
 Block2 - Block5  0.12616 0.00717 18729  17.601  <.0001
 Block4 - Block5  0.13342 0.00694 18668  19.211  <.0001

Results are averaged over the levels of: Step 
Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 3 estimates 

Fixed Effects:
  (Intercept)        Block4        Block5         Step2         Step3 
 0.7939634450  0.0072564416 -0.1261636600  0.0064892210  0.0008967414 
        Step4         Step5         Step6         Step7         Step8 
-0.0064009251 -0.0124304230 -0.0392267387 -0.0409649191 -0.0499576135 
        Step9        Step10        Step11        Step12 
-0.0703637070 -0.0840947760 -0.0799343941 -0.1134563308 

Random Effects:
$trial_id
        (Intercept)
3.1   -0.1661429660
4.1   -0.0364579522
5.1   -0.0333763718
7.1    0.1122530131
8.1    0.0192755731
10.1   0.1030479284
11.1  -0.6560372329
13.1  -0.1155720613
14.1  -0.1880989702
15.1  -0.0678287883
16.1  -0.1799599615
17.1  -0.1468943874
18.1   0.1639976312
19.1  -0.0077345874
20.1  -0.0757378811
22.1   0.0163223513
23.1  -0.2520055089
2.2   -0.1224673094
3.2   -0.2576678591
4.2   -0.0054664698
5.2    0.0358467610
7.2   -0.1523210320
8.2   -0.1882652758
10.2   0.1054131813
11.2  -0.4875127096
13.2   0.1031405553
14.2   0.3367014721
15.2   0.0925696142
16.2   0.0478492249
17.2  -0.1491546834
19.2   0.1838262122
20.2   0.2891196116
22.2   0.2327946092
23.2  11.5276076575
2.3   -0.1590897616
3.3   -0.1530492720
4.3    0.0500441347
5.3    0.1213521939
7.3   -0.1756057268
10.3   0.2142544899
11.3  -0.0307193751
13.3  -0.0944257940
14.3  -0.1253276870
15.3  -0.1245974203
16.3   0.1774193316
17.3  -0.0946362407
18.3  -0.0904714795
19.3  -0.1289862154
20.3   0.0863451639
22.3   0.0452258541
23.3  -0.1180636160
2.4   -0.2915940422
3.4    0.0441655492
4.4   -0.0653550097
5.4    0.0448411420
7.4    0.1036793174
8.4    0.0527328564
10.4   0.0290673049
11.4  -0.6415611575
13.4  -0.0522005070
14.4   0.1167890519
15.4  -0.1583601417
16.4  -0.1932795585
17.4  -0.2026138852
18.4  -0.0284229164
19.4  -0.0565312121
20.4  -0.0169683063
22.4  -0.0376805486
23.4  -0.2511104006
2.5   -0.0527986928
3.5   -0.1134811319
4.5   -0.1253991459
5.5   -0.0868298986
7.5   -0.0732245004
8.5   -0.1936561870
10.5   0.5507449746
11.5  -0.1770470964
13.5   0.1054381212
14.5   0.2021565810
15.5   0.1479345724
16.5  -0.0486161359
17.5   0.0495088233
18.5  -0.0789990719
19.5  -0.1969295646
20.5   0.1193221449
22.5  -0.0211438915
23.5  -0.4538973381
2.6   -0.0687048297
3.6    0.0509532445
4.6    0.1375308945
5.6    0.0232808317
7.6    0.1142763098
8.6   -0.0476133338
10.6   0.2707773530
11.6   0.1531986366
13.6   0.0043345023
14.6   0.1247763077
15.6  -0.1241090821
16.6  -0.0881810341
17.6  -0.1703335043
18.6   0.0510171742
19.6  -0.1015774925
20.6   0.0536238651
22.6  -0.0356141776
23.6  -0.2412143894
2.7   -0.2085321825
3.7   -0.1212004236
4.7   -0.1111667150
5.7   -0.0186650210
7.7   -0.0256645839
8.7   -0.1813201231
10.7   0.3924828509
11.7   0.3867049852
13.7   0.0550793469
14.7   0.2039795194
15.7  -0.0993556026
16.7  -0.0140071635
17.7   0.0626115386
18.7   0.0153298801
19.7  -0.1086082568
20.7  -0.0787419320
22.7  -0.0214532009
23.7  -0.0959819029
2.8   -0.1307460608
3.8   -0.0713213119
4.8   -0.0717829245
5.8   -0.1021190865
7.8    0.0336284833
8.8   -0.2155897489
10.8   0.0327288064
11.8   0.1680556505
13.8  -0.0668353622
14.8   0.1345188914
15.8  -0.0482592767
16.8  -0.1348349169
17.8  -0.1406208131
18.8  -0.0372114043
19.8  -0.0953249978
20.8  -0.0454507255
22.8  -0.1166422268
23.8  -0.4097487988
2.9    0.0330365871
3.9    0.0953719411
4.9   -0.0564547269
5.9    0.0449424050
7.9   -0.0245459971
8.9   -0.1216789420
10.9   0.4141209336
11.9  -0.3264493837
13.9  -0.1898291239
14.9   0.0636564886
15.9  -0.0035666786
16.9  -0.0997360288
17.9  -0.0206893059
18.9  -0.1648108194
19.9  -0.0844135533
20.9  -0.0113913652
22.9  -0.0812783357
23.9  -0.2904122333
2.10  -0.1522415501
3.10   0.1544918916
4.10   0.1343272890
5.10  -0.0182072877
7.10  -0.0356395380
8.10  -0.2004403557
10.10  0.6005109849
11.10  0.0137441577
13.10  0.0300893733
14.10  0.1100926530
15.10 -0.1244779353
16.10 -0.1483840411
17.10  0.0451507778
18.10  0.0656568655
19.10  0.0107891663
20.10 -0.0725021142
22.10 -0.0371623791
23.10 -0.4301097254
2.11   0.1503848955
3.11   0.3119306708
4.11  -0.0607835461
5.11   0.0373230287
7.11   0.0734471688
8.11   0.0233486592
10.11  0.0899437741
11.11 -0.2538808224
13.11 -0.0821334090
14.11  0.0104534198
15.11  0.0120325060
16.11 -0.0721634079
17.11 -0.0224595992
18.11  0.1051662289
19.11 -0.0676114966
20.11  0.0690234734
22.11  0.0073097134
23.11 -0.2589676525
2.12  -0.0469942605
3.12   0.2768982621
4.12  -0.0460718178
5.12  -0.0085225999
7.12  -0.1429020821
8.12   0.0688466424
10.12  0.2419271919
11.12 -0.3970757110
13.12 -0.0764628202
14.12 -0.3395367330
15.12 -0.0252811669
16.12 -0.1244123780
17.12 -0.0907009166
18.12 -0.1398026582
19.12  0.1666572989
20.12 -0.1163041406
22.12 -0.0887463042
23.12 -0.4669584980
2.13  -0.1678294814
3.13  -0.1997814758
4.13   0.0604814612
5.13  -0.0656251557
7.13  -0.0965675563
8.13  -0.0506935110
10.13  0.1379644179
11.13  0.0705220353
13.13  0.0004625212
14.13  0.0290603543
15.13 -0.1772669470
16.13 -0.1549402359
17.13 -0.0561368190
18.13 -0.0484990081
19.13 -0.0711290201
20.13  0.0421671640
22.13  0.1539917585
23.13 -0.3688157201
2.14   0.0230191367
3.14  -0.0138139676
4.14  -0.1741868926
5.14  -0.1038060210
7.14  -0.1636900796
8.14   0.2836081454
10.14  0.1913390504
11.14 -0.4801912646
13.14 -0.0790235878
14.14 -0.1762314312
15.14  0.0945272882
16.14 -0.0960809386
17.14 -0.0591734740
18.14  0.1315371347
19.14  0.0210735665
20.14 -0.1237038264
22.14 -0.0470460635
23.14 -0.4541119144
2.15   0.0203243479
3.15   0.0573615286
4.15  -0.1371212309
5.15   0.0430677250
7.15  -0.1177938057
8.15   0.0197124954
10.15  0.5818091803
11.15 -0.1451643355
13.15 -0.0519750662
14.15 -0.0167403093
15.15 -0.0387302446
16.15  0.1010526121
17.15  0.0434550298
18.15 -0.0197430538
19.15 -0.1364947202
20.15 -0.0444373732
22.15 -0.0784212506
23.15 -0.0800613835
2.16  -0.1209974158
3.16   0.0488388808
4.16  -0.1006043051
5.16   0.0619589080
7.16  -0.0956786532
8.16   0.0750975484
10.16  0.1300766720
11.16  0.0673349066
13.16 -0.1387672534
14.16  0.0975355778
15.16  0.0441668110
16.16 -0.0364028532
17.16 -0.0745523818
18.16  0.0858070775
19.16 -0.0481256705
20.16 -0.1458234470
22.16 -0.0424113637
23.16 -0.4177781232
2.17   0.1118454415
3.17   0.1208009731
4.17  -0.0290069072
5.17  -0.1273210419
7.17  -0.1999929566
8.17   0.4603101422
10.17  0.7235464314
11.17 -0.4275221598
13.17 -0.0536878856
14.17  0.0452629766
15.17  0.0173307969
16.17  0.0322814019
17.17 -0.0509279124
18.17  0.0410370712
19.17 -0.0256844439
20.17  0.0007366018
22.17  0.0069360896
23.17 -0.2080958096
2.18   0.1320760459
3.18   0.3810319480
4.18  -0.0323005252
5.18  -0.0202760908
7.18   0.0806185641
8.18  -0.0042187743
10.18  0.3920810257
11.18 -0.5373649632
13.18 -0.0520889333
14.18 -0.2525548517
15.18 -0.0163274007
16.18 -0.1276485873
17.18 -0.1348186292
18.18  0.2039938388
19.18 -0.0910215504
20.18  0.0438124567
22.18  0.0543566654
23.18 -0.2083008282
2.19   0.0553752298
3.19  -0.0462798070
4.19  -0.0705063972
5.19  -0.0793909308
7.19   0.1130836895
8.19  -0.2447656243
10.19  0.2608209678
11.19  0.6131283528
13.19  0.0385910642
14.19  0.0491089060
15.19  0.0251309516
16.19 -0.1631644055
17.19 -0.0783269658
18.19 -0.1865405554
19.19  0.0164723467
20.19 -0.0424420487
22.19 -0.1277994260
23.19 -0.4473808901
2.20   0.1840388060
3.20   0.0266083166
4.20  -0.0283580759
5.20   0.0252839423
7.20   0.0611708926
8.20  -0.2811770559
10.20  0.7392522519
11.20  0.2810649154
13.20 -0.0371962379
14.20 -0.1170292250
15.20 -0.0359905230
16.20 -0.1950891296
17.20  0.0984112370
18.20 -0.0890849764
19.20  0.0396799793
20.20 -0.0894549635
22.20 -0.0401422580
23.20 -0.2118234862
2.21   0.1888614358
3.21   0.0434320987
4.21  -0.0688310478
5.21  -0.0346845577
7.21  -0.0038689023
8.21   0.0982838860
10.21  0.7393748619
11.21 -0.4633275399
13.21 -0.0672719808
14.21  0.0395855159
15.21  0.0983336562
16.21 -0.0534762852
17.21 -0.1422806247
18.21 -0.0403224229
19.21 -0.1052922402
20.21 -0.1145681749
22.21 -0.0079879866
23.21 -0.2716362230
2.22   0.4727910016
3.22   0.2837332162
4.22   0.0805892365
5.22   0.0299765480
7.22  -0.0876520982
8.22   0.5703466547
10.22  0.3235002344
11.22 -0.4058693006
13.22  0.0286681308
14.22  0.0724667214
15.22 -0.0882695510
16.22  0.0467110027
17.22  0.0499132775
18.22 -0.0194773996
19.22 -0.0477067122
20.22 -0.0020030118
22.22  0.0613145684
23.22 -0.4631641485
2.23   0.4017997930
3.23   0.2824187937
4.23  -0.0429619925
5.23   0.0029979164
7.23  -0.0180336967
8.23   0.3775806262
10.23  0.8614192275
11.23  0.5074335064
13.23 -0.0554916341
14.23 -0.0834011921
15.23  0.1720763778
16.23  0.0774185364
17.23  0.0451516259
18.23 -0.0334526766
19.23 -0.0784360048
20.23 -0.0028843094
22.23 -0.0077213258
23.23 -0.0541414486
2.24  -0.0446495481
3.24   0.0430192163
4.24  -0.0386007601
5.24   0.0766645839
7.24  -0.1499723579
8.24   0.6272168104
10.24  0.2544441537
11.24  0.4128318931
13.24 -0.0330587846
14.24 -0.1581050961
15.24 -0.1967574146
16.24 -0.0321706908
17.24  0.0635255724
18.24  0.0026301378
19.24  0.0187248533
20.24 -0.0212766965
22.24 -0.0114347551
23.24 -0.1435638086
2.25   0.3117465325
3.25   0.4122278117
4.25  -0.0846694700
5.25  -0.0539744271
7.25  -0.0903525972
8.25  -0.0838199145
10.25  0.2350447603
11.25  0.7526817760
13.25  0.0735428309
14.25 -0.0627215877
15.25 -0.0474400990
16.25  0.0719987511
17.25  0.0797164187
18.25  0.1453806823
19.25 -0.1234666612
20.25 -0.1367401059
22.25 -0.0096488966
23.25 -0.0251985589
2.26   0.2050125268
3.26   0.0405968425
4.26  -0.0123646331
5.26  -0.0331543109
7.26  -0.1127189944
8.26   0.6643804003
10.26  0.7671975035
11.26  0.5554067853
13.26  0.0535992772
14.26 -0.0065032947
15.26  0.0557119475
16.26  0.1418498766
17.26 -0.0736041101
18.26 -0.0750398448
19.26 -0.0090985488
20.26  0.0588972842
22.26 -0.1022011063
23.26 -0.3673849818
2.27   0.1678815182
3.27  -0.0061176276
4.27  -0.1703693009
5.27  -0.0093598794
7.27  -0.1488512245
8.27   0.1892999630
10.27  0.3057587167
11.27  0.8879670686
13.27  0.1712483529
14.27 -0.1102102040
15.27 -0.0761038178
16.27  0.0903603308
17.27 -0.0923411283
18.27  0.0117624102
19.27  0.0193558470
20.27 -0.0521109661
22.27 -0.0237961522
23.27 -0.0611246168
2.28   0.1361830587
3.28  -0.1694444375
4.28  -0.1055629359
5.28  -0.0280583018
7.28  -0.0912366980
8.28   0.8044744981
10.28 -0.3493437160
11.28 -0.2888225326
13.28  0.1251131975
14.28 -0.0849481689
15.28  0.0672520139
16.28  0.1358218080
17.28 -0.0434045344
18.28 -0.2531197656
19.28 -0.0782873593
20.28 -0.0690103079
22.28  0.0273932362
23.28  0.0246571477
2.29   0.0906457863
3.29   0.4676439185
4.29  -0.0877755311
5.29   0.0038776091
7.29  -0.0096851687
8.29   0.2128688951
10.29  0.5029383562
11.29 -0.5474503926
13.29  0.2126836507
14.29  0.1188777706
15.29 -0.0013980224
16.29  0.0433869886
17.29  0.1473758780
18.29 -0.0941398370
19.29  0.1424268912
20.29 -0.0881325726
22.29  0.1077764787
23.29  0.0104872667
2.30   0.3417142646
3.30   0.0346593340
4.30   0.0637897466
5.30   0.0555392711
7.30   0.0969081931
8.30   0.5087087318
10.30 -0.0709161498
11.30  0.3752067949
13.30  0.1818276968
14.30  0.0318105110
15.30 -0.0306519710
16.30  0.2062958219
17.30  0.1343303136
18.30 -0.1456567504
19.30 -0.0088336425
20.30 -0.0950610004
22.30 -0.1597303761
23.30  0.3040330371
2.31   0.5626691731
3.31   0.2151697449
4.31   0.3098606664
5.31   0.0812267729
7.31   0.0117434317
8.31   0.5663340410
10.31 -0.1537717608
11.31  0.2500099985
13.31  0.3055601229
14.31  0.0647287406
15.31 -0.1858443330
16.31  0.3933839104
17.31  0.4640668419
18.31  0.1106026081
19.31 -0.0802695899
20.31 -0.0961792618
22.31  0.0243724203
23.31  0.1173455002
2.32   0.4214459313
3.32   0.3206807921
4.32   0.2781924370
5.32   0.0852240635
7.32   0.4044107572
8.32   0.5030796733
10.32  0.5385871309
11.32  2.4980560892
13.32  0.0732296258
14.32 -0.2559324727
15.32  0.2406417797
16.32  0.1744789828
17.32  0.2839094416
18.32 -0.0057261401
19.32 -0.0343643501
20.32 -0.1470672302
22.32  0.0299292423
23.32  0.2312333006
2.33  -0.1043500154
3.33   0.0506426786
4.33  -0.0691806613
5.33   0.0859985861
7.33   0.2723522891
8.33   0.1461270081
10.33 -0.1045250466
11.33  1.6140026139
13.33  0.1076859384
14.33 -0.1110816734
15.33  0.1253927657
16.33  0.6227810343
17.33  0.0856890071
18.33 -0.0718540576
19.33 -0.0187327288
20.33  0.0014129336
22.33 -0.1135958011
23.33 -0.0327723931
2.34   0.0682348718
3.34   0.2918522381
4.34  -0.1482165421
5.34  -0.0738946719
7.34   0.0205036897
8.34   0.2505164795
10.34  0.3228068124
11.34  0.8547778835
13.34  0.7596435928
14.34 -0.1733902811
15.34  0.1306253552
16.34  0.3105980594
17.34  0.1113683882
18.34 -0.1211975237
19.34 -0.0035538898
20.34  0.1006920472
22.34  0.0739214587
23.34 -0.3190995319
2.35   0.3418873485
3.35  -0.1334741258
4.35  -0.1350763183
5.35  -0.0904029037
7.35   0.0264103369
8.35  -0.1949431784
10.35 -0.1855162972
11.35  1.0318591366
13.35  0.3003152633
14.35  0.3715642627
15.35  0.4477975304
16.35  0.2139885446
17.35  0.2379387031
18.35  0.2251444162
19.35  0.0410654645
20.35 -0.0248168942
22.35  0.0423153420
23.35  0.1036944844
2.36   0.2345464216
3.36   0.1013345285
4.36   0.0455357995
5.36  -0.0412473694
7.36   0.3038906298
8.36   0.7390707951
10.36 -0.5913341711
11.36  0.0410405427
13.36  0.2294038348
14.36  0.2089174568
15.36  0.0762749553
16.36  0.3666811547
17.36  0.2326886187
18.36 -0.0278344989
19.36  0.1289289209
20.36  0.0284505439
22.36  0.1048210536
23.36  0.2178686756
2.37   0.3498897694
3.37   0.1293527797
4.37   0.1115277732
5.37  -0.0718396419
7.37   0.1212949456
8.37  -0.0590912107
10.37 -0.6765709107
11.37 -0.1782920333
13.37  0.0938693246
14.37  0.2362957490
15.37 -0.0581103251
16.37  0.0421701110
17.37  0.2531056094
18.37  0.5224653215
19.37  0.0036428566
20.37  0.0319192617
22.37 -0.0047492357
23.37 -0.1006370084
2.38   0.1498917895
3.38  -0.0617147425
4.38  -0.0754354793
5.38  -0.1568617042
7.38   0.0536732229
8.38   0.0430440859
10.38 -0.7881106345
11.38 -0.1903007773
13.38  0.0255144049
14.38  0.2418831704
15.38  0.2010475538
16.38  0.0858332865
17.38  0.0100317063
18.38  0.2366548718
19.38  0.0401669140
20.38 -0.2362054094
22.38 -0.0746680198
23.38 -0.1958428561
2.39  -0.0793728193
3.39  -0.2714268054
4.39   0.1406815521
5.39  -0.0790383586
7.39  -0.0521774630
8.39  -0.4011240432
10.39 -0.3475651825
11.39 -0.2347367108
13.39 -0.1146399687
14.39  0.3649832231
15.39  0.0540448734
16.39 -0.2302630996
17.39  0.1364814160
18.39  0.0265827718
19.39  0.0472021246
20.39  0.1074893076
22.39  0.2007477003
23.39 -0.6319175270
2.40   0.5678576186
3.40  -0.1420357187
4.40   0.0841951178
5.40  -0.0819116689
7.40   0.1865285429
8.40   0.1300002923
10.40 -0.1735003567
11.40 -0.5602583694
13.40 -0.3749146544
14.40  0.1555290919
15.40 -0.0481897494
16.40  0.1599466932
17.40 -0.0005244040
18.40  0.2317932490
19.40 -0.0548990969
20.40  0.1753484641
22.40  0.0230315207
23.40 -0.4843013158
2.41   0.0775345606
3.41  -0.0263722425
4.41   0.0330227888
5.41  -0.0273855139
7.41  -0.0582294042
8.41  -0.6138640128
10.41 -1.1599908455
11.41 -0.4163625582
13.41 -0.0752392404
14.41 -0.0741489802
15.41 -0.1109619105
16.41  0.0123611822
17.41  0.1596065033
18.41  0.0756128517
19.41  0.2621408298
20.41 -0.0604270099
22.41  0.2051919095
23.41 -0.4477558850
2.42   0.1381965591
3.42   0.0394652426
4.42   0.1868771760
5.42   0.1807227218
7.42   0.1463242429
8.42  -0.2593890587
10.42 -0.5248385078
11.42 -0.6166013929
13.42 -0.3909777663
14.42  0.0290575418
15.42 -0.2285423183
16.42  0.2872181383
17.42 -0.1602392279
18.42  0.3268480020
19.42  0.1764433456
20.42 -0.0267056643
22.42  0.1947357485
23.42 -0.1868578269
2.43  -0.0953254074
3.43   0.0425299359
4.43  -0.1362689233
5.43   0.0518769313
7.43  -0.0935050115
8.43  -0.8697646400
10.43 -0.6228571178
11.43 -0.1441461692
13.43 -0.3761847679
14.43  0.0666094792
15.43 -0.1929604348
16.43 -0.1923122046
17.43 -0.2394873222
18.43 -0.0195151857
19.43 -0.0198176205
20.43  0.0520995163
22.43 -0.1268048781
23.43 -0.4124376285
2.44  -0.6669598717
3.44  -0.1841126664
4.44  -0.0534531947
5.44  -0.1428007049
7.44   0.2667193719
8.44  -0.6593885036
10.44 -0.6719507303
11.44 -0.4506972008
13.44 -0.3390133430
14.44  0.0582724816
15.44  0.0192862189
16.44 -0.2078902750
17.44 -0.0659460316
18.44  0.0750853632
19.44  0.0540047034
20.44  0.0567561250
22.44 -0.1556325424
23.44 -0.4786718380
2.45  -0.5051183417
3.45  -0.3142923310
4.45  -0.1146971130
5.45  -0.1264272192
7.45  -0.3441753309
8.45  -0.3399491795
10.45 -0.9513584364
11.45 -0.5353512781
13.45 -0.1344754568
14.45 -0.3921403570
15.45 -0.0947532955
16.45 -0.2889738574
17.45 -0.1253209555
18.45 -0.1520474421
19.45 -0.0058345987
20.45  0.0249003156
22.45 -0.2293324962
23.45 -0.7279700905
2.46  -0.5818680458
3.46  -0.5151623263
4.46   0.0647929976
5.46  -0.1314973119
7.46  -0.2792936206
8.46  -0.2902012973
10.46 -0.6631275970
11.46 -0.3184590969
13.46 -0.4224829646
14.46 -0.4899821159
15.46 -0.0107394705
16.46 -0.4510616047
17.46 -0.4335956993
18.46 -0.5253833423
19.46 -0.1137530543
20.46  0.0460919965
22.46 -0.3181268747
23.46 -0.7427908702
2.47  -0.6457177603
3.47  -0.7628743793
4.47  -0.0340158402
5.47  -0.1898112495
7.47  -0.2098882367
8.47  -0.8390808006
10.47 -1.1632890883
11.47 -0.6719263611
13.47 -0.2779226663
14.47 -0.4290194763
15.47 -0.0793994466
16.47 -0.5497717960
17.47 -0.3348278282
18.47 -0.4212055913
19.47 -0.2360824923
20.47 -0.0803406267
22.47 -0.3461443872
2.48  -0.7722286167

$subject
   (Intercept)
2   0.30529001
3   0.21122891
4  -0.24754892
5  -0.31297207
7  -0.14923126
8   0.36259191
10  0.61449218
11  0.31542831
13 -0.22295393
14 -0.02068731
15 -0.12330032
16 -0.01356412
17 -0.13571958
18 -0.01174790
19 -0.28696396
20 -0.24132776
22 -0.28319581
23  0.24018163

with conditional variances for "trial_id" "subject" 

Sample Scaled Residuals:
         1          2          3          4          5          6 
-0.8866836 -0.7231567 -0.8338333 -0.8955007 -1.1491418 -1.0943523 

=============================================================

--- RMS_Z ---
ANOVA:
Type III Analysis of Variance Table with Satterthwaite's method
      Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
Block 241.66 120.832     2 18878 272.113 < 2.2e-16 ***
Step   99.16   9.015    11 18547  20.301 < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Marginal Means (Step | Block):
Block = 2:
 Step emmean    SE   df lower.CL upper.CL
 1      1.61 0.141 17.4    1.316     1.91
 2      1.64 0.141 17.6    1.340     1.93
 3      1.64 0.141 17.8    1.341     1.94
 4      1.60 0.141 17.4    1.306     1.90
 5      1.60 0.141 17.6    1.306     1.90
 6      1.56 0.141 17.8    1.267     1.86
 7      1.55 0.141 17.6    1.251     1.84
 8      1.53 0.141 17.6    1.234     1.83
 9      1.48 0.141 17.6    1.187     1.78
 10     1.46 0.141 17.6    1.165     1.76
 11     1.47 0.141 17.6    1.176     1.77
 12     1.41 0.141 17.6    1.118     1.71

Block = 4:
 Step emmean    SE   df lower.CL upper.CL
 1      1.63 0.141 17.4    1.339     1.93
 2      1.66 0.141 17.5    1.363     1.96
 3      1.66 0.141 17.8    1.364     1.96
 4      1.63 0.141 17.4    1.329     1.92
 5      1.62 0.141 17.5    1.328     1.92
 6      1.59 0.141 17.8    1.289     1.88
 7      1.57 0.141 17.5    1.274     1.87
 8      1.55 0.141 17.5    1.257     1.85
 9      1.51 0.141 17.5    1.210     1.80
 10     1.48 0.141 17.5    1.188     1.78
 11     1.50 0.141 17.5    1.199     1.79
 12     1.44 0.141 17.5    1.141     1.73

Block = 5:
 Step emmean    SE   df lower.CL upper.CL
 1      1.37 0.141 17.4    1.077     1.67
 2      1.40 0.141 17.5    1.101     1.69
 3      1.40 0.141 17.8    1.102     1.70
 4      1.36 0.141 17.4    1.068     1.66
 5      1.36 0.141 17.5    1.067     1.66
 6      1.33 0.141 17.8    1.028     1.62
 7      1.31 0.141 17.5    1.012     1.60
 8      1.29 0.141 17.5    0.995     1.59
 9      1.24 0.141 17.5    0.948     1.54
 10     1.22 0.141 17.5    0.926     1.52
 11     1.23 0.141 17.5    0.937     1.53
 12     1.18 0.141 17.5    0.879     1.47

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

Pairwise Comparisons:
 contrast        estimate     SE    df t.ratio p.value
 Block2 - Block4  -0.0227 0.0127 18924  -1.786  0.1744
 Block2 - Block5   0.2389 0.0127 18934  18.779  <.0001
 Block4 - Block5   0.2616 0.0123 18811  21.202  <.0001

Results are averaged over the levels of: Step 
Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 3 estimates 

Fixed Effects:
 (Intercept)       Block4       Block5        Step2        Step3        Step4 
 1.612243340  0.022735903 -0.238897564  0.024289598  0.026144157 -0.009754036 
       Step5        Step6        Step7        Step8        Step9       Step10 
-0.010088031 -0.048259656 -0.065012215 -0.081557277 -0.129023943 -0.150639855 
      Step11       Step12 
-0.139641584 -0.197993013 

Random Effects:
$trial_id
        (Intercept)
3.1   -0.0364990487
4.1   -0.0160792165
5.1    0.1183656083
7.1    0.5079102664
8.1   -0.1411510843
10.1  -0.2884533172
11.1  -0.3898068074
13.1  -0.1234836746
14.1   0.5649476040
15.1  -0.1421084241
16.1  -0.2896532345
17.1  -0.2963058386
18.1   0.3112620210
19.1   0.0359059786
20.1   0.1524046719
22.1   0.1731609722
23.1  -0.2186061281
2.2    0.5271943642
3.2   -0.5557439621
4.2    0.0590779940
5.2    0.2211647860
7.2    0.1213149347
8.2   -0.4715660974
10.2  -0.2892120306
11.2  -0.8607177714
13.2   0.3141755860
14.2   0.0165772605
15.2   0.2658670986
16.2  -0.1547787627
17.2  -0.2535140357
19.2  -0.1330291130
20.2   0.1114514849
22.2  -0.0315943431
23.2   3.8885900033
2.3    0.1522607931
3.3    0.1483849256
4.3    0.2328912253
5.3   -0.1564725749
7.3    0.4078804388
10.3  -0.0577733558
11.3  -0.4641435099
13.3   0.1811648193
14.3  -0.0641573356
15.3   0.4143203584
16.3   1.2300761553
17.3  -0.0648763986
18.3  -0.3834810918
19.3  -0.0503977628
20.3   0.1379849975
22.3   0.0093527671
23.3  -0.3887081842
2.4   -0.6336391955
3.4   -0.2395926282
4.4   -0.1159688135
5.4   -0.0245628251
7.4    0.1161061383
8.4   -0.5023573238
10.4   0.4624956929
11.4  -0.6369740141
13.4   0.1586611796
14.4   0.2649853696
15.4  -0.1070384497
16.4   0.0517824225
17.4  -0.0854629979
18.4   0.1472502854
19.4  -0.0499468769
20.4  -0.1925405138
22.4   0.1408242375
23.4  -0.4069348532
2.5   -0.2161524007
3.5   -0.5145923329
4.5    0.0141465282
5.5   -0.3207136551
7.5    0.3502153647
8.5   -0.5129269632
10.5   1.0379012607
11.5   0.3205979287
13.5   0.7706822996
14.5  -0.1391503938
15.5   0.4686344776
16.5   0.2584097245
17.5  -0.0549940287
18.5   0.2466848516
19.5  -0.2851202363
20.5  -0.2339420362
22.5   0.1764584769
23.5  -0.4475492756
2.6   -0.4400028360
3.6    0.1773009814
4.6    0.0617562636
5.6   -0.0895868855
7.6    0.8355353738
8.6    0.3695039335
10.6   0.1697449829
11.6   0.1856909033
13.6   0.4037037755
14.6   0.0376707391
15.6  -0.0001478610
16.6  -0.3366057887
17.6  -0.1137647894
18.6   0.6454884090
19.6  -0.0783858782
20.6  -0.1597117531
22.6  -0.0113417039
23.6   0.1180141770
2.7   -0.2990252197
3.7    0.2648989643
4.7    0.1798219967
5.7   -0.1692753978
7.7    0.6226889596
8.7   -0.4766305734
10.7   0.6221751285
11.7   0.9214606289
13.7   0.5839722382
14.7   0.1919246154
15.7  -0.0452122629
16.7  -0.0618070304
17.7  -0.1123157573
18.7  -0.0667751138
19.7  -0.1319429703
20.7  -0.1385136997
22.7  -0.0922948526
23.7  -0.0827619786
2.8   -0.2796184502
3.8   -0.1774151872
4.8   -0.1384687274
5.8   -0.2717057458
7.8    0.4738270597
8.8   -0.6843311660
10.8   0.4769290404
11.8   0.3989938069
13.8   0.5788671265
14.8  -0.1961198499
15.8  -0.0156732404
16.8  -0.3267036482
17.8  -0.1086997276
18.8   0.2414518867
19.8  -0.0710754097
20.8  -0.0558839006
22.8  -0.1002301482
23.8  -0.4374915524
2.9    0.0450418892
3.9    0.1068131745
4.9    0.0544888877
5.9   -0.1025310158
7.9    0.3647005018
8.9   -0.2717068259
10.9   1.6051097570
11.9  -0.4693115961
13.9  -0.1916245982
14.9  -0.0338986105
15.9  -0.0141688699
16.9  -0.1710319926
17.9   0.1797177215
18.9   0.0511513671
19.9  -0.0662719724
20.9  -0.3084614538
22.9   0.1273880176
23.9  -0.0358901590
2.10   0.5439891408
3.10   0.3127097717
4.10   0.2894359874
5.10  -0.0604000124
7.10   0.1984388034
8.10  -0.4813767775
10.10  0.8884344096
11.10  0.2617898211
13.10 -0.0985281279
14.10 -0.2059549966
15.10  0.0698747336
16.10  0.0549089038
17.10 -0.0103371224
18.10  0.3561709782
19.10 -0.0867199611
20.10  0.0280823198
22.10  0.0994763391
23.10 -0.3770910493
2.11  -0.2702172468
3.11  -0.2028480705
4.11   0.0283468003
5.11   0.0116202354
7.11   0.0322929578
8.11  -0.3322808731
10.11  1.1746623363
11.11 -0.6319850835
13.11 -0.1054845533
14.11 -0.2907649088
15.11 -0.0529686420
16.11 -0.0223816696
17.11 -0.1111453929
18.11 -0.0556610191
19.11 -0.2650660524
20.11  0.3615037487
22.11  0.1282971540
23.11 -0.5286913306
2.12  -0.2971731688
3.12   0.2476193401
4.12   0.1359822476
5.12  -0.0614892046
7.12   0.3844142210
8.12   0.5575695172
10.12  1.1195309031
11.12 -0.4543685410
13.12  0.1863311005
14.12  0.0671494070
15.12  0.0788234550
16.12 -0.0021072420
17.12 -0.0104651694
18.12  0.7821880884
19.12  0.4971538924
20.12 -0.3233102759
22.12  0.0719951279
23.12 -0.2982911555
2.13  -0.3754480886
3.13  -0.2381038024
4.13  -0.2321808695
5.13  -0.1194587752
7.13  -0.0298217792
8.13  -0.3090773941
10.13  0.1298445879
11.13  0.3699253537
13.13  0.3302941631
14.13  0.1117532538
15.13 -0.2421270926
16.13  0.1600605418
17.13 -0.0804124581
18.13  0.0802960751
19.13 -0.0538674361
20.13  0.2699405110
22.13  0.1485597308
23.13 -0.3870892821
2.14  -0.0690512701
3.14   0.2669027820
4.14  -0.0820661330
5.14  -0.2166035154
7.14   0.2846171786
8.14   0.3244074171
10.14  1.0944097595
11.14 -0.3146887389
13.14  0.2826844322
14.14  0.3052169688
15.14  0.2834975346
16.14  0.1641806561
17.14  0.1033367315
18.14  0.1928503427
19.14  0.0486791514
20.14 -0.0045453833
22.14  0.0775149967
23.14 -0.2748171414
2.15  -0.2068504748
3.15  -0.1260356700
4.15  -0.1174114178
5.15   0.0314511743
7.15   0.1584918360
8.15   0.0515302423
10.15  0.9357634997
11.15  0.0008789060
13.15  0.3206977381
14.15 -0.0773816924
15.15 -0.0097808145
16.15  0.6768091882
17.15  0.1544241422
18.15  0.4051713062
19.15 -0.1623875799
20.15 -0.0318153606
22.15  0.1335478608
23.15  0.2190353723
2.16   0.1902767037
3.16  -0.1112334969
4.16  -0.1154171834
5.16  -0.0250285352
7.16   0.1132336679
8.16   0.6042024733
10.16  0.4133884741
11.16 -0.3925931559
13.16 -0.2296108626
14.16 -0.0202136987
15.16  0.6175593522
16.16  0.1726855924
17.16 -0.1432704060
18.16  0.2253430702
19.16 -0.1476616461
20.16  0.0828887553
22.16  0.0564365545
23.16 -0.2736314325
2.17  -0.0057447929
3.17   0.4252424060
4.17  -0.0948030884
5.17   0.1461748913
7.17  -0.5181588252
8.17   0.5367534744
10.17  1.0255444823
11.17 -0.3714558997
13.17  0.1827715802
14.17 -0.2910100517
15.17 -0.1469549759
16.17 -0.0845368650
17.17 -0.0583740323
18.17  0.0908256088
19.17  0.1104014755
20.17 -0.2157920353
22.17  0.2351532807
23.17 -0.1407565112
2.18   0.0379882746
3.18   0.2248066715
4.18  -0.0473312342
5.18  -0.0791845682
7.18   0.2364630711
8.18   0.0279623921
10.18  1.3528163820
11.18 -0.2287414751
13.18 -0.3063911300
14.18  0.0055545399
15.18  0.5091306517
16.18  0.2799277401
17.18 -0.0752350707
18.18 -0.1386791352
19.18 -0.0836327273
20.18  0.2021866841
22.18  0.3239023342
23.18 -0.1580048719
2.19   0.0528949917
3.19  -0.0363263681
4.19  -0.2643846890
5.19   0.1173386601
7.19   0.3712672428
8.19   0.0972449538
10.19  2.0479545925
11.19  0.9927863953
13.19  0.2092262948
14.19 -0.2042411023
15.19  0.4843200130
16.19  0.0718912749
17.19 -0.0379909772
18.19 -0.5876168703
19.19 -0.0007267498
20.19  0.1691073430
22.19  0.1272603377
23.19  0.2329002935
2.20  -0.1285894001
3.20   0.1483757987
4.20  -0.0623928777
5.20   0.0435645772
7.20   0.2526933889
8.20  -0.0975056915
10.20  1.4406028134
11.20  0.6888321221
13.20  0.0226975971
14.20  0.2259366669
15.20  0.1077113664
16.20 -0.4719768415
17.20  0.0717110776
18.20 -0.0846088852
19.20  0.0801219718
20.20 -0.0161584667
22.20  0.0927402705
23.20  0.5074411654
2.21   0.0008130066
3.21   0.2335821558
4.21   0.0011374609
5.21  -0.1417126697
7.21   0.2908150966
8.21   0.6002482704
10.21  1.7557137100
11.21 -0.5466192428
13.21  0.3559038997
14.21 -0.0018876052
15.21 -0.1269733611
16.21 -0.0851652481
17.21 -0.0196095960
18.21 -0.2263059302
19.21  0.2159700121
20.21  0.0573285324
22.21  0.2162535637
23.21  0.6661813568
2.22  -0.0886989815
3.22  -0.0306066925
4.22   0.2847921847
5.22   0.0752276735
7.22   0.4676697628
8.22   0.3723134965
10.22  1.3554855388
11.22 -0.2106654982
13.22  0.4402108132
14.22 -0.0908074812
15.22  0.1797661831
16.22 -0.0551381699
17.22  0.0113844803
18.22  0.0303626952
19.22 -0.0704611399
20.22  0.0538253112
22.22  0.0050561921
23.22 -0.0163288407
2.23   0.5604687928
3.23   0.2035850474
4.23  -0.0239515519
5.23   0.0242161231
7.23   0.1032743042
8.23   1.4911214113
10.23  0.1968434104
11.23  1.7064269716
13.23  0.1516946212
14.23 -0.4238122853
15.23 -0.1591283997
16.23  0.0797916793
17.23 -0.0574384749
18.23 -0.0006934136
19.23  0.1712870159
20.23  0.0639405728
22.23  0.0652107110
23.23  0.0216106368
2.24   0.1451576445
3.24   0.2434201842
4.24   0.0470165426
5.24   0.4546008426
7.24   0.1606650382
8.24   0.2485554787
10.24  1.2506982914
11.24  0.1095204900
13.24  0.2520284918
14.24 -0.0281125084
15.24 -0.2955766392
16.24  0.3452773150
17.24 -0.0201426976
18.24  0.3015789225
19.24  0.0453760932
20.24  0.0359006159
22.24  0.0579829796
23.24 -0.1264619422
2.25   0.4027492674
3.25   0.2791150127
4.25   0.1009375323
5.25   0.1077980956
7.25  -0.0327713931
8.25  -0.1319624516
10.25  0.7263894047
11.25 -0.1274792187
13.25  0.8430855609
14.25  0.0981674820
15.25  0.1297692080
16.25  0.4987261058
17.25  0.3516370303
18.25  0.2142413964
19.25  0.0889436573
20.25 -0.0110257302
22.25  0.0684830541
23.25  0.3667138732
2.26   0.1120012373
3.26   0.0116160952
4.26  -0.2497917586
5.26  -0.1064832764
7.26   0.3959715071
8.26   1.1036531486
10.26  0.5009095870
11.26  2.4715283887
13.26  0.7128473249
14.26 -0.3532079274
15.26  0.3945022968
16.26  0.2690230131
17.26  0.0216816027
18.26  0.0903453226
19.26  0.0759005637
20.26  0.2554270295
22.26  0.1006421374
23.26 -0.3606735299
2.27  -0.0424136402
3.27   0.0152227479
4.27  -0.1286926968
5.27   0.0272638834
7.27   0.0952443849
8.27   0.4489546178
10.27  0.1119063439
11.27  1.7007372546
13.27  0.2689924281
14.27  0.0592397023
15.27 -0.3379502677
16.27  0.4265047981
17.27  0.0996523436
18.27  0.0634509337
19.27  0.0304612718
20.27  0.1231166430
22.27  0.0514376684
23.27  0.3599645266
2.28   0.6040783776
3.28   0.2818623408
4.28  -0.0840765321
5.28   0.1002023079
7.28   0.2746783047
8.28   0.7700266459
10.28  1.8871095440
11.28 -0.5428278940
13.28  0.4676802686
14.28 -0.0461753763
15.28 -0.1719573514
16.28  0.2505279064
17.28  0.0058070822
18.28  0.5119441488
19.28 -0.0431229895
20.28 -0.0778147657
22.28 -0.1638587357
23.28  0.1609177546
2.29   0.3788127705
3.29   1.1342504229
4.29  -0.2061837466
5.29   0.1465926082
7.29   0.5820076148
8.29   0.5750213572
10.29 -0.0037983722
11.29  0.1905118622
13.29  0.7321851233
14.29 -0.1121357808
15.29  0.3591734070
16.29  0.2354921940
17.29  0.4065017420
18.29 -0.3290522553
19.29  0.1305860653
20.29 -0.0642709192
22.29  0.0683175897
23.29  0.7998318333
2.30   0.0948505429
3.30   0.4832456488
4.30   0.0259151456
5.30   0.1191754718
7.30   0.2624830529
8.30   0.6724154676
10.30  0.8649909834
11.30 -0.1145390486
13.30  0.3236546587
14.30  0.3905596604
15.30 -0.3181655279
16.30  0.0573774934
17.30  0.3930359022
18.30  0.3597384900
19.30 -0.1035285483
20.30 -0.2349365765
22.30 -0.0830301617
23.30  0.8447320927
2.31   0.3076661979
3.31   0.2031366788
4.31   0.2136310984
5.31   0.1625263587
7.31   0.4371251558
8.31   0.9248735837
10.31 -0.4330174322
11.31  1.2396855726
13.31 -0.1353206734
14.31 -0.0221639906
15.31 -0.0057612249
16.31  0.2598597316
17.31  0.0915634602
18.31  0.1916707112
19.31  0.1209628126
20.31 -0.1642039253
22.31 -0.1380656846
23.31  1.2648929051
2.32   0.4065259695
3.32   0.1347645731
4.32   0.2172345438
5.32   0.3829047777
7.32  -0.0861055553
8.32   0.7090013006
10.32  0.1126085849
11.32  3.1320552567
13.32 -0.3033105876
14.32 -0.4132584969
15.32  0.9334571778
16.32  0.1065102527
17.32  0.1600889120
18.32  0.0325363527
19.32 -0.2089486010
20.32  0.1868061766
22.32  0.0790915223
23.32  0.1936698776
2.33  -0.0533960817
3.33   0.9223877188
4.33   0.1732715802
5.33   0.3443885056
7.33  -0.2225761168
8.33   0.7684879781
10.33 -0.7417823398
11.33  0.7237769862
13.33  0.1045968592
14.33 -0.0847555708
15.33  0.5072499405
16.33 -0.1959590299
17.33  0.1460552827
18.33  0.4837210181
19.33 -0.0857239171
20.33  0.0479726985
22.33  0.1789856554
23.33  0.5453963853
2.34   0.2010020819
3.34  -0.2832667643
4.34   0.0387923324
5.34   0.0658562379
7.34  -0.3130376470
8.34   0.7263589436
10.34 -0.5233995909
11.34  0.9662340521
13.34  1.0025545742
14.34  0.1528471323
15.34  0.0372571992
16.34  0.2248174925
17.34 -0.1576410619
18.34 -0.2508394080
19.34  0.1601426034
20.34 -0.0001884779
22.34  0.0288401026
23.34  0.0662596836
2.35   0.7420299869
3.35  -0.4834286575
4.35  -0.3833115045
5.35  -0.0596059424
7.35  -0.3974421144
8.35  -0.1575740296
10.35  0.4330187630
11.35  0.7157398255
13.35  0.0645052475
14.35  0.5801476113
15.35  0.7323384036
16.35  0.2661171138
17.35  0.1036286516
18.35  0.2602421658
19.35  0.2179446291
20.35  0.2373273953
22.35  0.2287626670
23.35  0.4609330738
2.36   0.2931622383
3.36   0.1152619296
4.36   0.0575122257
5.36  -0.0725448998
7.36   0.0465428510
8.36   0.3392975273
10.36 -1.7049389617
11.36 -0.1262479162
13.36  0.2672539127
14.36  0.2083623379
15.36  0.0481100790
16.36 -0.0126618639
17.36  0.0252615726
18.36  0.1359669933
19.36 -0.2205937008
20.36  0.1910352237
22.36  0.0076819501
23.36  0.2191061461
2.37   0.0123452470
3.37   0.3870441608
4.37   0.2016327653
5.37  -0.1671383019
7.37   0.0156768268
8.37  -0.0029941930
10.37 -0.6226910599
11.37 -0.2725300346
13.37 -0.5097655326
14.37  0.2857408182
15.37 -0.0090806007
16.37 -0.0754257832
17.37  0.4286562483
18.37  0.3638344160
19.37  0.1932616599
20.37  0.0309374262
22.37  0.1030646347
23.37  0.2876687264
2.38   1.1841815640
3.38   0.3059220975
4.38  -0.1583251558
5.38  -0.2225718800
7.38  -0.6528871047
8.38   0.2601973508
10.38 -1.7938160851
11.38 -0.9420845241
13.38 -0.5596348310
14.38  0.7972108793
15.38 -0.0676839454
16.38  0.8531053092
17.38 -0.0052375937
18.38  0.3427304781
19.38  0.2212572803
20.38  0.0364750670
22.38  0.0224556937
23.38 -0.2913632167
2.39   0.2106298241
3.39  -0.6112326792
4.39   0.0789041903
5.39  -0.0009279352
7.39  -0.2547054813
8.39  -0.8654251112
10.39 -1.6897524004
11.39 -0.4698680949
13.39 -0.7048288551
14.39  0.2779101411
15.39 -0.0297260187
16.39 -0.1304033845
17.39  0.1373501547
18.39 -0.3332100838
19.39 -0.0251024122
20.39  0.2401935991
22.39  0.0579398840
23.39 -0.5442485410
2.40   0.2681694153
3.40   0.0099392170
4.40  -0.0171741267
5.40   0.0394290584
7.40  -0.5826013905
8.40   0.1986537171
10.40 -1.1053471961
11.40 -1.3484255199
13.40 -1.0559794403
14.40  0.0654838855
15.40 -0.0783533334
16.40  0.4002367749
17.40  0.3722747295
18.40  0.0302499764
19.40  0.0009085087
20.40 -0.0008602856
22.40  0.0169273986
23.40 -0.6444346578
2.41   0.4576853204
3.41  -0.0076025315
4.41   0.0264797876
5.41   0.1403269600
7.41  -0.4144402228
8.41  -0.9577546551
10.41 -2.6894629805
11.41 -0.5051689387
13.41 -0.6094405209
14.41  0.2145755244
15.41 -0.1751463200
16.41 -0.6778546566
17.41  0.0958580681
18.41  0.3787901622
19.41  0.0433651464
20.41 -0.2648173338
22.41 -0.0234799950
23.41 -0.3260565232
2.42  -0.1561829405
3.42  -0.5666338713
4.42   0.1764781629
5.42   0.1143405780
7.42  -0.5804257095
8.42  -0.1131132441
10.42 -2.0254386928
11.42 -1.3823004336
13.42 -1.1249629012
14.42  0.3705583647
15.42 -0.7062372349
16.42  0.2328778372
17.42 -0.2556545152
18.42 -0.4855656394
19.42  0.0374123782
20.42 -0.0978044732
22.42 -0.0931355421
23.42 -0.8567547781
2.43  -0.5184650068
3.43   0.0049888535
4.43  -0.2679758994
5.43   0.0283237853
7.43  -0.9984871696
8.43  -1.6519119654
10.43 -1.4210866745
11.43 -0.9285051792
13.43 -0.9735516905
14.43  0.1201191139
15.43 -0.3270468248
16.43 -0.2709144915
17.43 -0.3424787248
18.43 -0.3565483744
19.43 -0.0690179194
20.43  0.1530445576
22.43 -0.5407764485
23.43 -0.3161804723
2.44  -0.8426618719
3.44  -0.1733408823
4.44  -0.0441811198
5.44  -0.2441186491
7.44  -0.8359864687
8.44  -1.1750100391
10.44 -1.7690542319
11.44 -1.1355468265
13.44 -1.0076006536
14.44 -0.4524493773
15.44 -0.9792319619
16.44 -0.4329128427
17.44 -0.0898537745
18.44 -0.0326801643
19.44 -0.3034199500
20.44 -0.1796980486
22.44 -0.5888063448
23.44 -0.6324116965
2.45  -0.7533086193
3.45  -0.6672278056
4.45  -0.4181287913
5.45  -0.2506909993
7.45  -1.3425951697
8.45  -0.5457047493
10.45 -2.0620794708
11.45 -1.6521756722
13.45 -0.7860502857
14.45 -0.6714317472
15.45 -0.7238849653
16.45 -0.7733333554
17.45 -0.2155078032
18.45 -0.9361782962
19.45  0.4146785491
20.45 -0.1315240518
22.45 -0.6719419782
23.45 -1.0655867902
2.46  -0.4165002670
3.46  -0.7815518091
4.46   0.0900803991
5.46  -0.2999992646
7.46  -1.0307356478
8.46  -0.8692342795
10.46 -1.9516103042
11.46  0.4560783980
13.46 -1.1265828297
14.46 -0.8677012751
15.46 -0.3879404634
16.46 -1.4285503719
17.46 -0.5614485361
18.46 -1.6108600555
19.46 -0.3489852840
20.46 -0.3314589543
22.46 -0.6335444804
23.46 -1.3557366330
2.47  -1.0071802947
3.47  -1.2175455207
4.47  -0.0685953489
5.47  -0.4637982735
7.47  -0.4562224761
8.47  -1.4994932613
10.47 -2.6132778772
11.47 -1.3898278792
13.47 -0.7462416342
14.47 -0.6205245685
15.47 -0.9472825030
16.47 -1.3061590485
17.47 -0.5989794581
18.47 -1.3271650646
19.47 -0.4062426953
20.47 -0.4064776899
22.47 -0.7796318831
2.48  -0.8918559574

$subject
    (Intercept)
2  -0.064081264
3   0.246499710
4  -0.582398079
5  -0.749117450
7   0.229120346
8   0.561255026
10  1.497688495
11  0.685144091
13 -0.197212682
14 -0.317931165
15 -0.002069997
16  0.277735282
17 -0.619016563
18  0.384928586
19 -0.650023632
20 -0.443747688
22 -0.502991107
23  0.246218092

with conditional variances for "trial_id" "subject" 

Sample Scaled Residuals:
          1           2           3           4           5           6 
 0.24739797  0.04512910 -0.05279874  0.18625117 -0.23543967 -0.12975756 

=============================================================
# -------- Identify Stepwise EMM Outliers vs. Overall Mean (per Axis × Block) --------

# Bind all EMMs into one dataframe
all_emm_12step <- bind_rows(lapply(rms_lmm_results, function(res) res$EmmeansStepBlock), .id = "AxisLabel")

# Extract axis from label (e.g., "RMS_X" -> "X")
all_emm_12step <- all_emm_12step %>%
  mutate(
    Axis = gsub("RMS_", "", AxisLabel),
    Step = as.numeric(as.character(Step)),
    Block = as.factor(Block)
  )

# Compute overall mean ± 1.96*SE per Block × Axis
overall_stats_12step <- all_emm_12step %>%
  group_by(Block, Axis) %>%
  summarise(
    overall_mean = mean(emmean, na.rm = TRUE),
    overall_se = sd(emmean, na.rm = TRUE) / sqrt(n()),
    lower_bound = overall_mean - 1.96 * overall_se,
    upper_bound = overall_mean + 1.96 * overall_se,
    .groups = "drop"
  )

# Join back to EMM table and flag outliers
emm_outliers_12step <- left_join(all_emm_12step, overall_stats_12step, by = c("Block", "Axis")) %>%
  mutate(
    is_outlier = emmean < lower_bound | emmean > upper_bound
  ) %>%
  filter(is_outlier)

# View flagged outlier steps
print(emm_outliers_12step)
   AxisLabel Step Block    emmean         SE       df  lower.CL  upper.CL Axis
1      RMS_X    2     2 0.7306302 0.06186410 17.79598 0.6005517 0.8607088    X
2      RMS_X    3     2 0.7515602 0.06212763 18.10114 0.6210871 0.8820332    X
3      RMS_X    4     2 0.7242782 0.06173599 17.64903 0.5943906 0.8541658    X
4      RMS_X    5     2 0.7306718 0.06186456 17.79650 0.6005926 0.8607510    X
5      RMS_X    9     2 0.6864966 0.06186410 17.79598 0.5564181 0.8165752    X
6      RMS_X   10     2 0.6752055 0.06186456 17.79650 0.5451263 0.8052848    X
7      RMS_X   11     2 0.6697185 0.06186740 17.79978 0.5396350 0.7998019    X
8      RMS_X   12     2 0.6613209 0.06186456 17.79650 0.5312417 0.7914001    X
9      RMS_X    2     4 0.7176225 0.06184599 17.77518 0.5875710 0.8476739    X
10     RMS_X    3     4 0.7385524 0.06219015 18.17415 0.6079854 0.8691194    X
11     RMS_X    4     4 0.7112704 0.06167128 17.57519 0.5814790 0.8410618    X
12     RMS_X    5     4 0.7176640 0.06184655 17.77583 0.5876117 0.8477164    X
13     RMS_X    9     4 0.6734889 0.06184599 17.77518 0.5434374 0.8035404    X
14     RMS_X   10     4 0.6621978 0.06184655 17.77583 0.5321454 0.7922501    X
15     RMS_X   11     4 0.6567107 0.06184170 17.77026 0.5266656 0.7867558    X
16     RMS_X   12     4 0.6483131 0.06184655 17.77583 0.5182608 0.7783654    X
17     RMS_X    2     5 0.6156153 0.06184459 17.77358 0.4855659 0.7456647    X
18     RMS_X    3     5 0.6365452 0.06219098 18.17512 0.5059770 0.7671134    X
19     RMS_X    4     5 0.6092633 0.06166669 17.56997 0.4794787 0.7390478    X
20     RMS_X    5     5 0.6156569 0.06184499 17.77404 0.4856069 0.7457069    X
21     RMS_X    9     5 0.5714817 0.06184459 17.77358 0.4414323 0.7015311    X
22     RMS_X   10     5 0.5601906 0.06184499 17.77404 0.4301406 0.6902406    X
23     RMS_X   11     5 0.5547035 0.06183773 17.76571 0.4246643 0.6847427    X
24     RMS_X   12     5 0.5463059 0.06184499 17.77404 0.4162559 0.6763560    X
25     RMS_Y    1     2 0.7939634 0.06983346 17.57900 0.6469965 0.9409304    Y
26     RMS_Y    2     2 0.8004527 0.06996402 17.71083 0.6532915 0.9476138    Y
27     RMS_Y    3     2 0.7948602 0.07022995 17.98163 0.6473017 0.9424186    Y
28     RMS_Y    4     2 0.7875625 0.06983346 17.57900 0.6405956 0.9345294    Y
29     RMS_Y    5     2 0.7815330 0.06996450 17.71132 0.6343711 0.9286949    Y
30     RMS_Y    9     2 0.7235997 0.06996402 17.71083 0.5764386 0.8707609    Y
31     RMS_Y   10     2 0.7098687 0.06996450 17.71132 0.5627068 0.8570306    Y
32     RMS_Y   11     2 0.7140291 0.06996621 17.71306 0.5668646 0.8611935    Y
33     RMS_Y   12     2 0.6805071 0.06996450 17.71132 0.5333452 0.8276690    Y
34     RMS_Y    1     4 0.8012199 0.06976528 17.51048 0.6543542 0.9480856    Y
35     RMS_Y    2     4 0.8077091 0.06994316 17.68973 0.6605790 0.9548392    Y
36     RMS_Y    3     4 0.8021166 0.07029041 18.04365 0.6544676 0.9497657    Y
37     RMS_Y    4     4 0.7948190 0.06976528 17.51048 0.6479533 0.9416846    Y
38     RMS_Y    5     4 0.7887895 0.06994373 17.69031 0.6416585 0.9359204    Y
39     RMS_Y    9     4 0.7308562 0.06994316 17.68973 0.5837261 0.8779863    Y
40     RMS_Y   10     4 0.7171251 0.06994373 17.69031 0.5699942 0.8642560    Y
41     RMS_Y   11     4 0.7212855 0.06993725 17.68377 0.5741642 0.8684068    Y
42     RMS_Y   12     4 0.6877636 0.06994373 17.69031 0.5406326 0.8348945    Y
43     RMS_Y    1     5 0.6677998 0.06976003 17.50520 0.5209419 0.8146577    Y
44     RMS_Y    2     5 0.6742890 0.06994097 17.68752 0.5271622 0.8214158    Y
45     RMS_Y    3     5 0.6686965 0.07029040 18.04365 0.5210475 0.8163456    Y
46     RMS_Y    4     5 0.6613989 0.06976003 17.50520 0.5145410 0.8082567    Y
47     RMS_Y    5     5 0.6553694 0.06994138 17.68794 0.5082419 0.8024968    Y
48     RMS_Y    9     5 0.5974361 0.06994097 17.68752 0.4503093 0.7445629    Y
49     RMS_Y   10     5 0.5837050 0.06994138 17.68794 0.4365776 0.7308324    Y
50     RMS_Y   11     5 0.5878654 0.06993262 17.67908 0.4407510 0.7349798    Y
51     RMS_Y   12     5 0.5543435 0.06994138 17.68794 0.4072160 0.7014709    Y
52     RMS_Z    1     2 1.6122433 0.14065362 17.44900 1.3160708 1.9084159    Z
53     RMS_Z    2     2 1.6365329 0.14085790 17.55058 1.3400573 1.9330085    Z
54     RMS_Z    3     2 1.6383875 0.14127667 17.76022 1.3412887 1.9354863    Z
55     RMS_Z    4     2 1.6024893 0.14065362 17.44900 1.3063167 1.8986619    Z
56     RMS_Z    5     2 1.6021553 0.14085864 17.55095 1.3056786 1.8986320    Z
57     RMS_Z    9     2 1.4832194 0.14085790 17.55058 1.1867438 1.7796950    Z
58     RMS_Z   10     2 1.4616035 0.14085864 17.55095 1.1651268 1.7580802    Z
59     RMS_Z   11     2 1.4726018 0.14086241 17.55284 1.1761195 1.7690840    Z
60     RMS_Z   12     2 1.4142503 0.14085864 17.55095 1.1177736 1.7107270    Z
61     RMS_Z    1     4 1.6349792 0.14054875 17.39703 1.3389620 1.9309965    Z
62     RMS_Z    2     4 1.6592688 0.14082721 17.53531 1.3628388 1.9556988    Z
63     RMS_Z    3     4 1.6611234 0.14137414 17.80930 1.3638792 1.9583676    Z
64     RMS_Z    4     4 1.6252252 0.14054875 17.39703 1.3292080 1.9212425    Z
65     RMS_Z    5     4 1.6248912 0.14082811 17.53576 1.3284599 1.9213225    Z
66     RMS_Z    9     4 1.5059553 0.14082721 17.53531 1.2095253 1.8023853    Z
67     RMS_Z   10     4 1.4843394 0.14082811 17.53576 1.1879081 1.7807707    Z
68     RMS_Z   11     4 1.4953377 0.14081931 17.53138 1.1989194 1.7917559    Z
69     RMS_Z   12     4 1.4369862 0.14082811 17.53576 1.1405549 1.7334176    Z
70     RMS_Z    1     5 1.3733458 0.14054102 17.39321 1.0773400 1.6693516    Z
71     RMS_Z    2     5 1.3976354 0.14082446 17.53394 1.1012095 1.6940613    Z
72     RMS_Z    3     5 1.3994899 0.14137487 17.80967 1.1022447 1.6967352    Z
73     RMS_Z    4     5 1.3635917 0.14054102 17.39321 1.0675859 1.6595976    Z
74     RMS_Z    5     5 1.3632577 0.14082510 17.53426 1.0668309 1.6596846    Z
75     RMS_Z    9     5 1.2443218 0.14082446 17.53394 0.9478959 1.5407477    Z
76     RMS_Z   10     5 1.2227059 0.14082510 17.53426 0.9262790 1.5191328    Z
77     RMS_Z   11     5 1.2337042 0.14081256 17.52802 0.9372959 1.5301124    Z
78     RMS_Z   12     5 1.1753528 0.14082510 17.53426 0.8789259 1.4717796    Z
   overall_mean  overall_se lower_bound upper_bound is_outlier
1     0.7058953 0.008100902   0.6900176   0.7217731       TRUE
2     0.7058953 0.008100902   0.6900176   0.7217731       TRUE
3     0.7058953 0.008100902   0.6900176   0.7217731       TRUE
4     0.7058953 0.008100902   0.6900176   0.7217731       TRUE
5     0.7058953 0.008100902   0.6900176   0.7217731       TRUE
6     0.7058953 0.008100902   0.6900176   0.7217731       TRUE
7     0.7058953 0.008100902   0.6900176   0.7217731       TRUE
8     0.7058953 0.008100902   0.6900176   0.7217731       TRUE
9     0.6928876 0.008100902   0.6770098   0.7087653       TRUE
10    0.6928876 0.008100902   0.6770098   0.7087653       TRUE
11    0.6928876 0.008100902   0.6770098   0.7087653       TRUE
12    0.6928876 0.008100902   0.6770098   0.7087653       TRUE
13    0.6928876 0.008100902   0.6770098   0.7087653       TRUE
14    0.6928876 0.008100902   0.6770098   0.7087653       TRUE
15    0.6928876 0.008100902   0.6770098   0.7087653       TRUE
16    0.6928876 0.008100902   0.6770098   0.7087653       TRUE
17    0.5908804 0.008100902   0.5750026   0.6067582       TRUE
18    0.5908804 0.008100902   0.5750026   0.6067582       TRUE
19    0.5908804 0.008100902   0.5750026   0.6067582       TRUE
20    0.5908804 0.008100902   0.5750026   0.6067582       TRUE
21    0.5908804 0.008100902   0.5750026   0.6067582       TRUE
22    0.5908804 0.008100902   0.5750026   0.6067582       TRUE
23    0.5908804 0.008100902   0.5750026   0.6067582       TRUE
24    0.5908804 0.008100902   0.5750026   0.6067582       TRUE
25    0.7531765 0.011439205   0.7307556   0.7755973       TRUE
26    0.7531765 0.011439205   0.7307556   0.7755973       TRUE
27    0.7531765 0.011439205   0.7307556   0.7755973       TRUE
28    0.7531765 0.011439205   0.7307556   0.7755973       TRUE
29    0.7531765 0.011439205   0.7307556   0.7755973       TRUE
30    0.7531765 0.011439205   0.7307556   0.7755973       TRUE
31    0.7531765 0.011439205   0.7307556   0.7755973       TRUE
32    0.7531765 0.011439205   0.7307556   0.7755973       TRUE
33    0.7531765 0.011439205   0.7307556   0.7755973       TRUE
34    0.7604329 0.011439205   0.7380121   0.7828537       TRUE
35    0.7604329 0.011439205   0.7380121   0.7828537       TRUE
36    0.7604329 0.011439205   0.7380121   0.7828537       TRUE
37    0.7604329 0.011439205   0.7380121   0.7828537       TRUE
38    0.7604329 0.011439205   0.7380121   0.7828537       TRUE
39    0.7604329 0.011439205   0.7380121   0.7828537       TRUE
40    0.7604329 0.011439205   0.7380121   0.7828537       TRUE
41    0.7604329 0.011439205   0.7380121   0.7828537       TRUE
42    0.7604329 0.011439205   0.7380121   0.7828537       TRUE
43    0.6270128 0.011439205   0.6045920   0.6494336       TRUE
44    0.6270128 0.011439205   0.6045920   0.6494336       TRUE
45    0.6270128 0.011439205   0.6045920   0.6494336       TRUE
46    0.6270128 0.011439205   0.6045920   0.6494336       TRUE
47    0.6270128 0.011439205   0.6045920   0.6494336       TRUE
48    0.6270128 0.011439205   0.6045920   0.6494336       TRUE
49    0.6270128 0.011439205   0.6045920   0.6494336       TRUE
50    0.6270128 0.011439205   0.6045920   0.6494336       TRUE
51    0.6270128 0.011439205   0.6045920   0.6494336       TRUE
52    1.5471154 0.021640708   1.5046996   1.5895311       TRUE
53    1.5471154 0.021640708   1.5046996   1.5895311       TRUE
54    1.5471154 0.021640708   1.5046996   1.5895311       TRUE
55    1.5471154 0.021640708   1.5046996   1.5895311       TRUE
56    1.5471154 0.021640708   1.5046996   1.5895311       TRUE
57    1.5471154 0.021640708   1.5046996   1.5895311       TRUE
58    1.5471154 0.021640708   1.5046996   1.5895311       TRUE
59    1.5471154 0.021640708   1.5046996   1.5895311       TRUE
60    1.5471154 0.021640708   1.5046996   1.5895311       TRUE
61    1.5698513 0.021640708   1.5274355   1.6122670       TRUE
62    1.5698513 0.021640708   1.5274355   1.6122670       TRUE
63    1.5698513 0.021640708   1.5274355   1.6122670       TRUE
64    1.5698513 0.021640708   1.5274355   1.6122670       TRUE
65    1.5698513 0.021640708   1.5274355   1.6122670       TRUE
66    1.5698513 0.021640708   1.5274355   1.6122670       TRUE
67    1.5698513 0.021640708   1.5274355   1.6122670       TRUE
68    1.5698513 0.021640708   1.5274355   1.6122670       TRUE
69    1.5698513 0.021640708   1.5274355   1.6122670       TRUE
70    1.3082178 0.021640708   1.2658020   1.3506336       TRUE
71    1.3082178 0.021640708   1.2658020   1.3506336       TRUE
72    1.3082178 0.021640708   1.2658020   1.3506336       TRUE
73    1.3082178 0.021640708   1.2658020   1.3506336       TRUE
74    1.3082178 0.021640708   1.2658020   1.3506336       TRUE
75    1.3082178 0.021640708   1.2658020   1.3506336       TRUE
76    1.3082178 0.021640708   1.2658020   1.3506336       TRUE
77    1.3082178 0.021640708   1.2658020   1.3506336       TRUE
78    1.3082178 0.021640708   1.2658020   1.3506336       TRUE

#2.3 18 steps Block 3,4 & 5 - preparation for rms analysis, skip completely to part 3

# --- Step-Wise RMS: Blocks 3, 4, 5 — First 18 Steps ---
plot_stepwise_rms_blocks_345_18steps <- function(tagged_data2) {
  step_markers <- c(14, 15, 16, 17)
  buffer <- 3

  step_data <- tagged_data2 %>%
    filter(phase == "Execution", Marker.Text %in% step_markers) %>%
    assign_steps_by_block() %>%
    filter(Block %in% c(3, 4, 5)) %>%
    mutate(Step = as.numeric(Step)) %>%
    group_by(subject, Block, trial) %>%
    mutate(step_count = max(Step, na.rm = TRUE)) %>%
    ungroup() %>%
    filter(step_count == 18) %>%
    arrange(subject, Block, trial, ms) %>%
    group_by(subject, Block, trial) %>%
    mutate(row_id = row_number()) %>%
    ungroup() %>%
    filter(Step <= 18)

  step_indices <- step_data %>%
    select(subject, Block, trial, row_id, Step)

  window_data <- map_dfr(1:nrow(step_indices), function(i) {
    step <- step_indices[i, ]
    rows <- (step$row_id - buffer):(step$row_id + buffer)

    step_data %>%
      filter(subject == step$subject,
             Block == step$Block,
             trial == step$trial,
             row_id %in% rows) %>%
      mutate(Step = step$Step)
  })

  step_summary <- window_data %>%
    group_by(subject, Block, trial, Step) %>%
    summarise(
      rms_x = sqrt(mean(CoM.acc.x^2, na.rm = TRUE)),
      rms_y = sqrt(mean(CoM.acc.y^2, na.rm = TRUE)),
      rms_z = sqrt(mean(CoM.acc.z^2, na.rm = TRUE)),
      .groups = "drop"
    ) %>%
    pivot_longer(cols = starts_with("rms_"), names_to = "Axis", values_to = "RMS") %>%
    mutate(
      Axis = toupper(gsub("rms_", "", Axis)),
      Step = factor(Step),
      Block = factor(Block),
      subject = factor(subject),
      trial_id = interaction(subject, trial, drop = TRUE)
    )

  plot_data <- step_summary %>%
    group_by(Block, Step, Axis) %>%
    summarise(
      mean_rms = mean(RMS, na.rm = TRUE),
      se_rms = sd(RMS, na.rm = TRUE) / sqrt(n()),
      .groups = "drop"
    )

  axis_labels <- unique(plot_data$Axis)
  plots <- map(axis_labels, function(ax) {
    axis_data <- filter(plot_data, Axis == ax)

    ggplot(axis_data, aes(x = Step, y = mean_rms, fill = Block)) +
      geom_col(position = position_dodge(width = 0.8), width = 0.7) +
      geom_errorbar(
        aes(ymin = mean_rms - se_rms, ymax = mean_rms + se_rms),
        position = position_dodge(width = 0.8),
        width = 0.3
      ) +
      ylim(0, 3.25) +
      labs(
        title = paste("Step-wise CoM RMS — Axis", ax),
        x = "Step Number",
        y = "RMS Acceleration (m/s²)",
        fill = "Block"
      ) +
      theme_minimal() +
      theme(
        panel.grid.major = element_blank(),
        panel.grid.minor = element_blank(),
        text = element_text(size = 12),
        plot.title = element_text(face = "bold"),
        axis.text.x = element_text(angle = 0)
      )
  })

  names(plots) <- axis_labels
  return(list(
    plots = plots,
    step_summary = step_summary,
    plot_data = plot_data,
    window_data = window_data
  ))
}

# --- Run function and extract results ---
result <- plot_stepwise_rms_blocks_345_18steps(tagged_data2)

stepwise_block345_plots <- result$plots
step_summary <- result$step_summary
plot_data <- result$plot_data
window_data <- result$window_data

# --- Print plots ---
for (plot_name in names(stepwise_block345_plots)) {
  cat("\n\n==== Axis:", plot_name, "====\n\n")
  print(stepwise_block345_plots[[plot_name]])
}


==== Axis: X ====



==== Axis: Y ====



==== Axis: Z ====

# --- RMS LMMs: Blocks 3, 4, 5 --------
print_stepwise_lmm_diagnostics <- function(results_list, dataset_name = "Mixed") {
  cat(glue::glue("\n=========== STEPWISE LMM DIAGNOSTICS: {dataset_name} ===========\n"))
  for (key in names(results_list)) {
    cat("\n---", key, "---\n")
    cat("ANOVA:\n")
    print(results_list[[key]]$ANOVA)

    cat("\nEstimated Marginal Means (Step | Block):\n")
    print(results_list[[key]]$EmmeansStepBlock)

    cat("\nPairwise Comparisons:\n")
    print(results_list[[key]]$Pairwise)

    cat("\nFixed Effects:\n")
    print(results_list[[key]]$FixedEffects)

    cat("\nRandom Effects:\n")
    print(results_list[[key]]$RandomEffects)

    cat("\nSample Scaled Residuals:\n")
    print(head(results_list[[key]]$ScaledResiduals))

    cat("\n=============================================================\n")
  }
}

rms_lmm_results_18step <- list()
axes <- c("X", "Y", "Z")

for (ax in axes) {
  cat(glue("\n\n========== Running models for 18-step Axis: {ax} ==========\n\n"))

  df_rms <- step_summary %>% filter(Axis == ax)
  rms_model <- lmer(RMS ~ Block + Step + (1 | subject) + (1 | trial_id), data = df_rms)

  emmeans_step_block <- emmeans(rms_model, ~ Step | Block)

  rms_lmm_results_18step[[paste0("RMS_", ax)]] <- list(
    Model = rms_model,
    ANOVA = anova(rms_model, type = 3),
    Pairwise = emmeans(rms_model, pairwise ~ Block)$contrasts,
    EmmeansStepBlock = summary(emmeans_step_block),
    FixedEffects = fixef(rms_model),
    RandomEffects = ranef(rms_model),
    ScaledResiduals = resid(rms_model, scaled = TRUE)
  )
}

========== Running models for 18-step Axis: X ==========

========== Running models for 18-step Axis: Y ==========

========== Running models for 18-step Axis: Z ==========
print_stepwise_lmm_diagnostics(rms_lmm_results_18step, dataset_name = "18-Step RMS Acceleration")
=========== STEPWISE LMM DIAGNOSTICS: 18-Step RMS Acceleration ===========
--- RMS_X ---
ANOVA:
Type III Analysis of Variance Table with Satterthwaite's method
      Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
Block 82.899  41.450     2 26973 362.497 < 2.2e-16 ***
Step  27.994   1.647    17 26303  14.401 < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Marginal Means (Step | Block):
Block = 3:
 Step emmean     SE   df lower.CL upper.CL
 1     0.535 0.0511 17.9    0.427    0.642
 2     0.544 0.0513 18.2    0.436    0.652
 3     0.567 0.0516 18.7    0.459    0.675
 4     0.547 0.0511 17.9    0.439    0.654
 5     0.548 0.0513 18.2    0.441    0.656
 6     0.547 0.0516 18.7    0.439    0.655
 7     0.541 0.0513 18.2    0.433    0.649
 8     0.533 0.0513 18.2    0.425    0.641
 9     0.529 0.0513 18.2    0.422    0.637
 10    0.518 0.0513 18.2    0.410    0.626
 11    0.517 0.0513 18.2    0.409    0.624
 12    0.518 0.0513 18.2    0.411    0.626
 13    0.505 0.0516 18.7    0.397    0.613
 14    0.494 0.0513 18.2    0.386    0.602
 15    0.486 0.0511 17.9    0.379    0.593
 16    0.468 0.0516 18.7    0.360    0.576
 17    0.463 0.0513 18.2    0.355    0.571
 18    0.452 0.0511 17.9    0.345    0.560

Block = 4:
 Step emmean     SE   df lower.CL upper.CL
 1     0.685 0.0510 17.8    0.578    0.792
 2     0.694 0.0512 18.1    0.587    0.802
 3     0.717 0.0516 18.7    0.609    0.826
 4     0.697 0.0510 17.8    0.589    0.804
 5     0.699 0.0512 18.1    0.591    0.806
 6     0.697 0.0516 18.7    0.589    0.805
 7     0.691 0.0512 18.1    0.584    0.799
 8     0.683 0.0512 18.1    0.576    0.791
 9     0.679 0.0512 18.1    0.572    0.787
 10    0.668 0.0512 18.1    0.561    0.776
 11    0.667 0.0512 18.1    0.559    0.774
 12    0.669 0.0512 18.1    0.561    0.776
 13    0.655 0.0516 18.7    0.547    0.763
 14    0.644 0.0512 18.1    0.537    0.752
 15    0.636 0.0510 17.8    0.529    0.743
 16    0.618 0.0516 18.7    0.510    0.726
 17    0.613 0.0512 18.1    0.506    0.721
 18    0.602 0.0510 17.8    0.495    0.709

Block = 5:
 Step emmean     SE   df lower.CL upper.CL
 1     0.596 0.0510 17.8    0.489    0.703
 2     0.605 0.0512 18.1    0.498    0.713
 3     0.629 0.0516 18.7    0.521    0.737
 4     0.608 0.0510 17.8    0.501    0.715
 5     0.610 0.0512 18.1    0.502    0.717
 6     0.608 0.0516 18.7    0.500    0.717
 7     0.602 0.0512 18.1    0.495    0.710
 8     0.595 0.0512 18.1    0.487    0.702
 9     0.591 0.0512 18.1    0.483    0.698
 10    0.579 0.0512 18.1    0.472    0.687
 11    0.578 0.0512 18.1    0.471    0.686
 12    0.580 0.0512 18.1    0.472    0.687
 13    0.566 0.0516 18.7    0.458    0.674
 14    0.555 0.0512 18.1    0.448    0.663
 15    0.547 0.0510 17.8    0.440    0.655
 16    0.529 0.0516 18.7    0.421    0.637
 17    0.524 0.0512 18.1    0.417    0.632
 18    0.514 0.0510 17.8    0.406    0.621

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

Pairwise Comparisons:
 contrast        estimate      SE    df t.ratio p.value
 Block3 - Block4  -0.1501 0.00574 27071 -26.160  <.0001
 Block3 - Block5  -0.0614 0.00575 27082 -10.675  <.0001
 Block4 - Block5   0.0887 0.00512 26855  17.306  <.0001

Results are averaged over the levels of: Step 
Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 3 estimates 

Fixed Effects:
 (Intercept)       Block4       Block5        Step2        Step3        Step4 
 0.534613138  0.150106169  0.061429607  0.009308136  0.032708550  0.011926236 
       Step5        Step6        Step7        Step8        Step9       Step10 
 0.013860913  0.012365908  0.006437524 -0.001510637 -0.005492789 -0.016692701 
      Step11       Step12       Step13       Step14       Step15       Step16 
-0.017758291 -0.016200609 -0.029797690 -0.040592702 -0.048590058 -0.066748979 
      Step17       Step18 
-0.071561944 -0.082432572 

Random Effects:
$trial_id
        (Intercept)
3.1   -0.1485566338
4.1    0.0723254788
5.1   -0.0570174329
7.1    0.0762323903
8.1   -0.0719646224
10.1   0.0248797104
11.1  -0.2744443412
13.1   0.0539508914
14.1  -0.0491619682
15.1   0.1164448823
16.1   0.0193356495
17.1  -0.1433769455
18.1  -0.0616414781
19.1   0.0207849440
20.1   0.0258654070
22.1   0.0424740525
23.1   0.0231260855
2.2    0.0772075436
3.2   -0.0861561279
4.2    0.0842229365
5.2   -0.0617640846
7.2   -0.0118966261
8.2   -0.1685331113
10.2   0.0193672079
11.2   0.0423717059
13.2  -0.0396149590
14.2  -0.0593437038
15.2   0.4008446459
16.2  -0.1053459910
17.2   0.0014453364
19.2  -0.0332924164
20.2  -0.0001032285
22.2   0.0681555601
23.2   0.9283930397
2.3    0.0375839611
3.3    0.0024656475
4.3   -0.0809143934
5.3   -0.0846000364
7.3   -0.0744836763
8.3   -0.0734182597
10.3   0.5399820114
11.3   0.0514352257
13.3   0.0319439754
14.3  -0.0422683471
15.3   0.0257996510
16.3   0.0382936533
17.3  -0.0223782376
18.3  -0.0701784584
19.3  -0.0365718372
20.3   0.0605363874
22.3  -0.0469577995
23.3   0.1407725655
2.4   -0.1880524340
3.4   -0.0394522592
4.4   -0.0445124809
5.4   -0.0696108386
7.4    0.0655377774
8.4   -0.0679583229
10.4  -0.5528066937
11.4   0.4065030907
13.4  -0.0585275635
14.4   0.0049387956
15.4  -0.0996057731
16.4  -0.0980298405
17.4  -0.0157438445
18.4   0.0629668981
19.4   0.0362435524
20.4  -0.0318853389
22.4   0.0533008415
23.4   0.0135581937
2.5    0.1775734801
3.5    0.1026554590
4.5    0.0303931514
5.5   -0.0960711059
7.5    0.0320622511
8.5   -0.0987490195
10.5   0.2625748870
11.5  -0.0736469376
13.5   0.0030869089
14.5   0.1510275829
15.5   0.0788968232
16.5  -0.0381116625
17.5   0.0247488300
18.5   0.1181053285
19.5  -0.1119334609
20.5  -0.0503565415
22.5   0.0801567265
23.5   0.0615228083
2.6   -0.0988054049
3.6   -0.1478938183
4.6   -0.0062006137
5.6    0.0045113970
7.6    0.0904424549
8.6    0.3754190817
10.6   0.2733997314
11.6   0.1888009990
13.6   0.0642362413
14.6  -0.0153983719
15.6  -0.0347718444
16.6  -0.0370876013
17.6   0.0190558941
18.6   0.1930571318
19.6  -0.0359876542
20.6  -0.0554865633
22.6   0.0496147255
23.6   0.2206752902
2.7   -0.1066229759
3.7    0.1222971990
4.7    0.0391776538
5.7    0.0288402600
7.7    0.0556613829
8.7    0.0951052000
10.7   0.4334661309
11.7   0.1203734532
13.7   0.0727584533
14.7   0.1257940664
15.7   0.0082939903
16.7   0.0355076429
17.7  -0.0054677591
18.7   0.1452634143
19.7  -0.0062423151
20.7  -0.0083351181
22.7  -0.0294852470
23.7   0.0896790507
2.8   -0.0457373212
3.8    0.1198355995
4.8    0.0358688902
5.8   -0.0360747809
7.8    0.0151517825
8.8    0.0659593797
10.8   0.0228868849
11.8  -0.2306445510
13.8   0.0935361060
14.8  -0.1616986122
15.8  -0.1578188304
16.8  -0.0367554227
17.8   0.0401319978
18.8  -0.1465350496
19.8   0.0857492268
20.8  -0.0440761713
22.8   0.0325499060
23.8   0.0505129369
2.9   -0.1787202682
3.9    0.0227875616
4.9    0.0264346304
5.9   -0.0551095236
7.9    0.0424150401
8.9   -0.0743711928
10.9   0.4961496128
11.9  -0.0366106026
13.9  -0.0798629303
14.9  -0.1054741770
15.9   0.0092968179
16.9  -0.0774317677
17.9  -0.0268693953
18.9  -0.2628901321
19.9   0.0203443419
20.9  -0.0358903365
22.9   0.0431289626
23.9   0.0252293967
2.10  -0.1567536328
3.10  -0.0752308156
4.10   0.0781817020
5.10  -0.0511137430
7.10  -0.0655559641
8.10  -0.0334378201
10.10  0.1324004259
11.10  0.0994136676
13.10 -0.0357894239
14.10  0.0336775513
15.10 -0.0426576282
16.10 -0.0583246880
17.10 -0.0437114137
18.10  0.0279850879
19.10  0.0631842977
20.10  0.0827982245
22.10  0.0780199498
23.10 -0.1340493119
2.11   0.0057821815
3.11   0.0209844017
4.11  -0.0191059039
5.11   0.0702343549
7.11  -0.0952531731
8.11   0.0343376996
10.11  0.2379147358
11.11 -0.1610510959
13.11 -0.0620528758
14.11 -0.1552191606
15.11 -0.0921602318
16.11  0.0027125196
17.11 -0.0347118337
18.11  0.0347029667
19.11 -0.0050665431
20.11 -0.0114874628
22.11  0.0774560088
23.11 -0.0890245343
2.12   0.0402539028
3.12   0.0937993927
4.12   0.1012174521
5.12   0.0004101190
7.12  -0.0209477803
8.12   0.3287995373
10.12  0.0341428452
11.12 -0.1480413095
13.12  0.1512877013
14.12  0.0166312154
15.12  0.0119443534
16.12 -0.1818310859
17.12 -0.0328942624
18.12 -0.1456310142
19.12  0.0770394790
20.12 -0.0248439211
22.12  0.0042608475
23.12 -0.0458354744
2.13  -0.0673909755
3.13   0.1337820990
4.13  -0.0103304635
5.13   0.0004586019
7.13  -0.0283205652
8.13   0.0507144819
10.13  0.2481621542
11.13 -0.0457868000
13.13 -0.0336627815
14.13  0.0904777108
15.13 -0.1113613665
16.13 -0.0980781574
17.13 -0.0229732667
18.13  0.1150960506
19.13  0.0211864715
20.13  0.1093987693
22.13  0.0468152756
23.13  0.0179611522
2.14   0.0481260010
3.14   0.1416294632
4.14  -0.0376397587
5.14  -0.0350755561
7.14   0.0503115827
8.14   0.4279091370
10.14  0.4344549996
11.14  0.0632995442
13.14 -0.0783386395
14.14 -0.0808186481
15.14 -0.0500230986
16.14 -0.0647729426
17.14  0.0901778856
18.14 -0.1351119229
19.14  0.0271360887
20.14  0.0510954426
22.14  0.0135845256
23.14 -0.0534339355
2.15   0.0556293489
3.15   0.0562929750
4.15  -0.0353064049
5.15  -0.0066327895
7.15  -0.0340612531
8.15  -0.0659393605
10.15  0.5978540418
11.15 -0.0578125935
13.15  0.1057722120
14.15 -0.0963149713
15.15 -0.0758408364
16.15 -0.0913184245
17.15  0.0758743366
18.15  0.2014106907
19.15 -0.0951635615
20.15  0.0699253436
22.15  0.0984044828
23.15  0.0003736060
2.16  -0.1055172606
3.16   0.0745826742
4.16  -0.1360810011
5.16  -0.0283439999
7.16   0.0196851267
8.16  -0.0571042662
10.16  0.1709448453
11.16  0.0588134514
13.16  0.1042807730
14.16 -0.0056992534
15.16  0.0093881387
16.16 -0.0975128660
17.16 -0.0370843935
18.16  0.0344717102
19.16 -0.0396792302
20.16 -0.0118981841
22.16  0.0213328664
23.16 -0.0654956641
2.17  -0.0287406740
3.17  -0.1009769659
4.17   0.1016929734
5.17   0.0451185172
7.17  -0.0806213001
8.17   0.4764924250
10.17  0.6642988868
11.17 -0.0260388562
13.17  0.0510942881
14.17  0.1316991562
15.17  0.0401113838
16.17 -0.1773481314
17.17 -0.0178374390
18.17 -0.0243519092
19.17 -0.0036452292
20.17 -0.0149546725
22.17  0.0653844702
23.17 -0.0816930322
2.18   0.3235274186
3.18  -0.1007058699
4.18   0.0193038143
5.18   0.0777759803
7.18   0.0225049211
8.18   0.1544417940
10.18  0.6983667269
11.18 -0.1184862525
13.18  0.0019690570
14.18 -0.2006014522
15.18  0.0090217665
16.18 -0.0867586035
17.18  0.1129099001
18.18  0.0955011262
19.18 -0.0025974868
20.18 -0.0045064669
22.18  0.0591448069
23.18 -0.2106539508
2.19  -0.1620705479
3.19   0.1796557497
4.19  -0.0223008136
5.19  -0.0100444157
7.19   0.2690921274
8.19  -0.1601049158
10.19  0.5101868473
11.19  0.5610625339
13.19  0.1709263343
14.19  0.0738375690
15.19 -0.0004553561
16.19 -0.0122317959
17.19 -0.0884163789
18.19  0.0888683437
19.19 -0.0963521105
20.19 -0.0129101492
22.19 -0.0314669166
23.19  0.0303067527
2.20  -0.2731002402
3.20   0.1190463912
4.20   0.0387500951
5.20  -0.0307158689
7.20  -0.0770472348
8.20  -0.1418717071
10.20  0.3583477315
11.20 -0.1590512195
13.20  0.0914703912
14.20  0.0350202898
15.20 -0.1574020582
16.20 -0.0563938248
17.20  0.0038863205
18.20  0.0646677932
19.20  0.0519489056
20.20  0.0624562737
22.20  0.0069426583
23.20 -0.1312614895
2.21   0.3161488915
3.21  -0.0089799440
4.21   0.0679352199
5.21  -0.0426661423
7.21   0.2919168059
8.21   0.3596067650
10.21  0.4656768137
11.21 -0.1698370421
13.21  0.2109996908
14.21 -0.0009395571
15.21 -0.0004883510
16.21  0.0879895457
17.21  0.0289618865
18.21 -0.0420235694
19.21  0.0047429358
20.21  0.0016144418
22.21  0.2084769086
23.21 -0.1750550861
2.22  -0.0292113648
3.22  -0.1352183675
4.22   0.0160208410
5.22   0.0668762275
7.22   0.0922931255
8.22   0.2103000570
10.22  0.3460389188
11.22  0.3649366142
13.22  0.0871112992
14.22  0.0593789697
15.22 -0.0221205306
16.22  0.1545185639
17.22  0.1020683966
18.22  0.1871278265
19.22  0.0004311631
20.22 -0.0184123129
22.22 -0.0079950330
23.22 -0.0273171925
2.23   0.0067472108
3.23   0.0270251398
4.23   0.0942545031
5.23   0.0142091696
7.23  -0.0026310965
8.23   0.3599791805
10.23  0.4873705152
11.23 -0.1335071595
13.23 -0.0284439659
14.23 -0.0411318636
15.23 -0.0072515205
16.23  0.2501425985
17.23  0.1266619245
18.23 -0.1943343627
19.23 -0.0385741431
20.23 -0.0127725113
22.23 -0.0539004547
23.23 -0.0386140474
2.24  -0.0975918631
3.24   0.1921792759
4.24   0.0146794941
5.24   0.0219450842
7.24  -0.0348018817
8.24   0.0696692655
10.24  0.2899205047
11.24 -0.2045172834
13.24  0.1022621000
14.24  0.0579313181
15.24 -0.0361632922
16.24  0.2420902794
17.24  0.1283004172
18.24  0.0282218958
19.24  0.0295397660
20.24  0.0865854341
22.24 -0.0162227360
23.24  0.0619940250
2.25   0.2100035354
3.25   0.0435826362
4.25  -0.0686192778
5.25  -0.0216648846
7.25  -0.0512532479
8.25   0.0734951264
10.25  0.0632768994
11.25  0.2591095233
13.25  0.1262403466
14.25 -0.0249431319
15.25 -0.1285910992
16.25  0.1602732192
17.25  0.0501386833
18.25  0.0732009191
19.25 -0.0091115152
20.25 -0.0429402682
22.25  0.0832377231
23.25  0.2660924103
2.26   0.1983983559
3.26  -0.0057389268
4.26  -0.0585141646
5.26   0.2140005765
7.26  -0.0872965284
8.26   0.4756923230
10.26  0.4814401717
11.26  0.1262495544
13.26  0.1656336507
14.26  0.1783808641
15.26  0.0732811982
16.26 -0.0023343948
17.26  0.0954484675
18.26  0.2461895254
19.26 -0.0183823254
20.26  0.0416108133
22.26  0.0924194121
23.26  0.0868006964
2.27   0.2624029449
3.27  -0.0621919372
4.27  -0.0474558185
5.27   0.1576004991
7.27   0.1724222165
8.27   0.5701035891
10.27  0.1164023993
11.27 -0.0195224473
13.27  0.2265717209
14.27  0.0631369122
15.27 -0.0531785280
16.27  0.2130666842
17.27  0.1058844064
18.27  0.0832070535
19.27 -0.0467721994
20.27 -0.0211086100
22.27 -0.0113488325
23.27  0.1725869803
2.28   0.0090445071
3.28  -0.0579692865
4.28  -0.0681010653
5.28   0.1471827996
7.28  -0.0482124765
8.28   0.6254185648
10.28 -0.2287497242
11.28 -0.1206582865
13.28  0.3343245047
14.28 -0.1717922474
15.28  0.0174422999
16.28  0.2440172675
17.28  0.4115202572
18.28  0.0471696596
19.28  0.0204467330
20.28 -0.0028410238
22.28 -0.0824351594
23.28  0.1465168020
2.29   0.3375838611
3.29   0.1673468233
4.29   0.0682899860
5.29   0.0149884623
7.29   0.1047624835
8.29  -0.0330028365
10.29  0.1191704644
11.29  0.2920364194
13.29  0.2466777170
14.29  0.0348677634
15.29 -0.0483899168
16.29  0.2718402730
17.29  0.0970637175
18.29 -0.2231944347
19.29  0.0874054180
20.29  0.0324491051
22.29  0.1123340647
23.29 -0.2365015759
2.30   0.0951179816
3.30   0.2313829129
4.30  -0.0078200382
5.30   0.0252556684
7.30   0.0618838281
8.30  -0.1329220028
10.30 -0.2775101271
11.30  0.3891087327
13.30  0.0335408123
14.30  0.0581993597
15.30  0.1069220946
16.30  0.2722765701
17.30  0.0143269421
18.30  0.2064470760
19.30 -0.0907345019
20.30  0.0079127238
22.30  0.0071805353
23.30 -0.1878005194
2.31  -0.0921969727
3.31   0.0740279917
4.31   0.1068834438
5.31  -0.0257839716
7.31   0.0303541327
8.31  -0.0681065773
10.31  0.1033106858
11.31  0.1057975062
13.31 -0.1379420093
14.31  0.1892519581
15.31  0.1432552942
16.31  0.3214722367
17.31  0.0092582626
18.31 -0.0079828269
19.31  0.0859829063
20.31  0.0866804471
22.31  0.0186371165
23.31  0.1540572965
2.32  -0.1494820328
3.32   0.0095283161
4.32   0.1484783881
5.32   0.0075408002
7.32  -0.0991811690
8.32   0.0793405997
10.32 -0.2930947811
11.32  0.3783350101
13.32  0.0338898024
14.32 -0.0273183890
15.32  0.4892518821
16.32 -0.0464599365
17.32 -0.0793060112
18.32 -0.0121037865
19.32 -0.1039548768
20.32  0.0759088932
22.32  0.0187673805
23.32  0.2251932988
2.33  -0.1442749572
3.33   0.2067874975
4.33   0.0247419605
5.33   0.0063963810
7.33   0.0664786101
8.33  -0.0854867205
10.33  0.2060181891
11.33  0.1229615853
13.33  0.0460991141
14.33 -0.1062012527
15.33  0.0376599166
16.33 -0.0318511892
17.33 -0.0588925458
18.33  0.0444288860
19.33 -0.0050706063
20.33  0.0934410688
22.33  0.2264362458
23.33  0.0864952683
2.34   0.1669979034
3.34  -0.0043249529
4.34   0.1065773789
5.34   0.0041518505
7.34   0.0279297435
8.34  -0.1701284197
10.34 -0.4406093728
11.34  0.1110796548
13.34  0.1188643088
14.34  0.0294664234
15.34  0.0683768829
16.34  0.1873302425
17.34  0.0093344533
18.34 -0.1181498276
19.34 -0.0060878970
20.34  0.1903918741
22.34  0.2182102546
23.34  0.0787028516
2.35   0.0024307743
3.35  -0.1153687075
4.35  -0.0548759578
5.35   0.0336741825
7.35   0.0376302164
8.35  -0.2726925018
10.35 -0.2142788168
11.35  0.4314328742
13.35  0.0607919265
14.35  0.2187921546
15.35 -0.0875162588
16.35  0.2316661171
17.35  0.0988049007
18.35 -0.1554546796
19.35  0.0497005382
20.35 -0.0159516281
22.35  0.0584384047
23.35  0.0030529146
2.36   0.1977341538
3.36   0.1475931113
4.36  -0.0457494391
5.36  -0.1168109210
7.36   0.0974947300
8.36  -0.4499669515
10.36 -0.3651318535
11.36  0.1623447435
13.36  0.1590107245
14.36  0.1717211334
15.36  0.1714775733
16.36  0.0718551682
17.36 -0.0073534983
18.36 -0.1912639678
19.36  0.0219189686
20.36  0.0570716667
22.36 -0.1051490775
23.36  0.0792240608
2.37  -0.1605378752
3.37   0.0433560684
4.37  -0.0932766125
5.37  -0.0737452769
7.37   0.0495017616
8.37   0.0498295877
10.37 -0.4190117120
11.37  0.1063019267
13.37 -0.1357318301
14.37  0.1458671261
15.37 -0.0028806045
16.37  0.1002136283
17.37  0.0960206609
18.37  0.0247997813
19.37 -0.0079286610
20.37 -0.0482874798
22.37  0.1495456125
23.37 -0.0577587250
2.38   0.1399259888
3.38  -0.1404943786
4.38  -0.0513711621
5.38  -0.0777490506
7.38  -0.1561826451
8.38   0.1313355521
10.38 -0.6315448777
11.38 -0.1209498308
13.38 -0.1554899117
14.38  0.1717733006
15.38  0.0554838144
16.38 -0.1406618341
17.38  0.0204368264
18.38 -0.0942937538
19.38  0.1029607109
20.38 -0.0917562184
22.38 -0.1153201650
23.38 -0.1231371343
2.39   0.9729802655
3.39   0.0492591436
4.39  -0.1400775109
5.39   0.0019867120
7.39   0.0095032003
8.39  -0.4574586701
10.39 -0.7131568583
11.39 -0.1205129127
13.39 -0.1606233333
14.39 -0.0419548162
15.39  0.1466686503
16.39 -0.0303004038
17.39 -0.0440914243
18.39  0.0296733569
19.39 -0.0734579520
20.39  0.0151999231
22.39 -0.0733048372
23.39 -0.1201363722
2.40   0.2023889342
3.40  -0.1325280961
4.40   0.0307007095
5.40  -0.0309122398
7.40   0.0506570512
8.40  -0.2562768492
10.40 -0.3276841291
11.40 -0.3848566010
13.40 -0.2197268984
14.40 -0.0172743067
15.40 -0.0482096974
16.40  0.0668973263
17.40 -0.1175919280
18.40 -0.2260540680
19.40  0.0683568651
20.40 -0.1322305613
22.40  0.0549368480
23.40 -0.1813650696
2.41   0.0207234718
3.41  -0.1662130518
4.41   0.0933831181
5.41   0.0606344009
7.41  -0.1763646687
8.41  -0.3857443445
10.41 -0.8172767529
11.41 -0.1776920386
13.41 -0.3150237302
14.41 -0.0564217828
15.41 -0.1623422348
16.41  0.0146084224
17.41 -0.0536674899
18.41 -0.0117274598
19.41  0.0342049423
20.41 -0.1506204851
22.41  0.0104210684
23.41  0.1747251138
2.42  -0.1719603155
3.42  -0.1383075246
4.42  -0.1314993091
5.42  -0.0254807070
7.42   0.1147241473
8.42  -0.2940631103
10.42 -0.4314043112
11.42 -0.3386642948
13.42 -0.3223787037
14.42  0.4024015849
15.42 -0.1514637395
16.42 -0.0925942790
17.42 -0.2081903342
18.42  0.0226225561
19.42 -0.0069150021
20.42  0.0207256450
22.42 -0.1208774936
23.42 -0.0684979599
2.43  -0.2847270587
3.43  -0.2071479138
4.43  -0.1117575453
5.43  -0.0830800564
7.43  -0.0341330878
8.43  -0.5447601027
10.43 -0.2377225590
11.43 -0.1684710642
13.43 -0.3399458373
14.43 -0.0444654056
15.43 -0.0982239181
16.43 -0.1896313581
17.43 -0.3398532247
18.43  0.0170370888
19.43 -0.0554966803
20.43 -0.0537758301
22.43 -0.3418400864
23.43 -0.2171216497
2.44  -0.3764330106
3.44  -0.1594723900
4.44   0.0288382471
5.44   0.0136865816
7.44  -0.0547609887
8.44  -0.1661613685
10.44 -0.0215217724
11.44 -0.0025262623
13.44 -0.2195776863
14.44 -0.1173569154
15.44  0.0351452027
16.44 -0.1162540231
17.44 -0.0675643903
18.44  0.2608099989
19.44  0.0604091456
20.44 -0.0886312255
22.44 -0.3654401112
23.44 -0.1863957026
2.45   0.0409762917
3.45   0.1770228762
4.45  -0.2522791483
5.45   0.0234750544
7.45  -0.2751431087
8.45   0.4343539933
10.45 -0.7098366439
11.45 -0.4691885483
13.45 -0.1591207392
14.45 -0.1936821591
15.45 -0.0069298133
16.45 -0.2733561689
17.45 -0.0993149895
18.45  0.2956275067
19.45  0.0419511259
20.45  0.0180763995
22.45 -0.3877155233
23.45 -0.3242682791
2.46  -0.3905033342
3.46  -0.2509640598
4.46   0.0043597929
5.46  -0.0320579261
7.46  -0.3392250209
8.46  -0.5835871640
10.46 -0.8335056089
11.46 -0.0427333628
13.46 -0.2828708431
14.46 -0.2647457303
15.46 -0.1849578867
16.46 -0.3402214659
17.46 -0.1935879659
18.46 -0.3599376522
19.46 -0.0405866456
20.46 -0.1823797669
22.46 -0.0763015115
23.46 -0.3768656216
2.47  -0.1805938112
3.47  -0.2973687140
4.47  -0.0493834782
5.47  -0.1290130875
7.47  -0.1863961010
8.47  -0.3258602820
10.47 -0.7782023831
11.47 -0.4441289494
13.47 -0.2205225011
14.47 -0.3805842397
15.47 -0.1782922846
16.47 -0.4012269914
17.47 -0.0719212778
18.47 -0.2403244389
19.47 -0.1910120717
20.47 -0.1592447301
22.47 -0.2887199347
2.48  -0.3976628514

$subject
    (Intercept)
2   0.069182352
3  -0.026390443
4  -0.165820844
5  -0.283550460
7  -0.102850472
8   0.246301798
10  0.643821985
11  0.227122951
13 -0.161636510
14 -0.019523555
15  0.018783237
16  0.004583795
17 -0.083039451
18  0.030074406
19 -0.175841242
20 -0.162848242
22 -0.064591129
23  0.006221823

with conditional variances for "trial_id" "subject" 

Sample Scaled Residuals:
        1         2         3         4         5         6 
1.0478162 0.7428822 0.6653752 0.5246917 0.3266944 0.3663530 

=============================================================

--- RMS_Y ---
ANOVA:
Type III Analysis of Variance Table with Satterthwaite's method
       Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
Block 148.589  74.295     2 26916 467.851 < 2.2e-16 ***
Step   66.067   3.886    17 26321  24.473 < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Marginal Means (Step | Block):
Block = 3:
 Step emmean     SE   df lower.CL upper.CL
 1     0.565 0.0548 18.1    0.450    0.680
 2     0.573 0.0551 18.4    0.458    0.689
 3     0.572 0.0555 19.1    0.456    0.688
 4     0.559 0.0548 18.1    0.444    0.675
 5     0.563 0.0551 18.4    0.447    0.678
 6     0.539 0.0555 19.1    0.423    0.655
 7     0.542 0.0551 18.4    0.427    0.658
 8     0.533 0.0551 18.4    0.417    0.648
 9     0.523 0.0551 18.4    0.407    0.638
 10    0.510 0.0551 18.4    0.394    0.625
 11    0.516 0.0551 18.4    0.401    0.632
 12    0.495 0.0551 18.4    0.380    0.611
 13    0.493 0.0555 19.1    0.377    0.609
 14    0.467 0.0551 18.4    0.352    0.583
 15    0.464 0.0548 18.1    0.349    0.580
 16    0.436 0.0555 19.1    0.320    0.552
 17    0.426 0.0551 18.4    0.311    0.542
 18    0.427 0.0548 18.1    0.312    0.543

Block = 4:
 Step emmean     SE   df lower.CL upper.CL
 1     0.770 0.0547 18.0    0.655    0.885
 2     0.779 0.0550 18.3    0.664    0.894
 3     0.778 0.0556 19.1    0.662    0.894
 4     0.765 0.0547 18.0    0.650    0.880
 5     0.769 0.0550 18.3    0.653    0.884
 6     0.745 0.0555 19.1    0.628    0.861
 7     0.748 0.0550 18.3    0.633    0.863
 8     0.738 0.0550 18.3    0.623    0.854
 9     0.728 0.0550 18.3    0.613    0.844
 10    0.716 0.0550 18.3    0.600    0.831
 11    0.722 0.0550 18.3    0.607    0.838
 12    0.701 0.0550 18.3    0.585    0.816
 13    0.698 0.0555 19.1    0.582    0.815
 14    0.673 0.0550 18.3    0.558    0.788
 15    0.670 0.0547 18.0    0.555    0.785
 16    0.642 0.0556 19.1    0.525    0.758
 17    0.632 0.0550 18.3    0.516    0.747
 18    0.633 0.0547 18.0    0.518    0.748

Block = 5:
 Step emmean     SE   df lower.CL upper.CL
 1     0.669 0.0547 18.0    0.554    0.784
 2     0.678 0.0550 18.3    0.562    0.793
 3     0.677 0.0556 19.1    0.560    0.793
 4     0.664 0.0547 18.0    0.549    0.779
 5     0.667 0.0550 18.3    0.552    0.783
 6     0.643 0.0556 19.1    0.527    0.760
 7     0.647 0.0550 18.3    0.531    0.762
 8     0.637 0.0550 18.3    0.522    0.752
 9     0.627 0.0550 18.3    0.512    0.742
 10    0.614 0.0550 18.3    0.499    0.730
 11    0.621 0.0550 18.3    0.506    0.736
 12    0.600 0.0550 18.3    0.484    0.715
 13    0.597 0.0556 19.1    0.481    0.714
 14    0.572 0.0550 18.3    0.456    0.687
 15    0.569 0.0547 18.0    0.454    0.684
 16    0.540 0.0556 19.1    0.424    0.657
 17    0.531 0.0550 18.3    0.415    0.646
 18    0.532 0.0547 18.0    0.417    0.647

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

Pairwise Comparisons:
 contrast        estimate      SE    df t.ratio p.value
 Block3 - Block4   -0.206 0.00678 27005 -30.366  <.0001
 Block3 - Block5   -0.105 0.00680 27019 -15.382  <.0001
 Block4 - Block5    0.101 0.00605 26788  16.742  <.0001

Results are averaged over the levels of: Step 
Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 3 estimates 

Fixed Effects:
 (Intercept)       Block4       Block5        Step2        Step3        Step4 
 0.564698502  0.205740644  0.104527475  0.008600584  0.007507351 -0.005306805 
       Step5        Step6        Step7        Step8        Step9       Step10 
-0.001828625 -0.025930414 -0.022401145 -0.032117734 -0.042148276 -0.054752408 
      Step11       Step12       Step13       Step14       Step15       Step16 
-0.048302497 -0.069683969 -0.071950813 -0.097427331 -0.100261067 -0.128738678 
      Step17       Step18 
-0.138648904 -0.137219795 

Random Effects:
$trial_id
        (Intercept)
3.1   -0.1249850239
4.1   -0.0507612361
5.1   -0.0743652753
7.1    0.0535520789
8.1   -0.0155482118
10.1   0.0356888472
11.1  -0.2067755309
13.1  -0.1065102611
14.1  -0.0679722960
15.1  -0.0667694286
16.1  -0.1710121509
17.1  -0.0880749348
18.1   0.0498897410
19.1  -0.0593279683
20.1   0.0628224262
22.1  -0.0513277619
23.1  -0.0873936871
2.2   -0.0520185392
3.2   -0.1736317456
4.2   -0.0565550992
5.2   -0.0367301271
7.2   -0.0339239647
8.2    0.0032443894
10.2   0.0770491813
11.2  -0.2074658634
13.2   0.0451123628
14.2   0.0081659916
15.2   0.0283667184
16.2  -0.0211579673
17.2   0.0049272856
19.2   0.0774209484
20.2   0.1193435736
22.2   0.1089094366
23.2   4.2554432960
2.3   -0.0939453904
3.3   -0.0874007835
4.3   -0.0222194001
5.3   -0.0006909712
7.3   -0.0442442311
8.3    0.2355886072
10.3   0.2805184376
11.3   0.2192081785
13.3  -0.1188600553
14.3  -0.0440594349
15.3  -0.2173023992
16.3   0.0793179206
17.3   0.0934769154
18.3   0.1319356267
19.3  -0.0779252066
20.3   0.1612296127
22.3  -0.0110808173
23.3   0.0364498737
2.4    0.0026456352
3.4   -0.0183255098
4.4   -0.0730641992
5.4   -0.0653325310
7.4    0.1487270928
8.4    0.0221258429
10.4  -0.3902158865
11.4   0.3084427814
13.4   0.0536271910
14.4   0.1123399933
15.4  -0.1049387805
16.4  -0.0433720075
17.4  -0.0735023543
18.4  -0.0659384170
19.4  -0.0564009654
20.4   0.0477451661
22.4  -0.0309993123
23.4  -0.0521092531
2.5    0.0715995856
3.5    0.0321257160
4.5   -0.0746859546
5.5   -0.1448126310
7.5    0.0087168201
8.5    0.0974080925
10.5   0.4493299951
11.5   0.0852095138
13.5   0.1371156990
14.5   0.2111198566
15.5   0.0565919215
16.5   0.0801718824
17.5   0.2959578713
18.5  -0.0294540078
19.5  -0.1302533343
20.5  -0.1003996158
22.5  -0.0432860518
23.5  -0.1263321925
2.6    0.1125182124
3.6    0.0220213523
4.6    0.0611815377
5.6    0.1081766266
7.6    0.2198953285
8.6    0.3118973882
10.6   0.4667503757
11.6   0.1775909449
13.6   0.2238376994
14.6   0.0593784778
15.6  -0.1675148033
16.6  -0.1877329896
17.6   0.0264522701
18.6   0.0268067411
19.6  -0.1285887692
20.6   0.0370161245
22.6   0.0515345136
23.6  -0.0946008337
2.7   -0.2165920701
3.7    0.2678615948
4.7   -0.0779945031
5.7    0.1043837778
7.7    0.0156796819
8.7   -0.0049178881
10.7   0.3323878968
11.7   0.0559680122
13.7   0.0516886576
14.7   0.1745044672
15.7  -0.1340693411
16.7   0.1666298403
17.7   0.0450750663
18.7   0.0368136702
19.7   0.0347198175
20.7  -0.0975262283
22.7  -0.0340496503
23.7   0.0675085410
2.8    0.1753137370
3.8    0.0839150555
4.8   -0.0464004044
5.8   -0.1557681037
7.8   -0.0513599060
8.8    0.2382704843
10.8   0.0717098154
11.8  -0.1479630446
13.8   0.1127875871
14.8  -0.0230054581
15.8  -0.0982746255
16.8  -0.0386125765
17.8  -0.0155207253
18.8   0.0024887996
19.8  -0.0053340139
20.8  -0.0994347272
22.8  -0.0143409639
23.8   0.0296373205
2.9    0.0521680010
3.9    0.0108337554
4.9   -0.0587989755
5.9    0.0370065980
7.9    0.0314152082
8.9   -0.2313001781
10.9   0.2576649755
11.9   0.0677721760
13.9   0.0051458938
14.9  -0.0375230496
15.9  -0.1050447054
16.9   0.0603729675
17.9   0.1203548931
18.9  -0.0886236843
19.9  -0.0829578500
20.9   0.0013990325
22.9   0.0246365155
23.9  -0.1056274852
2.10  -0.0624521933
3.10   0.1432915730
4.10  -0.0107847647
5.10   0.0050076763
7.10   0.0331576593
8.10  -0.1028210276
10.10  0.3684022335
11.10 -0.1409659342
13.10 -0.0469404736
14.10  0.1553778281
15.10 -0.1115684716
16.10 -0.0572443602
17.10  0.1099854087
18.10  0.0949159527
19.10  0.1021088172
20.10  0.2013803900
22.10  0.0155000618
23.10 -0.2877322793
2.11   0.0817316656
3.11   0.1720244549
4.11  -0.0653169249
5.11  -0.0459221313
7.11   0.0200875738
8.11   0.2548269352
10.11  0.2003903254
11.11 -0.1320898836
13.11  0.0380423731
14.11 -0.1106400734
15.11 -0.0869735609
16.11 -0.0168289734
17.11 -0.0521590440
18.11  0.0666125555
19.11 -0.0930012030
20.11  0.0935266515
22.11  0.0310761363
23.11 -0.0408460705
2.12  -0.0044033596
3.12   0.4927388238
4.12   0.1933658743
5.12   0.0649214323
7.12  -0.0566285587
8.12   0.0580566513
10.12  0.3885316353
11.12 -0.1620765247
13.12  0.0153586803
14.12  0.0810767239
15.12 -0.0224369365
16.12  0.0142839752
17.12  0.0290208505
18.12 -0.0516820589
19.12  0.0904001847
20.12  0.0008358097
22.12 -0.0527317362
23.12 -0.1692314669
2.13   0.0320505756
3.13  -0.0279115303
4.13  -0.0904533347
5.13  -0.0958309596
7.13  -0.0217755630
8.13   0.0377449867
10.13  0.4410434182
11.13 -0.1227630596
13.13  0.0439547145
14.13  0.1596401383
15.13 -0.1437172397
16.13 -0.0648925437
17.13  0.0664192455
18.13  0.0417208531
19.13 -0.0490649142
20.13 -0.0153892931
22.13  0.0477506037
23.13 -0.0952635011
2.14   0.0144997608
3.14   0.1665451343
4.14  -0.2130704048
5.14   0.0297493170
7.14   0.0863642480
8.14   0.5248586058
10.14  0.3021242886
11.14  0.0615389193
13.14 -0.0191112743
14.14  0.0293953676
15.14  0.2664294588
16.14 -0.0503582781
17.14 -0.0822124505
18.14  0.2567763418
19.14  0.0272673263
20.14  0.2889518074
22.14 -0.0557530219
23.14 -0.1458842605
2.15   0.0580950086
3.15   0.0867187382
4.15   0.0088420633
5.15   0.0322119329
7.15  -0.0809067503
8.15  -0.0374360430
10.15  0.2488324133
11.15 -0.2230990834
13.15 -0.0002534088
14.15 -0.0723394201
15.15  0.1329972320
16.15  0.0239122130
17.15  0.0035108003
18.15 -0.0668108751
19.15 -0.0285441368
20.15 -0.0563268930
22.15 -0.0857297713
23.15 -0.1142601903
2.16  -0.0747833354
3.16   0.1860884104
4.16  -0.0921018859
5.16   0.1034270664
7.16  -0.1764072212
8.16   0.2494409871
10.16  0.3285454717
11.16 -0.0286459970
13.16 -0.0451445611
14.16 -0.0514266743
15.16  0.1515682290
16.16 -0.0399459040
17.16  0.0613555694
18.16  0.1920246053
19.16 -0.0824611797
20.16 -0.1100742299
22.16 -0.0570961026
23.16 -0.2480442508
2.17   0.0596768626
3.17   0.2399416884
4.17   0.0945529791
5.17   0.2028044790
7.17  -0.2365312268
8.17   0.2140907453
10.17  0.5581012915
11.17 -0.0416698262
13.17  0.0268601200
14.17  0.0612916699
15.17  0.1865290245
16.17 -0.0301306865
17.17 -0.0239062145
18.17  0.1238237499
19.17  0.0017820814
20.17  0.0008693159
22.17 -0.0015199524
23.17 -0.0438855412
2.18   0.2671418680
3.18   0.0213311728
4.18   0.0235358160
5.18   0.0716429515
7.18   0.1717990452
8.18   0.0196534845
10.18  0.2120986505
11.18 -0.1761867351
13.18 -0.1001395071
14.18 -0.1874947067
15.18  0.2846187236
16.18  0.0116426846
17.18  0.0002529696
18.18  0.1097239729
19.18 -0.0924117878
20.18 -0.0213198213
22.18  0.0276433973
23.18  0.1522366465
2.19   0.1586510370
3.19   0.2246922976
4.19  -0.1027770807
5.19  -0.1269687484
7.19   0.0683169882
8.19  -0.0265636643
10.19  0.2769706679
11.19  0.1345010391
13.19  0.0151308691
14.19 -0.0831092250
15.19  0.0462220572
16.19  0.2136742394
17.19 -0.1307127679
18.19 -0.1100791895
19.19  0.0277764171
20.19 -0.0589281230
22.19 -0.0785309028
23.19  0.2042793190
2.20   0.2415674991
3.20   0.2886368276
4.20   0.0568367011
5.20  -0.0399005127
7.20  -0.0587844758
8.20  -0.1009373474
10.20  0.4970654343
11.20 -0.2449104943
13.20  0.1652895616
14.20 -0.0008315372
15.20 -0.1367397571
16.20 -0.0737028505
17.20  0.1817559366
18.20  0.0364577611
19.20 -0.0036438563
20.20 -0.0246327905
22.20 -0.0283294381
23.20 -0.2579343055
2.21   0.3539916041
3.21   0.0304571251
4.21  -0.0202151653
5.21  -0.0992328512
7.21   0.1264649865
8.21   0.0888827342
10.21  0.5975974576
11.21 -0.1183065133
13.21  0.2456590404
14.21  0.0203284623
15.21  0.0603820157
16.21  0.0165958812
17.21  0.0102680366
18.21 -0.0166169245
19.21  0.0013765331
20.21 -0.1128055895
22.21 -0.0634312116
23.21 -0.1107886375
2.22   0.3244458679
3.22  -0.0968086250
4.22   0.1476282660
5.22   0.0291604513
7.22  -0.0408374460
8.22   0.3828106232
10.22  0.3163048809
11.22  0.0608810486
13.22  0.0363627441
14.22 -0.0612848487
15.22 -0.0574171231
16.22  0.0764248654
17.22  0.0780763089
18.22  0.0120684934
19.22  0.0246538336
20.22 -0.0111643756
22.22 -0.0137288118
23.22  0.2218607354
2.23  -0.0909212666
3.23   0.1413902141
4.23   0.2065393769
5.23   0.0452051470
7.23   0.0187513758
8.23   0.3247168688
10.23  0.4758739235
11.23 -0.1086617607
13.23 -0.0354580593
14.23 -0.0135956002
15.23  0.1468609310
16.23  0.0921746466
17.23  0.0996909737
18.23  0.1554258673
19.23 -0.0216911225
20.23 -0.0341732561
22.23  0.0437412066
23.23  0.0408768273
2.24   0.0197330197
3.24   0.1082394295
4.24  -0.0039127474
5.24   0.0445391026
7.24   0.2104736048
8.24   0.2687071073
10.24  0.1215447592
11.24 -0.2148517233
13.24  0.1306882862
14.24 -0.0157354114
15.24 -0.0384008678
16.24 -0.0386677052
17.24  0.0849011726
18.24  0.1091221140
19.24 -0.0041405172
20.24  0.0516945117
22.24 -0.0097622727
23.24  0.0747996300
2.25   0.3771342963
3.25  -0.0488477781
4.25  -0.0744038374
5.25  -0.0828486581
7.25   0.0191862513
8.25  -0.0010374384
10.25  0.2400215585
11.25  0.5555810601
13.25  0.2300554589
14.25 -0.0749018613
15.25  0.0333340310
16.25  0.0739500686
17.25  0.0098992335
18.25  0.0384176178
19.25 -0.1211806585
20.25 -0.0789244015
22.25 -0.0479760948
23.25  0.2078609849
2.26   0.1913414934
3.26   0.0019219912
4.26   0.0739371844
5.26   0.1976030421
7.26  -0.1348411940
8.26   0.3893870761
10.26  0.6141414904
11.26  0.3935237847
13.26  0.1091116671
14.26  0.0439909110
15.26 -0.0654528861
16.26  0.0661338026
17.26 -0.0358747789
18.26 -0.0063596222
19.26 -0.0508079552
20.26 -0.0176989385
22.26 -0.0570269520
23.26 -0.0066163678
2.27   0.3431401410
3.27   0.1092189153
4.27  -0.1466679364
5.27   0.2338506269
7.27   0.0288124785
8.27   0.0764480807
10.27  0.2248864656
11.27  0.1890603345
13.27  0.1687302003
14.27  0.0369950017
15.27 -0.0718790740
16.27  0.1488707621
17.27 -0.0767151855
18.27  0.0967946303
19.27  0.0147565020
20.27  0.0222268488
22.27  0.0020218607
23.27  0.3187913669
2.28   0.0203117637
3.28   0.0047328743
4.28  -0.1604409434
5.28   0.0983313482
7.28  -0.0485502630
8.28   0.7264539321
10.28 -0.3325723602
11.28 -0.0810256738
13.28  0.3875295795
14.28  0.0100383896
15.28  0.0512143004
16.28  0.1503986540
17.28  0.2291630683
18.28 -0.2718808251
19.28 -0.0099372533
20.28 -0.0493994099
22.28  0.0301554246
23.28 -0.0664865007
2.29   0.2696799453
3.29   0.6525303337
4.29   0.1248665504
5.29   0.0294850513
7.29   0.0606702460
8.29   0.0908779017
10.29  0.1319553775
11.29 -0.3049006464
13.29  0.0607040112
14.29  0.3103422060
15.29  0.1213124491
16.29  0.1307913782
17.29  0.1344932908
18.29 -0.0796554578
19.29  0.2199584465
20.29  0.0655686776
22.29  0.1725346848
23.29 -0.1678371089
2.30   0.3638501072
3.30  -0.1549825211
4.30   0.1129065576
5.30   0.0445706788
7.30  -0.0082943798
8.30   0.1557952731
10.30 -0.4657210878
11.30  0.1761859102
13.30  0.0630996017
14.30  0.1517824915
15.30 -0.0320429105
16.30  0.1257847418
17.30 -0.0175286044
18.30  0.2460179885
19.30  0.0322356160
20.30  0.0094390644
22.30  0.0004541976
23.30 -0.3827670199
2.31  -0.0334701252
3.31   0.1951687604
4.31   0.2404129302
5.31   0.0157799726
7.31  -0.0981209137
8.31  -0.1400345417
10.31  0.1335015062
11.31  0.0243170609
13.31  0.1095786682
14.31  0.0238593939
15.31  0.1021623483
16.31  0.2472968702
17.31  0.0656362417
18.31  0.1722995752
19.31 -0.0457517754
20.31 -0.0811781434
22.31 -0.0275533198
23.31 -0.0131255321
2.32  -0.0222100838
3.32  -0.0642960692
4.32   0.2745761428
5.32   0.1074347953
7.32   0.1037456929
8.32   0.2166803153
10.32 -0.2269669128
11.32  0.9989938985
13.32 -0.1381189559
14.32 -0.2029845771
15.32  0.1256595159
16.32  0.0851167000
17.32 -0.0312070024
18.32  0.0532482027
19.32 -0.0487501338
20.32 -0.0478422931
22.32  0.0315591557
23.32  0.2281871256
2.33   0.0115932794
3.33  -0.1378499996
4.33  -0.1113740591
5.33   0.0703488379
7.33   0.1358480968
8.33   0.1153986601
10.33 -0.2546213207
11.33  0.4400189018
13.33  0.0667601826
14.33 -0.0131728411
15.33 -0.0851379938
16.33 -0.1875190850
17.33 -0.0860099898
18.33  0.1394010964
19.33  0.1243325840
20.33  0.0568981014
22.33 -0.0257564680
23.33  0.0316983316
2.34   0.0554741853
3.34   0.0944538853
4.34  -0.1823106985
5.34  -0.0847040951
7.34   0.2915144203
8.34   0.0491679483
10.34  0.2289964458
11.34  0.1740680150
13.34  0.3273208461
14.34 -0.0936233325
15.34  0.0795309868
16.34  0.1792610763
17.34  0.0372408898
18.34 -0.0882444277
19.34  0.0154623462
20.34  0.0470468400
22.34  0.0063297675
23.34 -0.2301229377
2.35  -0.0260431395
3.35  -0.3495914583
4.35  -0.0316098531
5.35   0.0091603084
7.35  -0.0608855858
8.35  -0.3762505515
10.35 -0.3699674708
11.35  0.8563854875
13.35 -0.0663588751
14.35  0.4006780585
15.35  0.3001223539
16.35  0.1640447123
17.35  0.0816657613
18.35 -0.1550006898
19.35 -0.0171700603
20.35 -0.1010177352
22.35  0.1719399139
23.35  0.1709546412
2.36   0.0450284193
3.36   0.1189279675
4.36  -0.0809722337
5.36  -0.1676568948
7.36   0.0670363726
8.36  -0.4065741080
10.36 -0.1858712941
11.36  0.1343802179
13.36  0.2273485805
14.36  0.1412542993
15.36 -0.0147839588
16.36  0.1481485023
17.36  0.0320217599
18.36 -0.1934872796
19.36 -0.0034194552
20.36 -0.0513515349
22.36  0.1854579914
23.36 -0.0005476344
2.37  -0.0418937243
3.37   0.1122156434
4.37   0.1076234327
5.37  -0.0970879868
7.37   0.0386351124
8.37  -0.0918562563
10.37 -0.5381297042
11.37 -0.1833681916
13.37 -0.1721084060
14.37 -0.0141072581
15.37 -0.1082684458
16.37  0.0686621219
17.37  0.0927961127
18.37  0.0408714227
19.37  0.0103900001
20.37  0.0756988944
22.37  0.1152915593
23.37 -0.2100572590
2.38  -0.1122335447
3.38  -0.3038522445
4.38   0.2131264925
5.38  -0.1565991024
7.38  -0.1032056667
8.38  -0.0561402553
10.38 -0.5566531859
11.38 -0.0308301834
13.38 -0.2434980173
14.38 -0.0703233436
15.38  0.0764988558
16.38 -0.0208237881
17.38  0.0184894615
18.38 -0.0607795644
19.38 -0.0063858726
20.38 -0.1199866634
22.38  0.0843691909
23.38 -0.2438350903
2.39  -0.0324030359
3.39   0.2736057691
4.39  -0.0562122036
5.39  -0.0888861127
7.39  -0.0619716062
8.39  -0.3955150882
10.39 -0.5255927369
11.39  0.0368413943
13.39 -0.1343450889
14.39  0.1195016405
15.39  0.0544903439
16.39 -0.0740269764
17.39 -0.1434619786
18.39 -0.0342415850
19.39 -0.0479732451
20.39  0.0273401660
22.39  0.1689969116
23.39 -0.3114128525
2.40   0.0371533059
3.40  -0.2363847788
4.40  -0.0279352637
5.40  -0.1272479756
7.40   0.1573856123
8.40  -0.2355314069
10.40 -0.4200678195
11.40 -0.3557265465
13.40 -0.1310922624
14.40 -0.1271791220
15.40  0.0151520326
16.40  0.1377009472
17.40 -0.1444236169
18.40  0.0685267176
19.40  0.0199647972
20.40  0.0827906064
22.40 -0.0839416047
23.40 -0.1898366663
2.41  -0.2656793311
3.41  -0.3503324090
4.41   0.0705667772
5.41  -0.0267981713
7.41  -0.1006352686
8.41  -0.3682060057
10.41 -0.9388897729
11.41 -0.2050693748
13.41 -0.3136526509
14.41  0.0169374272
15.41 -0.1692136011
16.41  0.2034128644
17.41  0.0199835372
18.41 -0.1146549719
19.41  0.1326690419
20.41 -0.1387395659
22.41  0.1124105221
23.41 -0.3551515640
2.42  -0.0836762810
3.42  -0.2061020718
4.42   0.0732653697
5.42   0.1108943760
7.42  -0.0272789196
8.42  -0.3974658800
10.42  0.0032216223
11.42 -0.2923814924
13.42 -0.3660535478
14.42  0.0576737168
15.42 -0.1737475751
16.42  0.0851555396
17.42 -0.1950518251
18.42  0.0111477034
19.42  0.1248030156
20.42  0.0081650306
22.42  0.0431385654
23.42  0.0911056411
2.43   0.0906488032
3.43  -0.0263688342
4.43  -0.1603000030
5.43  -0.0762300716
7.43  -0.0466217768
8.43  -0.6238581184
10.43 -0.4400309570
11.43 -0.1390727252
13.43 -0.3676821796
14.43  0.0157695898
15.43 -0.0863570830
16.43 -0.2760981203
17.43 -0.2540933018
18.43  0.0277921856
19.43  0.0058698409
20.43  0.0247636784
22.43 -0.1874149350
23.43 -0.3107931142
2.44  -0.5131265932
3.44  -0.3566035783
4.44  -0.0843803513
5.44  -0.1469636822
7.44   0.0938559299
8.44  -0.4274153888
10.44 -0.3706086799
11.44 -0.1485897498
13.44 -0.1902559931
14.44 -0.1173216309
15.44  0.0910637664
16.44 -0.2885242917
17.44 -0.1933249941
18.44 -0.1239149570
19.44  0.1367432474
20.44  0.0345573248
22.44 -0.1894618027
23.44 -0.3836843722
2.45  -0.2682180734
3.45  -0.1385298179
4.45   0.0273101929
5.45  -0.0093852545
7.45  -0.2443128751
8.45  -0.0921581880
10.45 -0.5071733110
11.45 -0.3337310560
13.45 -0.2265411036
14.45 -0.3546996401
15.45 -0.1871766600
16.45 -0.3055263049
17.45  0.0913238367
18.45 -0.1775778814
19.45  0.0053848966
20.45 -0.0454884193
22.45 -0.2548470115
23.45 -0.5489506880
2.46  -0.5003081568
3.46  -0.5435190587
4.46  -0.0687881975
5.46  -0.0682242547
7.46  -0.3582018246
8.46  -0.3895426493
10.46 -0.8563974192
11.46 -0.2723164800
13.46 -0.3146854138
14.46 -0.3554080555
15.46 -0.0583913333
16.46 -0.3993427160
17.46 -0.2730550987
18.46 -0.2306147735
19.46 -0.1141265435
20.46 -0.1461225609
22.46 -0.2061831416
23.46 -0.5797271236
2.47  -0.4053964349
3.47  -0.5843442484
4.47  -0.1116486993
5.47  -0.0820804275
7.47  -0.2572971165
8.47  -0.2666242507
10.47 -0.7903973358
11.47 -0.4258296960
13.47 -0.2048171967
14.47 -0.2499083100
15.47  0.0806081849
16.47 -0.4569111886
17.47 -0.2520815913
18.47 -0.3183309038
19.47 -0.1957707604
20.47 -0.1570753890
22.47 -0.0698820576
2.48  -0.5925574955

$subject
    (Intercept)
2   0.265190990
3   0.196405543
4  -0.191804327
5  -0.238361803
7  -0.110759101
8   0.285496441
10  0.556729862
11  0.079196385
13 -0.191526422
14 -0.032248022
15 -0.040620783
16  0.005868336
17 -0.034999755
18  0.044746566
19 -0.271522903
20 -0.200106459
22 -0.239706031
23  0.118021482

with conditional variances for "trial_id" "subject" 

Sample Scaled Residuals:
        1         2         3         4         5         6 
0.6184802 0.3341352 0.1630040 0.1137539 0.1767147 0.1234074 

=============================================================

--- RMS_Z ---
ANOVA:
Type III Analysis of Variance Table with Satterthwaite's method
      Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
Block 466.10 233.050     2 26803 520.298 < 2.2e-16 ***
Step  219.17  12.893    17 26304  28.784 < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Marginal Means (Step | Block):
Block = 3:
 Step emmean    SE   df lower.CL upper.CL
 1     1.220 0.131 17.6    0.945     1.50
 2     1.238 0.131 17.7    0.963     1.51
 3     1.243 0.132 18.0    0.967     1.52
 4     1.214 0.131 17.6    0.939     1.49
 5     1.228 0.131 17.7    0.953     1.50
 6     1.179 0.132 18.0    0.903     1.46
 7     1.188 0.131 17.7    0.912     1.46
 8     1.148 0.131 17.7    0.872     1.42
 9     1.139 0.131 17.7    0.863     1.41
 10    1.129 0.131 17.7    0.853     1.40
 11    1.128 0.131 17.7    0.852     1.40
 12    1.108 0.131 17.7    0.832     1.38
 13    1.110 0.132 18.0    0.833     1.39
 14    1.058 0.131 17.7    0.783     1.33
 15    1.044 0.131 17.6    0.769     1.32
 16    1.017 0.132 18.0    0.740     1.29
 17    0.971 0.131 17.7    0.696     1.25
 18    0.956 0.131 17.6    0.681     1.23

Block = 4:
 Step emmean    SE   df lower.CL upper.CL
 1     1.577 0.131 17.5    1.302     1.85
 2     1.595 0.131 17.6    1.320     1.87
 3     1.601 0.132 18.0    1.324     1.88
 4     1.571 0.131 17.5    1.296     1.85
 5     1.585 0.131 17.6    1.310     1.86
 6     1.537 0.132 18.0    1.260     1.81
 7     1.545 0.131 17.6    1.270     1.82
 8     1.505 0.131 17.6    1.230     1.78
 9     1.496 0.131 17.6    1.221     1.77
 10    1.486 0.131 17.6    1.211     1.76
 11    1.485 0.131 17.6    1.210     1.76
 12    1.465 0.131 17.6    1.190     1.74
 13    1.467 0.132 18.0    1.191     1.74
 14    1.416 0.131 17.6    1.140     1.69
 15    1.401 0.131 17.5    1.126     1.68
 16    1.374 0.132 18.0    1.098     1.65
 17    1.329 0.131 17.6    1.053     1.60
 18    1.314 0.131 17.5    1.039     1.59

Block = 5:
 Step emmean    SE   df lower.CL upper.CL
 1     1.366 0.131 17.5    1.091     1.64
 2     1.384 0.131 17.6    1.109     1.66
 3     1.390 0.132 18.0    1.113     1.67
 4     1.360 0.131 17.5    1.085     1.63
 5     1.374 0.131 17.6    1.099     1.65
 6     1.325 0.132 18.0    1.049     1.60
 7     1.334 0.131 17.6    1.059     1.61
 8     1.294 0.131 17.6    1.019     1.57
 9     1.285 0.131 17.6    1.010     1.56
 10    1.275 0.131 17.6    1.000     1.55
 11    1.274 0.131 17.6    0.999     1.55
 12    1.254 0.131 17.6    0.979     1.53
 13    1.256 0.132 18.0    0.980     1.53
 14    1.205 0.131 17.6    0.929     1.48
 15    1.190 0.131 17.5    0.915     1.46
 16    1.163 0.132 18.0    0.887     1.44
 17    1.118 0.131 17.6    0.842     1.39
 18    1.103 0.131 17.5    0.828     1.38

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

Pairwise Comparisons:
 contrast        estimate     SE    df t.ratio p.value
 Block3 - Block4   -0.357 0.0114 26883 -31.327  <.0001
 Block3 - Block5   -0.146 0.0114 26899 -12.789  <.0001
 Block4 - Block5    0.211 0.0102 26691  20.752  <.0001

Results are averaged over the levels of: Step 
Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 3 estimates 

Fixed Effects:
 (Intercept)       Block4       Block5        Step2        Step3        Step4 
 1.219946849  0.357346392  0.146330522  0.018126705  0.023501131 -0.006224500 
       Step5        Step6        Step7        Step8        Step9       Step10 
 0.008083846 -0.040783021 -0.032341414 -0.072231370 -0.081163647 -0.091234498 
      Step11       Step12       Step13       Step14       Step15       Step16 
-0.092201882 -0.112003318 -0.110229408 -0.161747523 -0.176319988 -0.203231972 
      Step17       Step18 
-0.248616922 -0.263532713 

Random Effects:
$trial_id
        (Intercept)
3.1   -0.1637178779
4.1   -0.0815662041
5.1    0.2391863946
7.1    0.2598170089
8.1   -0.2152435949
10.1   0.4562292565
11.1   0.1689330846
13.1  -0.0795209696
14.1   0.5145645747
15.1   0.2498049222
16.1   0.1711051474
17.1   0.0192939388
18.1   0.4299560337
19.1  -0.1458772750
20.1   0.0399780995
22.1   0.0363615976
23.1  -0.1359486736
2.2    0.2224135775
3.2   -0.5654540629
4.2   -0.0197866798
5.2    0.1004132728
7.2    0.1701185563
8.2   -0.2981609962
10.2   0.5407991277
11.2  -0.3366076098
13.2   0.1358128256
14.2  -0.1701041686
15.2   0.2020154400
16.2   0.4743358998
17.2   0.2944297986
19.2  -0.1273922007
20.2   0.1265951821
22.2  -0.0435701128
23.2   1.7435503316
2.3    0.1552059024
3.3    0.2324814253
4.3    0.0788976625
5.3   -0.2255448059
7.3    0.4854633714
8.3   -0.0768119979
10.3   1.2357686732
11.3   0.5821999045
13.3   0.2572857554
14.3  -0.2108455467
15.3   0.3796907330
16.3   0.9959209531
17.3   0.1073085228
18.3   0.1290808922
19.3   0.1413520090
20.3   0.2825539387
22.3  -0.0700556417
23.3  -0.0845893774
2.4   -0.0147743894
3.4   -0.2488706283
4.4    0.0176608872
5.4   -0.0977085570
7.4    0.2163521567
8.4   -0.4275654711
10.4   0.7868973645
11.4   0.5747253244
13.4   0.0553946199
14.4   0.8504836850
15.4  -0.1214663559
16.4   0.4885082264
17.4   0.1332053042
18.4   0.6379447153
19.4  -0.0872818366
20.4  -0.1042941587
22.4   0.1470857244
23.4  -0.2898928244
2.5   -0.0381215095
3.5    0.1278701704
4.5    0.0680617778
5.5   -0.2875557739
7.5    0.2761482383
8.5   -0.1671252468
10.5   1.5631080563
11.5   0.4712355776
13.5   0.6039834947
14.5   0.6515499229
15.5   0.1742934388
16.5   0.5569457335
17.5   0.1014030174
18.5   0.3461924085
19.5  -0.1429768547
20.5  -0.3774947592
22.5   0.1964174535
23.5  -0.0939458890
2.6   -0.3144859623
3.6   -0.2143040077
4.6    0.0557566384
5.6    0.1710145587
7.6    0.7895814712
8.6    0.9495943047
10.6   0.7962235624
11.6   0.3113687694
13.6   0.4721727706
14.6   0.3776076188
15.6  -0.1340526231
16.6  -0.1843390745
17.6   0.0378271798
18.6   0.8005337152
19.6  -0.0995310330
20.6  -0.1686797486
22.6   0.0194948147
23.6   0.2654415601
2.7   -0.3738104887
3.7    0.4764205467
4.7    0.1535700688
5.7    0.0992422840
7.7    0.5303953042
8.7    0.0680191929
10.7   1.6413802011
11.7   0.2135127977
13.7   0.7812175686
14.7   0.4476528734
15.7  -0.1527852456
16.7   0.5883261616
17.7   0.0047338041
18.7   0.2726670880
19.7   0.1490500587
20.7  -0.2359969726
22.7  -0.0771724945
23.7   0.3341903800
2.8    0.1540431548
3.8    0.3491080847
4.8   -0.0491686941
5.8   -0.2197140625
7.8    0.5457403416
8.8   -0.0145456833
10.8   0.5776683060
11.8   0.1936162181
13.8   0.5674406852
14.8  -0.1359924087
15.8  -0.3747785934
16.8   0.3680817459
17.8   0.0073295806
18.8   0.2863425626
19.8   0.1191442084
20.8  -0.0954641962
22.8   0.2059830664
23.8   0.0497662384
2.9   -0.3191230933
3.9    0.1816075946
4.9   -0.0596588043
5.9   -0.0123630602
7.9    0.5204085201
8.9   -0.1859556160
10.9   1.2123380717
11.9   0.0465985642
13.9   0.2492722807
14.9  -0.1932625250
15.9  -0.1471332125
16.9   0.0117520821
17.9   0.1307185721
18.9  -0.1321545260
19.9  -0.0055756456
20.9  -0.0744443795
22.9   0.2471215435
23.9  -0.0560011879
2.10   0.0190276403
3.10   0.1868887764
4.10   0.0893167158
5.10   0.0612536234
7.10   0.2326782952
8.10  -0.1979441999
10.10  0.6877866048
11.10  0.1351644003
13.10 -0.0535618002
14.10  0.2185351789
15.10  0.0852750783
16.10  0.2849428879
17.10  0.0282569796
18.10  0.6970743380
19.10  0.2091296850
20.10  0.2663794172
22.10  0.0749290775
23.10 -0.3253305255
2.11  -0.0620441611
3.11   0.1816117790
4.11   0.0335069803
5.11   0.0035103015
7.11   0.1158656483
8.11   0.5992994923
10.11  1.9523822696
11.11 -0.2054337099
13.11  0.0822530083
14.11 -0.1725642669
15.11  0.0406553591
16.11  0.2895174055
17.11 -0.0765996143
18.11  0.3466862469
19.11 -0.3005814028
20.11  0.2917996217
22.11  0.2941804141
23.11 -0.1187282209
2.12   0.1448049991
3.12   0.7543232091
4.12  -0.0065613896
5.12   0.1316409472
7.12   0.3713386435
8.12   0.7022362030
10.12  1.0739228797
11.12 -0.1594431315
13.12  0.3784438498
14.12  0.5060947705
15.12  0.0015798454
16.12 -0.0065070888
17.12  0.0024148372
18.12  0.4975503541
19.12  0.3601357214
20.12 -0.0558240114
22.12  0.2119018162
23.12  0.1308418204
2.13  -0.3868052933
3.13   0.5553164444
4.13  -0.2441905847
5.13  -0.1340627300
7.13  -0.0433135146
8.13  -0.0529848154
10.13  0.9962256854
11.13 -0.0524807047
13.13  0.0739765713
14.13  0.8534482754
15.13  0.1936119781
16.13  0.2402921429
17.13 -0.0138668326
18.13  0.2043093670
19.13 -0.0822732216
20.13  0.1074548909
22.13  0.0904893683
23.13 -0.0710641528
2.14   0.1938150732
3.14   0.6899041026
4.14  -0.2538519874
5.14  -0.0498488991
7.14   0.4935253239
8.14   0.5708278817
10.14  0.5794963755
11.14  0.6339916971
13.14  0.2641628984
14.14  0.2495923856
15.14  0.3270568942
16.14  0.1506410769
17.14 -0.0431993175
18.14  0.2017154593
19.14 -0.0113454229
20.14  0.3655537592
22.14  0.1135793078
23.14 -0.0550274766
2.15  -0.0685707566
3.15   0.1680558445
4.15  -0.3044763453
5.15   0.0134959377
7.15   0.1071579330
8.15  -0.0974904119
10.15  1.2212692726
11.15 -0.2845644566
13.15  0.4499176205
14.15  0.2230528147
15.15  0.3700443349
16.15  0.2025863038
17.15  0.0918680191
18.15  0.2979321753
19.15 -0.0504306013
20.15 -0.0410651880
22.15  0.1658538021
23.15  0.2742215240
2.16  -0.1925945053
3.16   0.4177584297
4.16  -0.1334574320
5.16   0.0720028742
7.16  -0.1170535672
8.16   0.4864005600
10.16  0.7825731790
11.16 -0.1586768440
13.16 -0.1425971900
14.16 -0.1026790796
15.16  0.6696522916
16.16  0.0378822014
17.16 -0.0033232912
18.16  0.0962574655
19.16 -0.2107757602
20.16  0.0007176100
22.16  0.0445622814
23.16 -0.1406296105
2.17   0.0604718770
3.17   0.0616240803
4.17   0.1055282744
5.17   0.4909253192
7.17  -0.4908905106
8.17   1.0530482379
10.17  1.1216588947
11.17  0.1642730833
13.17  0.2852172175
14.17  0.2602101080
15.17  0.2017604801
16.17 -0.0995462555
17.17 -0.0560905400
18.17  0.1739651885
19.17  0.0098277282
20.17 -0.0827763197
22.17  0.2584264077
23.17  0.1723093683
2.18   0.2965696776
3.18  -0.1500553286
4.18  -0.0156146638
5.18   0.2067459309
7.18   0.0742562456
8.18   0.1066263275
10.18  1.0589694515
11.18  0.2654399506
13.18 -0.0242366783
14.18 -0.1161689299
15.18  0.5550954340
16.18  0.2033078479
17.18  0.1627624978
18.18 -0.0590403577
19.18 -0.1084408222
20.18  0.1936907243
22.18  0.2816644174
23.18  0.0986653124
2.19  -0.0620838093
3.19   0.4193424340
4.19   0.0722929932
5.19   0.0118063903
7.19   0.5147361674
8.19   0.3627132764
10.19  1.2348136495
11.19  0.2973339381
13.19  0.4676384132
14.19  0.0606402596
15.19  0.5068524666
16.19  0.2974269683
17.19 -0.1882054207
18.19 -0.0876342691
19.19 -0.0281534439
20.19  0.0659307314
22.19  0.0994631255
23.19  0.3646640215
2.20  -0.1998564350
3.20   0.3077519109
4.20   0.0645077340
5.20  -0.0881836729
7.20   0.0897300099
8.20  -0.0195383240
10.20  1.4763346441
11.20 -0.0713099263
13.20  0.3939418474
14.20  0.1938486076
15.20 -0.2725886128
16.20 -0.0454794604
17.20  0.1176457975
18.20 -0.1746794579
19.20  0.0822807648
20.20  0.0211846536
22.20  0.1054760634
23.20  0.0112557336
2.21   0.7753094707
3.21   0.1723498518
4.21  -0.0360087294
5.21  -0.2240963800
7.21   0.6977755463
8.21   0.2757808841
10.21  2.1407811920
11.21  0.0343003335
13.21  0.2946005402
14.21  0.2032844609
15.21 -0.0584533303
16.21 -0.0463666686
17.21  0.0978289537
18.21 -0.2315999307
19.21  0.2045889367
20.21  0.0089663270
22.21  0.1632809013
23.21  0.6955890204
2.22   0.5710116467
3.22  -0.2008975857
4.22   0.2943373610
5.22   0.1585101241
7.22   0.8627189436
8.22   0.3918302021
10.22  1.8802058585
11.22  0.1307591706
13.22  0.1343522338
14.22 -0.2075655370
15.22 -0.1367447401
16.22  0.1467009033
17.22  0.0985260988
18.22 -0.0852507857
19.22 -0.0251106163
20.22  0.0443688753
22.22 -0.0586307606
23.22  0.2019167508
2.23   0.2760944567
3.23   0.3693473578
4.23   0.1811217024
5.23   0.0751749129
7.23   0.3979336140
8.23   0.9299866445
10.23  0.9031730216
11.23 -0.2408511376
13.23  0.1773197586
14.23 -0.0239357554
15.23 -0.1619516464
16.23  0.3984314311
17.23  0.1597095711
18.23  0.0772949337
19.23  0.1133782628
20.23  0.1021280677
22.23  0.0822662521
23.23  0.1598680537
2.24   0.2162418950
3.24   0.0416636450
4.24   0.2398543496
5.24   0.1430300144
7.24   0.4581370964
8.24   0.2155554800
10.24  1.2671710317
11.24 -0.2589048709
13.24  0.2615081856
14.24 -0.2189088594
15.24 -0.3816524986
16.24  0.6186584559
17.24  0.0819428968
18.24  0.2063556930
19.24  0.0303224776
20.24  0.1691624743
22.24  0.0435693125
23.24  0.2215244242
2.25   0.3548004447
3.25  -0.1347422803
4.25   0.0639633821
5.25   0.1807702274
7.25   0.0219232175
8.25   0.0237968740
10.25  0.3268463291
11.25  0.1894136867
13.25  0.9037602854
14.25 -0.1313726048
15.25 -0.3085988930
16.25  0.5255778450
17.25  0.3837085537
18.25  0.2215062449
19.25  0.0294688263
20.25  0.0814752187
22.25  0.1286455303
23.25  0.5314420135
2.26   0.6383973089
3.26   0.1413134722
4.26   0.0042434749
5.26   0.1401735826
7.26   0.1463327573
8.26   0.7292348513
10.26  0.1830290143
11.26  1.0007069754
13.26  0.3507038917
14.26 -0.1978427806
15.26  0.6560777696
16.26  0.0771632332
17.26  0.0535737857
18.26  0.1276958205
19.26  0.0974400106
20.26  0.1574405340
22.26  0.1809703843
23.26 -0.0632940319
2.27   0.3545891855
3.27  -0.0314322773
4.27  -0.1180942524
5.27   0.2854145242
7.27   0.2279702615
8.27   0.5683446887
10.27 -0.0860991629
11.27  0.0095142481
13.27  0.4799813038
14.27  0.0670912297
15.27  0.0803351728
16.27  0.4343406514
17.27  0.0802113457
18.27  0.2839549044
19.27  0.0450255695
20.27  0.0913448772
22.27  0.0845083475
23.27  0.3587873421
2.28   0.9206405648
3.28   0.1239999980
4.28  -0.1604210749
5.28   0.0235574363
7.28   0.3147123016
8.28   1.0218498377
10.28  0.3725553327
11.28 -0.2666527348
13.28  0.9455441905
14.28 -0.0691580009
15.28 -0.1088118423
16.28 -0.0733883195
17.28  0.6830766085
18.28 -0.3789965197
19.28  0.0196242320
20.28 -0.0698320631
22.28 -0.0594811479
23.28  0.0448288275
2.29   0.0804866518
3.29   0.9238390011
4.29   0.0276104820
5.29  -0.0973203253
7.29   0.2290790890
8.29   0.2910145899
10.29 -0.0627736291
11.29  0.3744064588
13.29  0.2292693018
14.29  0.2026792650
15.29  0.0693050847
16.29  0.4116259862
17.29  0.2774622433
18.29 -0.4144030769
19.29  0.1553703355
20.29  0.1344157104
22.29  0.1540405072
23.29 -0.2037995178
2.30  -0.0400670831
3.30  -0.0143496193
4.30   0.0709266057
5.30   0.1359753891
7.30   0.0005619658
8.30   0.3541521901
10.30 -0.9297189132
11.30  0.2255216004
13.30 -0.0982423953
14.30  0.2865190614
15.30  0.2618392596
16.30  0.1807843006
17.30  0.0235092057
18.30  0.4729181651
19.30 -0.1071399115
20.30 -0.0448850522
22.30 -0.0629190907
23.30 -0.3188034140
2.31  -0.0301716821
3.31   0.5181258089
4.31   0.2326850713
5.31  -0.0975212394
7.31   0.0668264092
8.31  -0.1444177123
10.31 -0.6667338594
11.31  0.4026475623
13.31 -0.2923014179
14.31 -0.0996929274
15.31 -0.0343522881
16.31 -0.0134770791
17.31 -0.1074656942
18.31  0.0295056360
19.31  0.1995465098
20.31 -0.1353658793
22.31 -0.0433513332
23.31  0.6689941741
2.32  -0.1993766558
3.32  -0.4728296686
4.32   0.3523299078
5.32  -0.0040845503
7.32  -0.4569390604
8.32  -0.0172933326
10.32 -0.8394325079
11.32  1.1233189830
13.32  0.0092819606
14.32 -0.6257996804
15.32  0.7364165215
16.32 -0.2103385303
17.32 -0.1667588839
18.32  0.1725603313
19.32 -0.1041131251
20.32  0.1687769310
22.32  0.2530935481
23.32  0.1294758583
2.33  -0.0886878061
3.33   0.4910310826
4.33   0.0522692914
5.33  -0.1367066998
7.33  -0.0817178018
8.33  -0.0204771393
10.33 -1.1417830695
11.33 -0.0592677050
13.33  0.0494714713
14.33 -0.1181364438
15.33  0.3216181820
16.33 -0.7444975200
17.33 -0.0674624733
18.33 -0.0173669689
19.33  0.0205603224
20.33  0.1484469493
22.33  0.1477132294
23.33  0.0344653177
2.34   0.4444976707
3.34  -0.2316905649
4.34  -0.0657760314
5.34  -0.1095287853
7.34  -0.2932990955
8.34   0.0895630665
10.34 -1.4712471446
11.34  0.3819172649
13.34  0.3257636379
14.34 -0.0871008228
15.34  0.0026587236
16.34 -0.5468270665
17.34 -0.1219176887
18.34 -0.2537537008
19.34  0.1466943712
20.34 -0.0831548318
22.34  0.1284212436
23.34 -0.1286743997
2.35   0.2671574395
3.35  -0.8589798610
4.35  -0.0991396231
5.35   0.0511098412
7.35  -0.4583747174
8.35  -0.2948724632
10.35 -0.4849107325
11.35  0.5571384743
13.35 -0.4409232814
14.35  0.5172811039
15.35  0.1614653171
16.35  0.0512829254
17.35  0.0534044684
18.35 -0.3105510171
19.35  0.1587010362
20.35 -0.1400625020
22.35  0.0608461091
23.35  0.1016202531
2.36  -0.0346292353
3.36  -0.0128581408
4.36  -0.0983739035
5.36  -0.2755178291
7.36  -0.3546989385
8.36  -0.7758401078
10.36 -1.0644072318
11.36  0.1986590660
13.36  0.2534445209
14.36  0.0940772936
15.36  0.3779283407
16.36 -0.2369697391
17.36 -0.3504410057
18.36  0.1120530455
19.36 -0.2792727961
20.36 -0.0006681324
22.36 -0.3545213469
23.36 -0.1869282706
2.37  -0.3419023214
3.37   0.3028132076
4.37   0.0478250637
5.37  -0.1840193237
7.37  -0.1519202449
8.37   0.1721378077
10.37 -0.7782957362
11.37 -0.3920855475
13.37 -0.5726989067
14.37 -0.0184105027
15.37 -0.1747649990
16.37 -0.4222796863
17.37  0.2956563975
18.37 -0.3144488964
19.37  0.1572090699
20.37 -0.1366171713
22.37 -0.0209105417
23.37  0.2028440367
2.38   0.4115477268
3.38  -0.3223858569
4.38  -0.0223255191
5.38  -0.1397719062
7.38  -0.7542386209
8.38  -0.1131510435
10.38 -1.9796640069
11.38 -0.5501445145
13.38 -0.7975609323
14.38 -0.2907121146
15.38  0.1582775016
16.38  0.1854842470
17.38  0.0054111126
18.38 -0.2032518133
19.38 -0.0743766704
20.38 -0.0931147189
22.38 -0.0881120918
23.38 -0.6166526098
2.39   0.6046079509
3.39   0.2173245574
4.39  -0.1430491473
5.39   0.0815396291
7.39  -0.2399602208
8.39  -0.5997404023
10.39 -2.1593900085
11.39  0.0431090783
13.39 -0.7357241915
14.39 -0.0090821831
15.39 -0.2409439246
16.39 -0.0547894853
17.39 -0.2098349993
18.39 -0.3501057825
19.39 -0.1128098340
20.39  0.2906408519
22.39 -0.0320105145
23.39 -0.3511982784
2.40  -0.2664156857
3.40  -0.0145956711
4.40  -0.0804332426
5.40  -0.1954934287
7.40  -0.4132939343
8.40  -0.4413297995
10.40 -1.5401804405
11.40 -0.8424002067
13.40 -0.6681433585
14.40 -0.3755364618
15.40  0.1801479132
16.40 -0.4466405945
17.40 -0.0927796189
18.40  0.1465462197
19.40  0.1389270643
20.40 -0.0746900456
22.40 -0.1092576186
23.40 -0.1930767773
2.41  -0.0540866424
3.41  -0.6369754971
4.41   0.0530730905
5.41   0.1720146280
7.41  -0.6419525752
8.41  -0.8156288398
10.41 -2.6484755614
11.41 -0.4217082399
13.41 -0.9755750380
14.41 -0.2490581137
15.41 -0.4205666752
16.41 -0.4441040208
17.41 -0.2235920917
18.41  0.2331627032
19.41 -0.2272903198
20.41 -0.3175070939
22.41 -0.1079602852
23.41 -0.1313221288
2.42  -0.2565653361
3.42  -0.6605432949
4.42  -0.0951136708
5.42  -0.0316816057
7.42  -0.1655708305
8.42  -0.3041269167
10.42 -1.3095892929
11.42 -0.7638230856
13.42 -1.0369257332
14.42  0.2560907272
15.42 -0.6198887870
16.42 -0.3486854916
17.42 -0.4149474722
18.42 -0.8569143669
19.42  0.0084081842
20.42 -0.0880982611
22.42 -0.2563668972
23.42 -0.3874747915
2.43  -0.3493516772
3.43  -0.3774218892
4.43  -0.3133990094
5.43  -0.1718736800
7.43  -0.7274013337
8.43  -1.4282102173
10.43 -1.3114232237
11.43 -0.7182961933
13.43 -1.0174776228
14.43 -0.3867885398
15.43 -0.3173512479
16.43 -0.3828153596
17.43 -0.4880622414
18.43 -0.2354846081
19.43 -0.1778048064
20.43  0.1135604938
22.43 -0.5606285260
23.43 -0.1762823988
2.44  -0.8787853678
3.44  -0.4520368028
4.44   0.0904967055
5.44  -0.1706423680
7.44  -0.8491629590
8.44  -0.9070271296
10.44 -2.0133459213
11.44 -0.6208545667
13.44 -0.6793768560
14.44 -0.5195491627
15.44 -0.7269738812
16.44 -0.7984730329
17.44 -0.3469311275
18.44 -0.1732531295
19.44 -0.2033053632
20.44 -0.4245571523
22.44 -0.6207773159
23.44 -0.4054651824
2.45  -0.5474976820
3.45  -0.7308245870
4.45  -0.1555532343
5.45  -0.0937585830
7.45  -1.0632944335
8.45  -0.1176632978
10.45 -1.8401427881
11.45 -1.2487970912
13.45 -0.8847972711
14.45 -0.7432382991
15.45 -0.8131545274
16.45 -0.7808563690
17.45  0.0027832956
18.45 -0.6537006289
19.45  0.3645543401
20.45 -0.1930169594
22.45 -0.7774388833
23.45 -0.9751351355
2.46  -0.5302218764
3.46  -0.9232579792
4.46  -0.1662054231
5.46  -0.2033658549
7.46  -1.0583368441
8.46  -0.9749895283
10.46 -2.0665269476
11.46  0.0600916078
13.46 -0.9053615896
14.46 -0.8703050062
15.46 -0.4191632926
16.46 -1.1377871115
17.46 -0.3022809867
18.46 -1.3128903943
19.46 -0.4030513441
20.46 -0.2607044325
22.46 -0.5226335654
23.46 -1.1561902177
2.47  -0.6137646724
3.47  -0.8398764988
4.47  -0.1705593455
5.47  -0.3590183783
7.47  -0.6972024622
8.47  -0.9321482416
10.47 -2.2393606019
11.47 -0.9455765376
13.47 -0.6822245648
14.47 -0.8187467578
15.47 -0.7601773486
16.47 -1.2042271575
17.47 -0.5976658286
18.47 -0.9720001357
19.47 -0.3694330857
20.47 -0.3132193255
22.47 -0.5633458196
2.48  -0.9226659263

$subject
   (Intercept)
2  -0.02898547
3   0.18026470
4  -0.51925966
5  -0.65750137
7   0.18599708
8   0.37715748
10  1.68351789
11  0.22509990
13 -0.18066826
14 -0.15034864
15  0.09038732
16  0.19134839
17 -0.39320912
18  0.33325712
19 -0.61380972
20 -0.39736447
22 -0.47922581
23  0.15334265

with conditional variances for "trial_id" "subject" 

Sample Scaled Residuals:
        1         2         3         4         5         6 
0.9727586 0.6818716 0.4764641 0.4835448 0.3609605 0.2563628 

=============================================================

#3.1 concatenation analysis rms training blocks 1,2,3

# Generate step summaries separately to avoid overwriting
result_6 <- plot_stepwise_rms_blocks_145_first6(tagged_data2)
result_12 <- plot_stepwise_rms_blocks_245_12steps(tagged_data2)
result_18 <- plot_stepwise_rms_blocks_345_18steps(tagged_data2)

# Extract clean step_summary objects
step_summary_6 <- result_6$step_summary
step_summary_12 <- result_12$step_summary
step_summary_18 <- result_18$step_summary
axes <- c("X", "Y", "Z")

cat("\n\n================ Block 1 (6 Steps) ================\n")


================ Block 1 (6 Steps) ================
for (ax in axes) {
  cat(glue::glue("\n--- Axis: {ax} ---\n"))

  df_b1 <- step_summary_6 %>%
    filter(Block == "1", Axis == ax, Step %in% as.character(1:6)) %>%
    mutate(Step = factor(Step))

  if (nrow(df_b1) == 0) {
    cat("No valid data for Block 1, Axis", ax, "\n")
    next
  }

  model_b1 <- lmer(RMS ~ Step + (1 | subject) + (1 | trial_id), data = df_b1)
  anova_b1 <- car::Anova(model_b1, type = 2, test.statistic = "Chisq")
  emms_b1 <- emmeans(model_b1, ~ Step)
  pairwise_b1 <- contrast(emms_b1, method = "pairwise", adjust = "tukey")

  print(anova_b1)
  cat("\nEstimated Marginal Means:\n")
  print(summary(emms_b1))
  cat("\nPairwise Comparisons:\n")
  print(pairwise_b1)
}
--- Axis: X ---Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
      Chisq Df Pr(>Chisq)  
Step 11.351  5    0.04485 *
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Marginal Means:
 Step emmean    SE df lower.CL upper.CL
 1     0.868 0.128 17    0.599     1.14
 2     0.869 0.128 17    0.599     1.14
 3     0.860 0.128 17    0.591     1.13
 4     0.861 0.128 17    0.591     1.13
 5     0.880 0.128 17    0.611     1.15
 6     0.865 0.128 17    0.596     1.13

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

Pairwise Comparisons:
 contrast       estimate      SE   df t.ratio p.value
 Step1 - Step2 -0.000397 0.00677 3151  -0.059  1.0000
 Step1 - Step3  0.007712 0.00677 3151   1.139  0.8653
 Step1 - Step4  0.007607 0.00678 3151   1.121  0.8726
 Step1 - Step5 -0.011848 0.00677 3151  -1.749  0.4991
 Step1 - Step6  0.003061 0.00677 3151   0.452  0.9976
 Step2 - Step3  0.008109 0.00677 3151   1.197  0.8384
 Step2 - Step4  0.008004 0.00678 3151   1.180  0.8465
 Step2 - Step5 -0.011451 0.00677 3151  -1.691  0.5381
 Step2 - Step6  0.003458 0.00677 3151   0.511  0.9958
 Step3 - Step4 -0.000106 0.00679 3151  -0.016  1.0000
 Step3 - Step5 -0.019561 0.00678 3151  -2.886  0.0453
 Step3 - Step6 -0.004651 0.00677 3151  -0.687  0.9835
 Step4 - Step5 -0.019455 0.00679 3151  -2.865  0.0481
 Step4 - Step6 -0.004546 0.00678 3151  -0.670  0.9852
 Step5 - Step6  0.014909 0.00677 3151   2.201  0.2374

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 6 estimates 
--- Axis: Y ---Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
      Chisq Df Pr(>Chisq)
Step 1.8679  5     0.8671

Estimated Marginal Means:
 Step emmean    SE df lower.CL upper.CL
 1     0.862 0.151 17    0.544     1.18
 2     0.867 0.151 17    0.550     1.18
 3     0.866 0.151 17    0.548     1.18
 4     0.865 0.151 17    0.548     1.18
 5     0.862 0.151 17    0.545     1.18
 6     0.857 0.151 17    0.540     1.17

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

Pairwise Comparisons:
 contrast       estimate      SE   df t.ratio p.value
 Step1 - Step2 -5.48e-03 0.00858 3151  -0.639  0.9881
 Step1 - Step3 -3.55e-03 0.00859 3151  -0.413  0.9985
 Step1 - Step4 -3.50e-03 0.00860 3151  -0.407  0.9986
 Step1 - Step5 -2.64e-04 0.00859 3151  -0.031  1.0000
 Step1 - Step6  4.92e-03 0.00858 3151   0.573  0.9927
 Step2 - Step3  1.93e-03 0.00859 3151   0.224  0.9999
 Step2 - Step4  1.98e-03 0.00860 3151   0.230  0.9999
 Step2 - Step5  5.21e-03 0.00859 3151   0.607  0.9906
 Step2 - Step6  1.04e-02 0.00858 3151   1.212  0.8312
 Step3 - Step4  5.01e-05 0.00861 3151   0.006  1.0000
 Step3 - Step5  3.29e-03 0.00859 3151   0.383  0.9989
 Step3 - Step6  8.47e-03 0.00859 3151   0.986  0.9224
 Step4 - Step5  3.24e-03 0.00861 3151   0.376  0.9990
 Step4 - Step6  8.42e-03 0.00860 3151   0.979  0.9247
 Step5 - Step6  5.18e-03 0.00859 3151   0.604  0.9908

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 6 estimates 
--- Axis: Z ---Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
     Chisq Df Pr(>Chisq)    
Step  21.5  5  0.0006515 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Marginal Means:
 Step emmean    SE   df lower.CL upper.CL
 1      1.78 0.249 17.1     1.25     2.30
 2      1.85 0.249 17.1     1.33     2.37
 3      1.81 0.249 17.1     1.29     2.34
 4      1.81 0.249 17.1     1.29     2.34
 5      1.82 0.249 17.1     1.30     2.35
 6      1.79 0.249 17.1     1.27     2.32

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

Pairwise Comparisons:
 contrast      estimate     SE   df t.ratio p.value
 Step1 - Step2 -0.07159 0.0169 3151  -4.238  0.0003
 Step1 - Step3 -0.03566 0.0169 3151  -2.109  0.2830
 Step1 - Step4 -0.03589 0.0169 3151  -2.119  0.2775
 Step1 - Step5 -0.04665 0.0169 3151  -2.759  0.0646
 Step1 - Step6 -0.01574 0.0169 3151  -0.932  0.9384
 Step2 - Step3  0.03594 0.0169 3151   2.125  0.2744
 Step2 - Step4  0.03571 0.0169 3151   2.109  0.2830
 Step2 - Step5  0.02494 0.0169 3151   1.475  0.6803
 Step2 - Step6  0.05585 0.0169 3151   3.306  0.0123
 Step3 - Step4 -0.00023 0.0170 3151  -0.014  1.0000
 Step3 - Step5 -0.01099 0.0169 3151  -0.650  0.9871
 Step3 - Step6  0.01992 0.0169 3151   1.178  0.8475
 Step4 - Step5 -0.01076 0.0170 3151  -0.635  0.9884
 Step4 - Step6  0.02015 0.0169 3151   1.190  0.8419
 Step5 - Step6  0.03091 0.0169 3151   1.828  0.4477

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 6 estimates 
cat("\n\n================ Block 2 (12 Steps) ================\n")


================ Block 2 (12 Steps) ================
for (ax in axes) {
  cat(glue::glue("\n--- Axis: {ax} ---\n"))

  df_b2 <- step_summary_12 %>%
    filter(Block == "2", Axis == ax, Step %in% as.character(1:12)) %>%
    mutate(Step = factor(Step))

  if (nrow(df_b2) == 0) {
    cat("No valid data for Block 2, Axis", ax, "\n")
    next
  }

  model_b2 <- lmer(RMS ~ Step + (1 | subject) + (1 | trial_id), data = df_b2)
  anova_b2 <- car::Anova(model_b2, type = 2, test.statistic = "Chisq")
  emms_b2 <- emmeans(model_b2, ~ Step)
  pairwise_b2 <- contrast(emms_b2, method = "pairwise", adjust = "tukey")

  print(anova_b2)
  cat("\nEstimated Marginal Means:\n")
  print(summary(emms_b2))
  cat("\nPairwise Comparisons:\n")
  print(pairwise_b2)
}
--- Axis: X ---Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
      Chisq Df Pr(>Chisq)    
Step 185.79 11  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Marginal Means:
 Step emmean     SE   df lower.CL upper.CL
 1     0.769 0.0781 17.9    0.605    0.933
 2     0.773 0.0781 17.9    0.609    0.937
 3     0.775 0.0781 17.9    0.611    0.939
 4     0.764 0.0781 17.9    0.600    0.929
 5     0.769 0.0781 17.9    0.605    0.933
 6     0.737 0.0781 17.9    0.573    0.902
 7     0.717 0.0781 17.9    0.553    0.881
 8     0.704 0.0781 17.9    0.540    0.868
 9     0.678 0.0781 17.9    0.514    0.842
 10    0.663 0.0781 17.9    0.498    0.827
 11    0.651 0.0781 17.9    0.487    0.815
 12    0.638 0.0781 17.9    0.474    0.802

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

Pairwise Comparisons:
 contrast         estimate     SE   df t.ratio p.value
 Step1 - Step2   -0.003946 0.0179 6049  -0.220  1.0000
 Step1 - Step3   -0.005719 0.0179 6049  -0.320  1.0000
 Step1 - Step4    0.004589 0.0179 6049   0.256  1.0000
 Step1 - Step5    0.000053 0.0179 6049   0.003  1.0000
 Step1 - Step6    0.031659 0.0179 6049   1.769  0.8349
 Step1 - Step7    0.052129 0.0179 6049   2.911  0.1370
 Step1 - Step8    0.065019 0.0179 6049   3.633  0.0149
 Step1 - Step9    0.090900 0.0179 6049   5.079  <.0001
 Step1 - Step10   0.106504 0.0179 6049   5.951  <.0001
 Step1 - Step11   0.118291 0.0179 6049   6.610  <.0001
 Step1 - Step12   0.131198 0.0179 6049   7.331  <.0001
 Step2 - Step3   -0.001773 0.0179 6049  -0.099  1.0000
 Step2 - Step4    0.008535 0.0179 6049   0.477  1.0000
 Step2 - Step5    0.003999 0.0179 6049   0.223  1.0000
 Step2 - Step6    0.035605 0.0179 6049   1.989  0.7008
 Step2 - Step7    0.056074 0.0179 6049   3.132  0.0753
 Step2 - Step8    0.068965 0.0179 6049   3.854  0.0066
 Step2 - Step9    0.094846 0.0179 6049   5.300  <.0001
 Step2 - Step10   0.110450 0.0179 6049   6.172  <.0001
 Step2 - Step11   0.122237 0.0179 6049   6.830  <.0001
 Step2 - Step12   0.135144 0.0179 6049   7.551  <.0001
 Step3 - Step4    0.010308 0.0179 6049   0.576  1.0000
 Step3 - Step5    0.005772 0.0179 6049   0.323  1.0000
 Step3 - Step6    0.037378 0.0179 6049   2.089  0.6311
 Step3 - Step7    0.057848 0.0179 6049   3.231  0.0562
 Step3 - Step8    0.070738 0.0179 6049   3.953  0.0045
 Step3 - Step9    0.096619 0.0179 6049   5.399  <.0001
 Step3 - Step10   0.112223 0.0179 6049   6.271  <.0001
 Step3 - Step11   0.124010 0.0179 6049   6.929  <.0001
 Step3 - Step12   0.136918 0.0179 6049   7.651  <.0001
 Step4 - Step5   -0.004536 0.0179 6049  -0.253  1.0000
 Step4 - Step6    0.027070 0.0179 6049   1.513  0.9375
 Step4 - Step7    0.047540 0.0179 6049   2.655  0.2494
 Step4 - Step8    0.060430 0.0179 6049   3.377  0.0356
 Step4 - Step9    0.086311 0.0179 6049   4.823  0.0001
 Step4 - Step10   0.101915 0.0179 6049   5.695  <.0001
 Step4 - Step11   0.113702 0.0179 6049   6.353  <.0001
 Step4 - Step12   0.126610 0.0179 6049   7.075  <.0001
 Step5 - Step6    0.031606 0.0179 6049   1.766  0.8365
 Step5 - Step7    0.052076 0.0179 6049   2.908  0.1380
 Step5 - Step8    0.064966 0.0179 6049   3.630  0.0151
 Step5 - Step9    0.090847 0.0179 6049   5.076  <.0001
 Step5 - Step10   0.106451 0.0179 6049   5.948  <.0001
 Step5 - Step11   0.118238 0.0179 6049   6.607  <.0001
 Step5 - Step12   0.131145 0.0179 6049   7.328  <.0001
 Step6 - Step7    0.020469 0.0179 6049   1.143  0.9927
 Step6 - Step8    0.033360 0.0179 6049   1.864  0.7816
 Step6 - Step9    0.059241 0.0179 6049   3.310  0.0440
 Step6 - Step10   0.074845 0.0179 6049   4.182  0.0017
 Step6 - Step11   0.086632 0.0179 6049   4.841  0.0001
 Step6 - Step12   0.099539 0.0179 6049   5.562  <.0001
 Step7 - Step8    0.012890 0.0179 6049   0.720  0.9999
 Step7 - Step9    0.038771 0.0179 6049   2.165  0.5751
 Step7 - Step10   0.054375 0.0179 6049   3.037  0.0983
 Step7 - Step11   0.066162 0.0179 6049   3.695  0.0119
 Step7 - Step12   0.079070 0.0179 6049   4.416  0.0006
 Step8 - Step9    0.025881 0.0179 6049   1.446  0.9543
 Step8 - Step10   0.041485 0.0179 6049   2.318  0.4636
 Step8 - Step11   0.053272 0.0179 6049   2.977  0.1156
 Step8 - Step12   0.066179 0.0179 6049   3.698  0.0118
 Step9 - Step10   0.015604 0.0179 6049   0.872  0.9994
 Step9 - Step11   0.027391 0.0179 6049   1.531  0.9323
 Step9 - Step12   0.040299 0.0179 6049   2.252  0.5117
 Step10 - Step11  0.011787 0.0179 6049   0.659  1.0000
 Step10 - Step12  0.024695 0.0179 6049   1.380  0.9675
 Step11 - Step12  0.012908 0.0179 6049   0.721  0.9999

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 12 estimates 
--- Axis: Y ---Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
      Chisq Df Pr(>Chisq)    
Step 126.61 11  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Marginal Means:
 Step emmean     SE   df lower.CL upper.CL
 1     0.808 0.0937 17.7    0.610    1.005
 2     0.815 0.0937 17.7    0.618    1.012
 3     0.818 0.0937 17.7    0.620    1.015
 4     0.824 0.0937 17.7    0.627    1.022
 5     0.811 0.0937 17.7    0.613    1.008
 6     0.793 0.0937 17.7    0.595    0.990
 7     0.784 0.0937 17.7    0.587    0.982
 8     0.771 0.0937 17.7    0.574    0.969
 9     0.751 0.0937 17.7    0.553    0.948
 10    0.730 0.0937 17.7    0.533    0.927
 11    0.700 0.0937 17.7    0.503    0.898
 12    0.683 0.0937 17.7    0.486    0.880

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

Pairwise Comparisons:
 contrast        estimate   SE   df t.ratio p.value
 Step1 - Step2   -0.00746 0.02 6049  -0.373  1.0000
 Step1 - Step3   -0.01002 0.02 6049  -0.501  1.0000
 Step1 - Step4   -0.01676 0.02 6049  -0.839  0.9996
 Step1 - Step5   -0.00293 0.02 6049  -0.147  1.0000
 Step1 - Step6    0.01510 0.02 6049   0.756  0.9998
 Step1 - Step7    0.02316 0.02 6049   1.158  0.9919
 Step1 - Step8    0.03614 0.02 6049   1.808  0.8137
 Step1 - Step9    0.05712 0.02 6049   2.858  0.1563
 Step1 - Step10   0.07741 0.02 6049   3.874  0.0061
 Step1 - Step11   0.10730 0.02 6049   5.369  <.0001
 Step1 - Step12   0.12487 0.02 6049   6.249  <.0001
 Step2 - Step3   -0.00256 0.02 6049  -0.128  1.0000
 Step2 - Step4   -0.00930 0.02 6049  -0.466  1.0000
 Step2 - Step5    0.00452 0.02 6049   0.226  1.0000
 Step2 - Step6    0.02256 0.02 6049   1.129  0.9934
 Step2 - Step7    0.03061 0.02 6049   1.531  0.9321
 Step2 - Step8    0.04360 0.02 6049   2.182  0.5631
 Step2 - Step9    0.06458 0.02 6049   3.232  0.0561
 Step2 - Step10   0.08487 0.02 6049   4.247  0.0013
 Step2 - Step11   0.11476 0.02 6049   5.743  <.0001
 Step2 - Step12   0.13233 0.02 6049   6.622  <.0001
 Step3 - Step4   -0.00675 0.02 6049  -0.338  1.0000
 Step3 - Step5    0.00708 0.02 6049   0.354  1.0000
 Step3 - Step6    0.02512 0.02 6049   1.257  0.9841
 Step3 - Step7    0.03317 0.02 6049   1.659  0.8865
 Step3 - Step8    0.04615 0.02 6049   2.310  0.4696
 Step3 - Step9    0.06714 0.02 6049   3.360  0.0376
 Step3 - Step10   0.08742 0.02 6049   4.375  0.0008
 Step3 - Step11   0.11731 0.02 6049   5.871  <.0001
 Step3 - Step12   0.13489 0.02 6049   6.750  <.0001
 Step4 - Step5    0.01383 0.02 6049   0.692  0.9999
 Step4 - Step6    0.03186 0.02 6049   1.595  0.9114
 Step4 - Step7    0.03992 0.02 6049   1.997  0.6960
 Step4 - Step8    0.05290 0.02 6049   2.647  0.2535
 Step4 - Step9    0.07388 0.02 6049   3.697  0.0118
 Step4 - Step10   0.09417 0.02 6049   4.713  0.0002
 Step4 - Step11   0.12406 0.02 6049   6.208  <.0001
 Step4 - Step12   0.14163 0.02 6049   7.088  <.0001
 Step5 - Step6    0.01804 0.02 6049   0.903  0.9991
 Step5 - Step7    0.02609 0.02 6049   1.305  0.9787
 Step5 - Step8    0.03907 0.02 6049   1.955  0.7239
 Step5 - Step9    0.06005 0.02 6049   3.005  0.1071
 Step5 - Step10   0.08034 0.02 6049   4.021  0.0034
 Step5 - Step11   0.11023 0.02 6049   5.516  <.0001
 Step5 - Step12   0.12780 0.02 6049   6.396  <.0001
 Step6 - Step7    0.00805 0.02 6049   0.403  1.0000
 Step6 - Step8    0.02104 0.02 6049   1.053  0.9964
 Step6 - Step9    0.04202 0.02 6049   2.103  0.6209
 Step6 - Step10   0.06231 0.02 6049   3.118  0.0784
 Step6 - Step11   0.09219 0.02 6049   4.614  0.0003
 Step6 - Step12   0.10977 0.02 6049   5.493  <.0001
 Step7 - Step8    0.01298 0.02 6049   0.649  1.0000
 Step7 - Step9    0.03397 0.02 6049   1.699  0.8692
 Step7 - Step10   0.05425 0.02 6049   2.714  0.2195
 Step7 - Step11   0.08414 0.02 6049   4.209  0.0016
 Step7 - Step12   0.10171 0.02 6049   5.088  <.0001
 Step8 - Step9    0.02098 0.02 6049   1.050  0.9965
 Step8 - Step10   0.04127 0.02 6049   2.065  0.6478
 Step8 - Step11   0.07116 0.02 6049   3.561  0.0192
 Step8 - Step12   0.08873 0.02 6049   4.440  0.0006
 Step9 - Step10   0.02029 0.02 6049   1.015  0.9974
 Step9 - Step11   0.05018 0.02 6049   2.511  0.3330
 Step9 - Step12   0.06775 0.02 6049   3.390  0.0341
 Step10 - Step11  0.02989 0.02 6049   1.496  0.9421
 Step10 - Step12  0.04746 0.02 6049   2.375  0.4232
 Step11 - Step12  0.01757 0.02 6049   0.879  0.9993

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 12 estimates 
--- Axis: Z ---Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
      Chisq Df Pr(>Chisq)    
Step 199.22 11  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Marginal Means:
 Step emmean    SE   df lower.CL upper.CL
 1      1.65 0.173 17.6     1.29     2.01
 2      1.68 0.173 17.6     1.32     2.05
 3      1.65 0.173 17.6     1.29     2.02
 4      1.65 0.173 17.6     1.28     2.01
 5      1.64 0.173 17.6     1.27     2.00
 6      1.60 0.173 17.6     1.24     1.97
 7      1.57 0.173 17.6     1.20     1.93
 8      1.55 0.173 17.6     1.18     1.91
 9      1.48 0.173 17.6     1.12     1.85
 10     1.47 0.173 17.6     1.10     1.83
 11     1.43 0.173 17.6     1.07     1.80
 12     1.39 0.173 17.6     1.02     1.75

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

Pairwise Comparisons:
 contrast        estimate    SE   df t.ratio p.value
 Step1 - Step2   -0.03221 0.033 6049  -0.977  0.9982
 Step1 - Step3   -0.00130 0.033 6049  -0.039  1.0000
 Step1 - Step4    0.00384 0.033 6049   0.117  1.0000
 Step1 - Step5    0.01112 0.033 6049   0.338  1.0000
 Step1 - Step6    0.04710 0.033 6049   1.429  0.9580
 Step1 - Step7    0.08058 0.033 6049   2.444  0.3764
 Step1 - Step8    0.10316 0.033 6049   3.130  0.0757
 Step1 - Step9    0.16877 0.033 6049   5.121  <.0001
 Step1 - Step10   0.18490 0.033 6049   5.610  <.0001
 Step1 - Step11   0.21682 0.033 6049   6.579  <.0001
 Step1 - Step12   0.26287 0.033 6049   7.976  <.0001
 Step2 - Step3    0.03092 0.033 6049   0.938  0.9987
 Step2 - Step4    0.03606 0.033 6049   1.094  0.9950
 Step2 - Step5    0.04334 0.033 6049   1.315  0.9774
 Step2 - Step6    0.07931 0.033 6049   2.406  0.4016
 Step2 - Step7    0.11280 0.033 6049   3.421  0.0309
 Step2 - Step8    0.13538 0.033 6049   4.108  0.0024
 Step2 - Step9    0.20099 0.033 6049   6.098  <.0001
 Step2 - Step10   0.21711 0.033 6049   6.587  <.0001
 Step2 - Step11   0.24904 0.033 6049   7.556  <.0001
 Step2 - Step12   0.29508 0.033 6049   8.953  <.0001
 Step3 - Step4    0.00514 0.033 6049   0.156  1.0000
 Step3 - Step5    0.01242 0.033 6049   0.377  1.0000
 Step3 - Step6    0.04840 0.033 6049   1.468  0.9491
 Step3 - Step7    0.08188 0.033 6049   2.483  0.3507
 Step3 - Step8    0.10446 0.033 6049   3.169  0.0675
 Step3 - Step9    0.17007 0.033 6049   5.160  <.0001
 Step3 - Step10   0.18619 0.033 6049   5.649  <.0001
 Step3 - Step11   0.21812 0.033 6049   6.618  <.0001
 Step3 - Step12   0.26417 0.033 6049   8.015  <.0001
 Step4 - Step5    0.00728 0.033 6049   0.221  1.0000
 Step4 - Step6    0.04326 0.033 6049   1.312  0.9777
 Step4 - Step7    0.07674 0.033 6049   2.327  0.4571
 Step4 - Step8    0.09932 0.033 6049   3.013  0.1048
 Step4 - Step9    0.16493 0.033 6049   5.004  <.0001
 Step4 - Step10   0.18105 0.033 6049   5.493  <.0001
 Step4 - Step11   0.21298 0.033 6049   6.462  <.0001
 Step4 - Step12   0.25903 0.033 6049   7.859  <.0001
 Step5 - Step6    0.03598 0.033 6049   1.092  0.9951
 Step5 - Step7    0.06946 0.033 6049   2.106  0.6182
 Step5 - Step8    0.09204 0.033 6049   2.793  0.1832
 Step5 - Step9    0.15765 0.033 6049   4.783  0.0001
 Step5 - Step10   0.17377 0.033 6049   5.273  <.0001
 Step5 - Step11   0.20570 0.033 6049   6.241  <.0001
 Step5 - Step12   0.25175 0.033 6049   7.638  <.0001
 Step6 - Step7    0.03348 0.033 6049   1.015  0.9974
 Step6 - Step8    0.05606 0.033 6049   1.701  0.8682
 Step6 - Step9    0.12167 0.033 6049   3.692  0.0121
 Step6 - Step10   0.13780 0.033 6049   4.181  0.0018
 Step6 - Step11   0.16973 0.033 6049   5.150  <.0001
 Step6 - Step12   0.21577 0.033 6049   6.547  <.0001
 Step7 - Step8    0.02258 0.033 6049   0.685  0.9999
 Step7 - Step9    0.08819 0.033 6049   2.674  0.2392
 Step7 - Step10   0.10431 0.033 6049   3.163  0.0687
 Step7 - Step11   0.13624 0.033 6049   4.132  0.0022
 Step7 - Step12   0.18229 0.033 6049   5.528  <.0001
 Step8 - Step9    0.06561 0.033 6049   1.991  0.7000
 Step8 - Step10   0.08173 0.033 6049   2.480  0.3528
 Step8 - Step11   0.11366 0.033 6049   3.449  0.0282
 Step8 - Step12   0.15971 0.033 6049   4.846  0.0001
 Step9 - Step10   0.01612 0.033 6049   0.489  1.0000
 Step9 - Step11   0.04805 0.033 6049   1.458  0.9515
 Step9 - Step12   0.09410 0.033 6049   2.855  0.1576
 Step10 - Step11  0.03193 0.033 6049   0.969  0.9983
 Step10 - Step12  0.07797 0.033 6049   2.366  0.4297
 Step11 - Step12  0.04604 0.033 6049   1.397  0.9643

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 12 estimates 
cat("\n\n================ Block 3 (18 Steps) ================\n")


================ Block 3 (18 Steps) ================
for (ax in axes) {
  cat(glue::glue("\n--- Axis: {ax} ---\n"))

  df_b3 <- step_summary_18 %>%
    filter(Block == "3", Axis == ax, Step %in% as.character(1:18)) %>%
    mutate(Step = factor(Step))

  if (nrow(df_b3) == 0) {
    cat("No valid data for Block 3, Axis", ax, "\n")
    next
  }

  model_b3 <- lmer(RMS ~ Step + (1 | subject) + (1 | trial_id), data = df_b3)
  anova_b3 <- car::Anova(model_b3, type = 2, test.statistic = "Chisq")
  emms_b3 <- emmeans(model_b3, ~ Step)
  pairwise_b3 <- contrast(emms_b3, method = "pairwise", adjust = "tukey")

  print(anova_b3)
  cat("\nEstimated Marginal Means:\n")
  print(summary(emms_b3))
  cat("\nPairwise Comparisons:\n")
  print(pairwise_b3)
}
--- Axis: X ---Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
      Chisq Df Pr(>Chisq)    
Step 113.97 17  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Marginal Means:
 Step emmean     SE   df lower.CL upper.CL
 1     0.574 0.0461 19.9    0.478    0.670
 2     0.577 0.0461 19.9    0.481    0.673
 3     0.591 0.0461 19.9    0.495    0.688
 4     0.597 0.0461 19.9    0.501    0.693
 5     0.588 0.0461 19.9    0.491    0.684
 6     0.579 0.0461 19.9    0.482    0.675
 7     0.586 0.0461 19.9    0.489    0.682
 8     0.580 0.0461 19.9    0.484    0.676
 9     0.576 0.0461 19.9    0.480    0.673
 10    0.560 0.0461 19.9    0.464    0.656
 11    0.552 0.0461 19.9    0.456    0.648
 12    0.547 0.0461 19.9    0.451    0.643
 13    0.538 0.0461 19.9    0.442    0.634
 14    0.524 0.0461 19.9    0.428    0.620
 15    0.518 0.0461 19.9    0.422    0.614
 16    0.509 0.0461 19.9    0.413    0.605
 17    0.505 0.0461 19.9    0.409    0.602
 18    0.486 0.0461 19.9    0.389    0.582

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

Pairwise Comparisons:
 contrast         estimate     SE   df t.ratio p.value
 Step1 - Step2   -0.003040 0.0186 7531  -0.164  1.0000
 Step1 - Step3   -0.017560 0.0186 7531  -0.946  1.0000
 Step1 - Step4   -0.022849 0.0186 7531  -1.231  0.9991
 Step1 - Step5   -0.013692 0.0186 7531  -0.738  1.0000
 Step1 - Step6   -0.004735 0.0186 7531  -0.255  1.0000
 Step1 - Step7   -0.011701 0.0186 7531  -0.630  1.0000
 Step1 - Step8   -0.005799 0.0186 7531  -0.312  1.0000
 Step1 - Step9   -0.002450 0.0186 7531  -0.132  1.0000
 Step1 - Step10   0.014070 0.0186 7531   0.758  1.0000
 Step1 - Step11   0.022179 0.0186 7531   1.195  0.9994
 Step1 - Step12   0.026747 0.0186 7531   1.441  0.9941
 Step1 - Step13   0.035647 0.0186 7531   1.920  0.9044
 Step1 - Step14   0.050133 0.0186 7531   2.701  0.3798
 Step1 - Step15   0.055940 0.0186 7531   3.014  0.1936
 Step1 - Step16   0.064677 0.0186 7531   3.484  0.0509
 Step1 - Step17   0.068608 0.0186 7531   3.696  0.0249
 Step1 - Step18   0.088260 0.0186 7531   4.755  0.0003
 Step2 - Step3   -0.014521 0.0186 7531  -0.782  1.0000
 Step2 - Step4   -0.019810 0.0186 7531  -1.067  0.9999
 Step2 - Step5   -0.010653 0.0186 7531  -0.574  1.0000
 Step2 - Step6   -0.001696 0.0186 7531  -0.091  1.0000
 Step2 - Step7   -0.008661 0.0186 7531  -0.467  1.0000
 Step2 - Step8   -0.002760 0.0186 7531  -0.149  1.0000
 Step2 - Step9    0.000589 0.0186 7531   0.032  1.0000
 Step2 - Step10   0.017109 0.0186 7531   0.922  1.0000
 Step2 - Step11   0.025218 0.0186 7531   1.359  0.9970
 Step2 - Step12   0.029787 0.0186 7531   1.605  0.9812
 Step2 - Step13   0.038687 0.0186 7531   2.084  0.8257
 Step2 - Step14   0.053173 0.0186 7531   2.865  0.2730
 Step2 - Step15   0.058980 0.0186 7531   3.177  0.1268
 Step2 - Step16   0.067716 0.0186 7531   3.648  0.0295
 Step2 - Step17   0.071648 0.0186 7531   3.860  0.0137
 Step2 - Step18   0.091300 0.0186 7531   4.919  0.0001
 Step3 - Step4   -0.005289 0.0186 7531  -0.285  1.0000
 Step3 - Step5    0.003868 0.0186 7531   0.208  1.0000
 Step3 - Step6    0.012825 0.0186 7531   0.691  1.0000
 Step3 - Step7    0.005860 0.0186 7531   0.316  1.0000
 Step3 - Step8    0.011761 0.0186 7531   0.634  1.0000
 Step3 - Step9    0.015110 0.0186 7531   0.814  1.0000
 Step3 - Step10   0.031630 0.0186 7531   1.704  0.9662
 Step3 - Step11   0.039739 0.0186 7531   2.141  0.7921
 Step3 - Step12   0.044308 0.0186 7531   2.387  0.6180
 Step3 - Step13   0.053207 0.0186 7531   2.866  0.2719
 Step3 - Step14   0.067694 0.0186 7531   3.647  0.0296
 Step3 - Step15   0.073501 0.0186 7531   3.960  0.0094
 Step3 - Step16   0.082237 0.0186 7531   4.430  0.0013
 Step3 - Step17   0.086169 0.0186 7531   4.642  0.0005
 Step3 - Step18   0.105820 0.0186 7531   5.701  <.0001
 Step4 - Step5    0.009157 0.0186 7531   0.493  1.0000
 Step4 - Step6    0.018114 0.0186 7531   0.976  1.0000
 Step4 - Step7    0.011148 0.0186 7531   0.601  1.0000
 Step4 - Step8    0.017050 0.0186 7531   0.919  1.0000
 Step4 - Step9    0.020399 0.0186 7531   1.099  0.9998
 Step4 - Step10   0.036919 0.0186 7531   1.989  0.8750
 Step4 - Step11   0.045028 0.0186 7531   2.426  0.5880
 Step4 - Step12   0.049596 0.0186 7531   2.672  0.4004
 Step4 - Step13   0.058496 0.0186 7531   3.151  0.1361
 Step4 - Step14   0.072982 0.0186 7531   3.932  0.0105
 Step4 - Step15   0.078790 0.0186 7531   4.245  0.0029
 Step4 - Step16   0.087526 0.0186 7531   4.715  0.0004
 Step4 - Step17   0.091458 0.0186 7531   4.927  0.0001
 Step4 - Step18   0.111109 0.0186 7531   5.986  <.0001
 Step5 - Step6    0.008957 0.0186 7531   0.483  1.0000
 Step5 - Step7    0.001991 0.0186 7531   0.107  1.0000
 Step5 - Step8    0.007893 0.0186 7531   0.425  1.0000
 Step5 - Step9    0.011242 0.0186 7531   0.606  1.0000
 Step5 - Step10   0.027762 0.0186 7531   1.496  0.9911
 Step5 - Step11   0.035871 0.0186 7531   1.932  0.8996
 Step5 - Step12   0.040439 0.0186 7531   2.179  0.7681
 Step5 - Step13   0.049339 0.0186 7531   2.658  0.4105
 Step5 - Step14   0.063825 0.0186 7531   3.438  0.0589
 Step5 - Step15   0.069633 0.0186 7531   3.751  0.0205
 Step5 - Step16   0.078369 0.0186 7531   4.222  0.0032
 Step5 - Step17   0.082301 0.0186 7531   4.434  0.0013
 Step5 - Step18   0.101952 0.0186 7531   5.492  <.0001
 Step6 - Step7   -0.006966 0.0186 7531  -0.375  1.0000
 Step6 - Step8   -0.001064 0.0186 7531  -0.057  1.0000
 Step6 - Step9    0.002285 0.0186 7531   0.123  1.0000
 Step6 - Step10   0.018805 0.0186 7531   1.013  0.9999
 Step6 - Step11   0.026914 0.0186 7531   1.450  0.9937
 Step6 - Step12   0.031482 0.0186 7531   1.696  0.9676
 Step6 - Step13   0.040382 0.0186 7531   2.176  0.7701
 Step6 - Step14   0.054869 0.0186 7531   2.956  0.2222
 Step6 - Step15   0.060676 0.0186 7531   3.269  0.0982
 Step6 - Step16   0.069412 0.0186 7531   3.739  0.0214
 Step6 - Step17   0.073344 0.0186 7531   3.951  0.0097
 Step6 - Step18   0.092995 0.0186 7531   5.010  0.0001
 Step7 - Step8    0.005902 0.0186 7531   0.318  1.0000
 Step7 - Step9    0.009251 0.0186 7531   0.498  1.0000
 Step7 - Step10   0.025771 0.0186 7531   1.388  0.9961
 Step7 - Step11   0.033880 0.0186 7531   1.825  0.9372
 Step7 - Step12   0.038448 0.0186 7531   2.071  0.8329
 Step7 - Step13   0.047348 0.0186 7531   2.551  0.4910
 Step7 - Step14   0.061834 0.0186 7531   3.331  0.0818
 Step7 - Step15   0.067641 0.0186 7531   3.644  0.0299
 Step7 - Step16   0.076377 0.0186 7531   4.115  0.0051
 Step7 - Step17   0.080309 0.0186 7531   4.326  0.0021
 Step7 - Step18   0.099961 0.0186 7531   5.385  <.0001
 Step8 - Step9    0.003349 0.0186 7531   0.180  1.0000
 Step8 - Step10   0.019869 0.0186 7531   1.070  0.9999
 Step8 - Step11   0.027978 0.0186 7531   1.507  0.9903
 Step8 - Step12   0.032546 0.0186 7531   1.753  0.9559
 Step8 - Step13   0.041446 0.0186 7531   2.233  0.7316
 Step8 - Step14   0.055932 0.0186 7531   3.013  0.1938
 Step8 - Step15   0.061740 0.0186 7531   3.326  0.0830
 Step8 - Step16   0.070476 0.0186 7531   3.797  0.0174
 Step8 - Step17   0.074408 0.0186 7531   4.009  0.0078
 Step8 - Step18   0.094059 0.0186 7531   5.067  0.0001
 Step9 - Step10   0.016520 0.0186 7531   0.890  1.0000
 Step9 - Step11   0.024629 0.0186 7531   1.327  0.9977
 Step9 - Step12   0.029197 0.0186 7531   1.573  0.9847
 Step9 - Step13   0.038097 0.0186 7531   2.052  0.8432
 Step9 - Step14   0.052583 0.0186 7531   2.833  0.2922
 Step9 - Step15   0.058391 0.0186 7531   3.146  0.1381
 Step9 - Step16   0.067127 0.0186 7531   3.616  0.0329
 Step9 - Step17   0.071059 0.0186 7531   3.828  0.0155
 Step9 - Step18   0.090710 0.0186 7531   4.887  0.0002
 Step10 - Step11  0.008109 0.0186 7531   0.437  1.0000
 Step10 - Step12  0.012677 0.0186 7531   0.683  1.0000
 Step10 - Step13  0.021577 0.0186 7531   1.162  0.9996
 Step10 - Step14  0.036063 0.0186 7531   1.943  0.8953
 Step10 - Step15  0.041870 0.0186 7531   2.256  0.7155
 Step10 - Step16  0.050607 0.0186 7531   2.726  0.3620
 Step10 - Step17  0.054539 0.0186 7531   2.938  0.2316
 Step10 - Step18  0.074190 0.0186 7531   3.997  0.0081
 Step11 - Step12  0.004568 0.0186 7531   0.246  1.0000
 Step11 - Step13  0.013468 0.0186 7531   0.726  1.0000
 Step11 - Step14  0.027954 0.0186 7531   1.506  0.9904
 Step11 - Step15  0.033762 0.0186 7531   1.819  0.9390
 Step11 - Step16  0.042498 0.0186 7531   2.289  0.6912
 Step11 - Step17  0.046430 0.0186 7531   2.501  0.5293
 Step11 - Step18  0.066081 0.0186 7531   3.560  0.0397
 Step12 - Step13  0.008900 0.0186 7531   0.479  1.0000
 Step12 - Step14  0.023386 0.0186 7531   1.260  0.9988
 Step12 - Step15  0.029193 0.0186 7531   1.573  0.9847
 Step12 - Step16  0.037929 0.0186 7531   2.043  0.8480
 Step12 - Step17  0.041861 0.0186 7531   2.255  0.7159
 Step12 - Step18  0.061513 0.0186 7531   3.314  0.0861
 Step13 - Step14  0.014486 0.0186 7531   0.780  1.0000
 Step13 - Step15  0.020293 0.0186 7531   1.093  0.9998
 Step13 - Step16  0.029029 0.0186 7531   1.564  0.9856
 Step13 - Step17  0.032961 0.0186 7531   1.776  0.9506
 Step13 - Step18  0.052613 0.0186 7531   2.834  0.2913
 Step14 - Step15  0.005807 0.0186 7531   0.313  1.0000
 Step14 - Step16  0.014543 0.0186 7531   0.783  1.0000
 Step14 - Step17  0.018475 0.0186 7531   0.995  0.9999
 Step14 - Step18  0.038127 0.0186 7531   2.054  0.8423
 Step15 - Step16  0.008736 0.0186 7531   0.471  1.0000
 Step15 - Step17  0.012668 0.0186 7531   0.682  1.0000
 Step15 - Step18  0.032320 0.0186 7531   1.741  0.9587
 Step16 - Step17  0.003932 0.0186 7531   0.212  1.0000
 Step16 - Step18  0.023584 0.0186 7531   1.271  0.9987
 Step17 - Step18  0.019652 0.0186 7531   1.059  0.9999

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 18 estimates 
--- Axis: Y ---Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
      Chisq Df Pr(>Chisq)    
Step 156.54 17  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Marginal Means:
 Step emmean     SE   df lower.CL upper.CL
 1     0.582 0.0463 20.2    0.485    0.678
 2     0.586 0.0463 20.2    0.490    0.683
 3     0.610 0.0463 20.2    0.514    0.706
 4     0.614 0.0463 20.2    0.517    0.710
 5     0.614 0.0463 20.2    0.517    0.710
 6     0.604 0.0463 20.2    0.507    0.700
 7     0.614 0.0463 20.2    0.518    0.711
 8     0.622 0.0463 20.2    0.525    0.718
 9     0.623 0.0463 20.2    0.527    0.720
 10    0.597 0.0463 20.2    0.501    0.694
 11    0.587 0.0463 20.2    0.491    0.684
 12    0.581 0.0463 20.2    0.485    0.678
 13    0.570 0.0463 20.2    0.473    0.666
 14    0.550 0.0463 20.2    0.454    0.647
 15    0.533 0.0463 20.2    0.436    0.629
 16    0.512 0.0463 20.2    0.416    0.609
 17    0.506 0.0463 20.2    0.409    0.602
 18    0.493 0.0463 20.2    0.397    0.590

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

Pairwise Comparisons:
 contrast         estimate     SE   df t.ratio p.value
 Step1 - Step2   -0.004258 0.0195 7531  -0.219  1.0000
 Step1 - Step3   -0.028112 0.0195 7531  -1.444  0.9939
 Step1 - Step4   -0.031987 0.0195 7531  -1.643  0.9762
 Step1 - Step5   -0.031731 0.0195 7531  -1.630  0.9780
 Step1 - Step6   -0.021659 0.0195 7531  -1.112  0.9998
 Step1 - Step7   -0.032485 0.0195 7531  -1.669  0.9723
 Step1 - Step8   -0.039907 0.0195 7531  -2.050  0.8446
 Step1 - Step9   -0.041413 0.0195 7531  -2.127  0.8006
 Step1 - Step10  -0.015332 0.0195 7531  -0.788  1.0000
 Step1 - Step11  -0.005256 0.0195 7531  -0.270  1.0000
 Step1 - Step12   0.000724 0.0195 7531   0.037  1.0000
 Step1 - Step13   0.011942 0.0195 7531   0.613  1.0000
 Step1 - Step14   0.031394 0.0195 7531   1.612  0.9803
 Step1 - Step15   0.049294 0.0195 7531   2.532  0.5056
 Step1 - Step16   0.069784 0.0195 7531   3.584  0.0366
 Step1 - Step17   0.076068 0.0195 7531   3.907  0.0115
 Step1 - Step18   0.088536 0.0195 7531   4.547  0.0008
 Step2 - Step3   -0.023854 0.0195 7531  -1.225  0.9992
 Step2 - Step4   -0.027729 0.0195 7531  -1.424  0.9948
 Step2 - Step5   -0.027473 0.0195 7531  -1.411  0.9953
 Step2 - Step6   -0.017401 0.0195 7531  -0.894  1.0000
 Step2 - Step7   -0.028228 0.0195 7531  -1.450  0.9937
 Step2 - Step8   -0.035649 0.0195 7531  -1.831  0.9354
 Step2 - Step9   -0.037155 0.0195 7531  -1.908  0.9091
 Step2 - Step10  -0.011075 0.0195 7531  -0.569  1.0000
 Step2 - Step11  -0.000998 0.0195 7531  -0.051  1.0000
 Step2 - Step12   0.004981 0.0195 7531   0.256  1.0000
 Step2 - Step13   0.016200 0.0195 7531   0.832  1.0000
 Step2 - Step14   0.035652 0.0195 7531   1.831  0.9354
 Step2 - Step15   0.053552 0.0195 7531   2.751  0.3454
 Step2 - Step16   0.074042 0.0195 7531   3.803  0.0170
 Step2 - Step17   0.080326 0.0195 7531   4.126  0.0048
 Step2 - Step18   0.092794 0.0195 7531   4.766  0.0003
 Step3 - Step4   -0.003875 0.0195 7531  -0.199  1.0000
 Step3 - Step5   -0.003619 0.0195 7531  -0.186  1.0000
 Step3 - Step6    0.006453 0.0195 7531   0.331  1.0000
 Step3 - Step7   -0.004373 0.0195 7531  -0.225  1.0000
 Step3 - Step8   -0.011795 0.0195 7531  -0.606  1.0000
 Step3 - Step9   -0.013301 0.0195 7531  -0.683  1.0000
 Step3 - Step10   0.012780 0.0195 7531   0.656  1.0000
 Step3 - Step11   0.022856 0.0195 7531   1.174  0.9995
 Step3 - Step12   0.028836 0.0195 7531   1.481  0.9920
 Step3 - Step13   0.040054 0.0195 7531   2.057  0.8406
 Step3 - Step14   0.059506 0.0195 7531   3.056  0.1742
 Step3 - Step15   0.077406 0.0195 7531   3.976  0.0088
 Step3 - Step16   0.097896 0.0195 7531   5.028  0.0001
 Step3 - Step17   0.104180 0.0195 7531   5.351  <.0001
 Step3 - Step18   0.116648 0.0195 7531   5.991  <.0001
 Step4 - Step5    0.000256 0.0195 7531   0.013  1.0000
 Step4 - Step6    0.010328 0.0195 7531   0.530  1.0000
 Step4 - Step7   -0.000499 0.0195 7531  -0.026  1.0000
 Step4 - Step8   -0.007920 0.0195 7531  -0.407  1.0000
 Step4 - Step9   -0.009426 0.0195 7531  -0.484  1.0000
 Step4 - Step10   0.016655 0.0195 7531   0.855  1.0000
 Step4 - Step11   0.026731 0.0195 7531   1.373  0.9966
 Step4 - Step12   0.032710 0.0195 7531   1.680  0.9704
 Step4 - Step13   0.043929 0.0195 7531   2.256  0.7151
 Step4 - Step14   0.063381 0.0195 7531   3.255  0.1020
 Step4 - Step15   0.081281 0.0195 7531   4.175  0.0040
 Step4 - Step16   0.101771 0.0195 7531   5.227  <.0001
 Step4 - Step17   0.108055 0.0195 7531   5.550  <.0001
 Step4 - Step18   0.120523 0.0195 7531   6.190  <.0001
 Step5 - Step6    0.010072 0.0195 7531   0.517  1.0000
 Step5 - Step7   -0.000754 0.0195 7531  -0.039  1.0000
 Step5 - Step8   -0.008176 0.0195 7531  -0.420  1.0000
 Step5 - Step9   -0.009682 0.0195 7531  -0.497  1.0000
 Step5 - Step10   0.016399 0.0195 7531   0.842  1.0000
 Step5 - Step11   0.026475 0.0195 7531   1.360  0.9970
 Step5 - Step12   0.032455 0.0195 7531   1.667  0.9726
 Step5 - Step13   0.043674 0.0195 7531   2.243  0.7243
 Step5 - Step14   0.063125 0.0195 7531   3.242  0.1059
 Step5 - Step15   0.081026 0.0195 7531   4.162  0.0042
 Step5 - Step16   0.101515 0.0195 7531   5.214  <.0001
 Step5 - Step17   0.107799 0.0195 7531   5.537  <.0001
 Step5 - Step18   0.120267 0.0195 7531   6.177  <.0001
 Step6 - Step7   -0.010827 0.0195 7531  -0.556  1.0000
 Step6 - Step8   -0.018248 0.0195 7531  -0.937  1.0000
 Step6 - Step9   -0.019754 0.0195 7531  -1.015  0.9999
 Step6 - Step10   0.006327 0.0195 7531   0.325  1.0000
 Step6 - Step11   0.016403 0.0195 7531   0.843  1.0000
 Step6 - Step12   0.022382 0.0195 7531   1.150  0.9996
 Step6 - Step13   0.033601 0.0195 7531   1.726  0.9619
 Step6 - Step14   0.053053 0.0195 7531   2.725  0.3629
 Step6 - Step15   0.070953 0.0195 7531   3.644  0.0299
 Step6 - Step16   0.091443 0.0195 7531   4.697  0.0004
 Step6 - Step17   0.097727 0.0195 7531   5.020  0.0001
 Step6 - Step18   0.110195 0.0195 7531   5.660  <.0001
 Step7 - Step8   -0.007422 0.0195 7531  -0.381  1.0000
 Step7 - Step9   -0.008928 0.0195 7531  -0.459  1.0000
 Step7 - Step10   0.017153 0.0195 7531   0.881  1.0000
 Step7 - Step11   0.027230 0.0195 7531   1.399  0.9958
 Step7 - Step12   0.033209 0.0195 7531   1.706  0.9659
 Step7 - Step13   0.044428 0.0195 7531   2.282  0.6967
 Step7 - Step14   0.063879 0.0195 7531   3.281  0.0948
 Step7 - Step15   0.081780 0.0195 7531   4.200  0.0036
 Step7 - Step16   0.102269 0.0195 7531   5.253  <.0001
 Step7 - Step17   0.108554 0.0195 7531   5.576  <.0001
 Step7 - Step18   0.121021 0.0195 7531   6.216  <.0001
 Step8 - Step9   -0.001506 0.0195 7531  -0.077  1.0000
 Step8 - Step10   0.024575 0.0195 7531   1.262  0.9988
 Step8 - Step11   0.034652 0.0195 7531   1.780  0.9496
 Step8 - Step12   0.040631 0.0195 7531   2.087  0.8242
 Step8 - Step13   0.051850 0.0195 7531   2.663  0.4068
 Step8 - Step14   0.071301 0.0195 7531   3.662  0.0281
 Step8 - Step15   0.089202 0.0195 7531   4.582  0.0007
 Step8 - Step16   0.109691 0.0195 7531   5.634  <.0001
 Step8 - Step17   0.115975 0.0195 7531   5.957  <.0001
 Step8 - Step18   0.128443 0.0195 7531   6.597  <.0001
 Step9 - Step10   0.026081 0.0195 7531   1.340  0.9975
 Step9 - Step11   0.036157 0.0195 7531   1.857  0.9272
 Step9 - Step12   0.042137 0.0195 7531   2.164  0.7774
 Step9 - Step13   0.053355 0.0195 7531   2.740  0.3523
 Step9 - Step14   0.072807 0.0195 7531   3.740  0.0214
 Step9 - Step15   0.090707 0.0195 7531   4.659  0.0005
 Step9 - Step16   0.111197 0.0195 7531   5.711  <.0001
 Step9 - Step17   0.117481 0.0195 7531   6.034  <.0001
 Step9 - Step18   0.129949 0.0195 7531   6.675  <.0001
 Step10 - Step11  0.010077 0.0195 7531   0.518  1.0000
 Step10 - Step12  0.016056 0.0195 7531   0.825  1.0000
 Step10 - Step13  0.027275 0.0195 7531   1.401  0.9957
 Step10 - Step14  0.046726 0.0195 7531   2.400  0.6080
 Step10 - Step15  0.064627 0.0195 7531   3.319  0.0847
 Step10 - Step16  0.085116 0.0195 7531   4.372  0.0017
 Step10 - Step17  0.091401 0.0195 7531   4.695  0.0004
 Step10 - Step18  0.103868 0.0195 7531   5.335  <.0001
 Step11 - Step12  0.005979 0.0195 7531   0.307  1.0000
 Step11 - Step13  0.017198 0.0195 7531   0.883  1.0000
 Step11 - Step14  0.036650 0.0195 7531   1.882  0.9186
 Step11 - Step15  0.054550 0.0195 7531   2.802  0.3117
 Step11 - Step16  0.075040 0.0195 7531   3.854  0.0140
 Step11 - Step17  0.081324 0.0195 7531   4.177  0.0039
 Step11 - Step18  0.093792 0.0195 7531   4.817  0.0002
 Step12 - Step13  0.011219 0.0195 7531   0.576  1.0000
 Step12 - Step14  0.030670 0.0195 7531   1.575  0.9845
 Step12 - Step15  0.048571 0.0195 7531   2.495  0.5344
 Step12 - Step16  0.069060 0.0195 7531   3.547  0.0415
 Step12 - Step17  0.075345 0.0195 7531   3.870  0.0132
 Step12 - Step18  0.087812 0.0195 7531   4.510  0.0009
 Step13 - Step14  0.019451 0.0195 7531   0.999  0.9999
 Step13 - Step15  0.037352 0.0195 7531   1.918  0.9052
 Step13 - Step16  0.057842 0.0195 7531   2.971  0.2146
 Step13 - Step17  0.064126 0.0195 7531   3.294  0.0914
 Step13 - Step18  0.076594 0.0195 7531   3.934  0.0104
 Step14 - Step15  0.017900 0.0195 7531   0.919  1.0000
 Step14 - Step16  0.038390 0.0195 7531   1.972  0.8828
 Step14 - Step17  0.044674 0.0195 7531   2.295  0.6875
 Step14 - Step18  0.057142 0.0195 7531   2.935  0.2333
 Step15 - Step16  0.020490 0.0195 7531   1.052  0.9999
 Step15 - Step17  0.026774 0.0195 7531   1.375  0.9965
 Step15 - Step18  0.039242 0.0195 7531   2.016  0.8622
 Step16 - Step17  0.006284 0.0195 7531   0.323  1.0000
 Step16 - Step18  0.018752 0.0195 7531   0.963  1.0000
 Step17 - Step18  0.012468 0.0195 7531   0.640  1.0000

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 18 estimates 
--- Axis: Z ---Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
      Chisq Df Pr(>Chisq)    
Step 85.932 17  3.328e-11 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Marginal Means:
 Step emmean    SE   df lower.CL upper.CL
 1      1.24 0.126 18.4    0.979     1.51
 2      1.27 0.126 18.4    1.003     1.53
 3      1.29 0.126 18.4    1.025     1.55
 4      1.29 0.126 18.4    1.027     1.55
 5      1.30 0.126 18.4    1.041     1.57
 6      1.27 0.126 18.4    1.005     1.53
 7      1.28 0.126 18.4    1.016     1.54
 8      1.27 0.126 18.4    1.011     1.54
 9      1.26 0.126 18.4    0.997     1.53
 10     1.27 0.126 18.4    1.004     1.53
 11     1.26 0.126 18.4    0.996     1.52
 12     1.24 0.126 18.4    0.980     1.51
 13     1.23 0.126 18.4    0.970     1.50
 14     1.20 0.126 18.4    0.941     1.47
 15     1.20 0.126 18.4    0.931     1.46
 16     1.17 0.126 18.4    0.904     1.43
 17     1.13 0.126 18.4    0.863     1.39
 18     1.10 0.126 18.4    0.833     1.36

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

Pairwise Comparisons:
 contrast         estimate     SE   df t.ratio p.value
 Step1 - Step2   -0.024279 0.0363 7531  -0.668  1.0000
 Step1 - Step3   -0.045689 0.0363 7531  -1.257  0.9988
 Step1 - Step4   -0.047983 0.0363 7531  -1.320  0.9979
 Step1 - Step5   -0.061631 0.0363 7531  -1.696  0.9677
 Step1 - Step6   -0.025692 0.0363 7531  -0.707  1.0000
 Step1 - Step7   -0.037183 0.0363 7531  -1.023  0.9999
 Step1 - Step8   -0.031626 0.0363 7531  -0.870  1.0000
 Step1 - Step9   -0.018463 0.0363 7531  -0.508  1.0000
 Step1 - Step10  -0.025220 0.0363 7531  -0.694  1.0000
 Step1 - Step11  -0.016567 0.0363 7531  -0.456  1.0000
 Step1 - Step12  -0.000650 0.0363 7531  -0.018  1.0000
 Step1 - Step13   0.009126 0.0363 7531   0.251  1.0000
 Step1 - Step14   0.037930 0.0363 7531   1.044  0.9999
 Step1 - Step15   0.047521 0.0363 7531   1.308  0.9981
 Step1 - Step16   0.074831 0.0363 7531   2.059  0.8397
 Step1 - Step17   0.115652 0.0363 7531   3.182  0.1252
 Step1 - Step18   0.146428 0.0363 7531   4.029  0.0072
 Step2 - Step3   -0.021410 0.0363 7531  -0.589  1.0000
 Step2 - Step4   -0.023704 0.0363 7531  -0.652  1.0000
 Step2 - Step5   -0.037352 0.0363 7531  -1.028  0.9999
 Step2 - Step6   -0.001414 0.0363 7531  -0.039  1.0000
 Step2 - Step7   -0.012904 0.0363 7531  -0.355  1.0000
 Step2 - Step8   -0.007348 0.0363 7531  -0.202  1.0000
 Step2 - Step9    0.005816 0.0363 7531   0.160  1.0000
 Step2 - Step10  -0.000941 0.0363 7531  -0.026  1.0000
 Step2 - Step11   0.007711 0.0363 7531   0.212  1.0000
 Step2 - Step12   0.023629 0.0363 7531   0.650  1.0000
 Step2 - Step13   0.033405 0.0363 7531   0.919  1.0000
 Step2 - Step14   0.062209 0.0363 7531   1.712  0.9647
 Step2 - Step15   0.071800 0.0363 7531   1.976  0.8811
 Step2 - Step16   0.099109 0.0363 7531   2.727  0.3615
 Step2 - Step17   0.139931 0.0363 7531   3.850  0.0142
 Step2 - Step18   0.170707 0.0363 7531   4.697  0.0004
 Step3 - Step4   -0.002294 0.0363 7531  -0.063  1.0000
 Step3 - Step5   -0.015942 0.0363 7531  -0.439  1.0000
 Step3 - Step6    0.019997 0.0363 7531   0.550  1.0000
 Step3 - Step7    0.008506 0.0363 7531   0.234  1.0000
 Step3 - Step8    0.014062 0.0363 7531   0.387  1.0000
 Step3 - Step9    0.027226 0.0363 7531   0.749  1.0000
 Step3 - Step10   0.020469 0.0363 7531   0.563  1.0000
 Step3 - Step11   0.029122 0.0363 7531   0.801  1.0000
 Step3 - Step12   0.045039 0.0363 7531   1.239  0.9990
 Step3 - Step13   0.054815 0.0363 7531   1.508  0.9902
 Step3 - Step14   0.083619 0.0363 7531   2.301  0.6829
 Step3 - Step15   0.093210 0.0363 7531   2.565  0.4804
 Step3 - Step16   0.120519 0.0363 7531   3.316  0.0855
 Step3 - Step17   0.161341 0.0363 7531   4.439  0.0013
 Step3 - Step18   0.192117 0.0363 7531   5.286  <.0001
 Step4 - Step5   -0.013648 0.0363 7531  -0.376  1.0000
 Step4 - Step6    0.022290 0.0363 7531   0.613  1.0000
 Step4 - Step7    0.010800 0.0363 7531   0.297  1.0000
 Step4 - Step8    0.016356 0.0363 7531   0.450  1.0000
 Step4 - Step9    0.029520 0.0363 7531   0.812  1.0000
 Step4 - Step10   0.022763 0.0363 7531   0.626  1.0000
 Step4 - Step11   0.031415 0.0363 7531   0.864  1.0000
 Step4 - Step12   0.047333 0.0363 7531   1.302  0.9982
 Step4 - Step13   0.057109 0.0363 7531   1.571  0.9849
 Step4 - Step14   0.085913 0.0363 7531   2.364  0.6356
 Step4 - Step15   0.095504 0.0363 7531   2.628  0.4327
 Step4 - Step16   0.122813 0.0363 7531   3.379  0.0708
 Step4 - Step17   0.163635 0.0363 7531   4.502  0.0009
 Step4 - Step18   0.194411 0.0363 7531   5.349  <.0001
 Step5 - Step6    0.035939 0.0363 7531   0.989  1.0000
 Step5 - Step7    0.024448 0.0363 7531   0.673  1.0000
 Step5 - Step8    0.030005 0.0363 7531   0.826  1.0000
 Step5 - Step9    0.043168 0.0363 7531   1.188  0.9994
 Step5 - Step10   0.036411 0.0363 7531   1.002  0.9999
 Step5 - Step11   0.045064 0.0363 7531   1.240  0.9990
 Step5 - Step12   0.060981 0.0363 7531   1.678  0.9708
 Step5 - Step13   0.070757 0.0363 7531   1.947  0.8936
 Step5 - Step14   0.099561 0.0363 7531   2.739  0.3530
 Step5 - Step15   0.109152 0.0363 7531   3.003  0.1985
 Step5 - Step16   0.136462 0.0363 7531   3.755  0.0202
 Step5 - Step17   0.177283 0.0363 7531   4.878  0.0002
 Step5 - Step18   0.208060 0.0363 7531   5.725  <.0001
 Step6 - Step7   -0.011491 0.0363 7531  -0.316  1.0000
 Step6 - Step8   -0.005934 0.0363 7531  -0.163  1.0000
 Step6 - Step9    0.007229 0.0363 7531   0.199  1.0000
 Step6 - Step10   0.000472 0.0363 7531   0.013  1.0000
 Step6 - Step11   0.009125 0.0363 7531   0.251  1.0000
 Step6 - Step12   0.025042 0.0363 7531   0.689  1.0000
 Step6 - Step13   0.034818 0.0363 7531   0.958  1.0000
 Step6 - Step14   0.063622 0.0363 7531   1.751  0.9566
 Step6 - Step15   0.073214 0.0363 7531   2.014  0.8627
 Step6 - Step16   0.100523 0.0363 7531   2.766  0.3351
 Step6 - Step17   0.141344 0.0363 7531   3.889  0.0123
 Step6 - Step18   0.172121 0.0363 7531   4.736  0.0003
 Step7 - Step8    0.005557 0.0363 7531   0.153  1.0000
 Step7 - Step9    0.018720 0.0363 7531   0.515  1.0000
 Step7 - Step10   0.011963 0.0363 7531   0.329  1.0000
 Step7 - Step11   0.020616 0.0363 7531   0.567  1.0000
 Step7 - Step12   0.036533 0.0363 7531   1.005  0.9999
 Step7 - Step13   0.046309 0.0363 7531   1.274  0.9986
 Step7 - Step14   0.075113 0.0363 7531   2.067  0.8354
 Step7 - Step15   0.084704 0.0363 7531   2.331  0.6608
 Step7 - Step16   0.112014 0.0363 7531   3.082  0.1631
 Step7 - Step17   0.152835 0.0363 7531   4.205  0.0035
 Step7 - Step18   0.183611 0.0363 7531   5.052  0.0001
 Step8 - Step9    0.013163 0.0363 7531   0.362  1.0000
 Step8 - Step10   0.006406 0.0363 7531   0.176  1.0000
 Step8 - Step11   0.015059 0.0363 7531   0.414  1.0000
 Step8 - Step12   0.030976 0.0363 7531   0.852  1.0000
 Step8 - Step13   0.040752 0.0363 7531   1.121  0.9997
 Step8 - Step14   0.069556 0.0363 7531   1.914  0.9070
 Step8 - Step15   0.079148 0.0363 7531   2.178  0.7686
 Step8 - Step16   0.106457 0.0363 7531   2.929  0.2364
 Step8 - Step17   0.147278 0.0363 7531   4.052  0.0065
 Step8 - Step18   0.178055 0.0363 7531   4.899  0.0001
 Step9 - Step10  -0.006757 0.0363 7531  -0.186  1.0000
 Step9 - Step11   0.001896 0.0363 7531   0.052  1.0000
 Step9 - Step12   0.017813 0.0363 7531   0.490  1.0000
 Step9 - Step13   0.027589 0.0363 7531   0.759  1.0000
 Step9 - Step14   0.056393 0.0363 7531   1.552  0.9867
 Step9 - Step15   0.065985 0.0363 7531   1.816  0.9400
 Step9 - Step16   0.093294 0.0363 7531   2.567  0.4786
 Step9 - Step17   0.134115 0.0363 7531   3.690  0.0255
 Step9 - Step18   0.164892 0.0363 7531   4.537  0.0008
 Step10 - Step11  0.008653 0.0363 7531   0.238  1.0000
 Step10 - Step12  0.024570 0.0363 7531   0.676  1.0000
 Step10 - Step13  0.034346 0.0363 7531   0.945  1.0000
 Step10 - Step14  0.063150 0.0363 7531   1.738  0.9594
 Step10 - Step15  0.072741 0.0363 7531   2.002  0.8690
 Step10 - Step16  0.100051 0.0363 7531   2.753  0.3438
 Step10 - Step17  0.140872 0.0363 7531   3.876  0.0129
 Step10 - Step18  0.171648 0.0363 7531   4.723  0.0003
 Step11 - Step12  0.015917 0.0363 7531   0.438  1.0000
 Step11 - Step13  0.025693 0.0363 7531   0.707  1.0000
 Step11 - Step14  0.054497 0.0363 7531   1.500  0.9908
 Step11 - Step15  0.064089 0.0363 7531   1.763  0.9536
 Step11 - Step16  0.091398 0.0363 7531   2.515  0.5188
 Step11 - Step17  0.132219 0.0363 7531   3.638  0.0305
 Step11 - Step18  0.162996 0.0363 7531   4.485  0.0010
 Step12 - Step13  0.009776 0.0363 7531   0.269  1.0000
 Step12 - Step14  0.038580 0.0363 7531   1.062  0.9999
 Step12 - Step15  0.048171 0.0363 7531   1.325  0.9978
 Step12 - Step16  0.075481 0.0363 7531   2.077  0.8298
 Step12 - Step17  0.116302 0.0363 7531   3.200  0.1192
 Step12 - Step18  0.147078 0.0363 7531   4.047  0.0067
 Step13 - Step14  0.028804 0.0363 7531   0.793  1.0000
 Step13 - Step15  0.038395 0.0363 7531   1.056  0.9999
 Step13 - Step16  0.065705 0.0363 7531   1.808  0.9421
 Step13 - Step17  0.106526 0.0363 7531   2.931  0.2354
 Step13 - Step18  0.137302 0.0363 7531   3.778  0.0186
 Step14 - Step15  0.009591 0.0363 7531   0.264  1.0000
 Step14 - Step16  0.036901 0.0363 7531   1.015  0.9999
 Step14 - Step17  0.077722 0.0363 7531   2.139  0.7935
 Step14 - Step18  0.108498 0.0363 7531   2.985  0.2073
 Step15 - Step16  0.027309 0.0363 7531   0.751  1.0000
 Step15 - Step17  0.068131 0.0363 7531   1.875  0.9213
 Step15 - Step18  0.098907 0.0363 7531   2.721  0.3653
 Step16 - Step17  0.040821 0.0363 7531   1.123  0.9997
 Step16 - Step18  0.071598 0.0363 7531   1.970  0.8836
 Step17 - Step18  0.030776 0.0363 7531   0.847  1.0000

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 18 estimates 
plot_stepwise_rms_per_block <- function(step_summary_block, block_number, step_range) {
  df <- step_summary_block %>%
    filter(Block == as.character(block_number),
           Step %in% as.character(step_range)) %>%
    group_by(Step, Axis) %>%
    summarise(
      mean_rms = mean(RMS, na.rm = TRUE),
      sd_rms = sd(RMS, na.rm = TRUE),
      .groups = "drop"
    )

  step_levels <- as.character(step_range)
  step_ticks <- step_levels[as.numeric(step_levels) %% 2 == 1 | step_levels == "1"]

  ggplot(df, aes(x = Step, y = mean_rms)) +
    geom_point(aes(color = Axis), size = 2) +
    geom_errorbar(aes(ymin = mean_rms - sd_rms, ymax = mean_rms + sd_rms, color = Axis), width = 0.3) +
    facet_wrap(~ Axis, ncol = 3, scales = "free_y") +
    scale_x_discrete(breaks = step_ticks) +
    ylim(0, 3.25) +
    labs(
      title = paste("Step-wise RMS Acceleration – Block", block_number),
      x = "Step",
      y = "Mean RMS Acceleration (m/s²)"
    ) +
    theme_minimal() +
    theme(
      panel.grid.major = element_blank(),
      panel.grid.minor = element_blank(),
      text = element_text(size = 12),
      plot.title = element_text(face = "bold"),
      legend.position = "none"
    )
}
# Block 1: 6 steps
plot_block1 <- plot_stepwise_rms_per_block(step_summary_6, block_number = 1, step_range = 1:6)
print(plot_block1)

# Block 2: 12 steps
plot_block2 <- plot_stepwise_rms_per_block(step_summary_12, block_number = 2, step_range = 1:12)
print(plot_block2)

# Block 3: 18 steps
plot_block3 <- plot_stepwise_rms_per_block(step_summary_18, block_number = 3, step_range = 1:18)
print(plot_block3)

#3.2 concatenation analysis rms test blocks 4,5

run_mixed_length_lmms <- function(step_summary_block45, target_block, seq_length) {
  axes <- c("X", "Y", "Z")

  cat(glue::glue("\n\n=========== Block {target_block} | {seq_length}-Step Trials ===========\n"))

  for (ax in axes) {
    cat(glue::glue("\n--- Axis: {ax} ---\n"))

    df <- step_summary_block45 %>%
      filter(Block == as.character(target_block), 
             Axis == ax, 
             step_count == seq_length,
             Step %in% as.character(1:seq_length)) %>%
      mutate(Step = factor(Step))

    if (nrow(df) == 0) {
      cat("No valid data for Block", target_block, "Axis", ax, "Length", seq_length, "\n")
      next
    }

    model <- lmer(RMS ~ Step + (1 | subject) + (1 | trial_id), data = df)
    anova_res <- car::Anova(model, type = 2, test.statistic = "Chisq")
    emms <- emmeans(model, ~ Step)
    pairwise <- contrast(emms, method = "pairwise", adjust = "tukey")

    print(anova_res)
    cat("\nEstimated Marginal Means:\n")
    print(summary(emms))
    cat("\nPairwise Comparisons:\n")
    print(pairwise)
  }
}
assign_steps_by_trial <- function(df) {
  df %>%
    group_by(subject, Block, trial) %>%
    mutate(
      step_count = n(),  # Number of rows (data points) for this trial
      Step = cut_number(row_number(), n = unique(step_count), labels = FALSE)
    ) %>%
    ungroup()
}



# Parameters
step_markers <- c(14, 15, 16, 17)
buffer <- 3

# Extract and window data for Block 4 & 5 using correct step assignment
step_data_45 <- tagged_data2 %>%
  filter(phase == "Execution", Marker.Text %in% step_markers) %>%
  assign_steps_by_trial() %>%                             # ✅ Use correct assignment here
  filter(Block %in% c(4, 5)) %>%
  mutate(Step = as.numeric(Step)) %>%
  group_by(subject, Block, trial) %>%
  mutate(step_count = max(Step, na.rm = TRUE)) %>%
  ungroup() %>%
  filter(Step <= step_count) %>%
  arrange(subject, Block, trial, ms) %>%
  group_by(subject, Block, trial) %>%
  mutate(row_id = row_number()) %>%
  ungroup()

# Create index of step events
step_indices_45 <- step_data_45 %>%
  select(subject, Block, trial, row_id, Step, step_count)

# Apply buffer and extract windowed data
window_data_45 <- map_dfr(1:nrow(step_indices_45), function(i) {
  step <- step_indices_45[i, ]
  rows <- (step$row_id - buffer):(step$row_id + buffer)

  step_data_45 %>%
    filter(subject == step$subject,
           Block == step$Block,
           trial == step$trial,
           row_id %in% rows) %>%
    mutate(Step = step$Step, step_count = step$step_count)
})

# Compute stepwise RMS summary
step_summary_block45 <- window_data_45 %>%
  group_by(subject, Block, trial, Step, step_count) %>%
  summarise(
    rms_x = sqrt(mean(CoM.acc.x^2, na.rm = TRUE)),
    rms_y = sqrt(mean(CoM.acc.y^2, na.rm = TRUE)),
    rms_z = sqrt(mean(CoM.acc.z^2, na.rm = TRUE)),
    .groups = "drop"
  ) %>%
  pivot_longer(cols = starts_with("rms_"), names_to = "Axis", values_to = "RMS") %>%
  mutate(
    Axis = toupper(gsub("rms_", "", Axis)),
    Step = factor(Step),
    Block = factor(Block),
    subject = factor(subject),
    trial_id = interaction(subject, trial, drop = TRUE)
  )
run_mixed_length_lmms <- function(step_summary_block45, target_block, seq_length) {
  axes <- c("X", "Y", "Z")

  cat(glue::glue("\n\n=========== Block {target_block} | {seq_length}-Step Trials ===========\n"))

  for (ax in axes) {
    cat(glue::glue("\n--- Axis: {ax} ---\n"))

    df <- step_summary_block45 %>%
      filter(Block == as.character(target_block), 
             Axis == ax, 
             step_count == seq_length,
             Step %in% as.character(1:seq_length)) %>%
      mutate(Step = factor(Step))

    if (nrow(df) == 0) {
      cat("No valid data for Block", target_block, "Axis", ax, "Length", seq_length, "\n")
      next
    }

    model <- lmer(RMS ~ Step + (1 | subject) + (1 | trial_id), data = df)
    anova_res <- car::Anova(model, type = 2, test.statistic = "Chisq")
    emms <- emmeans(model, ~ Step)
    pairwise <- contrast(emms, method = "pairwise", adjust = "tukey")

    print(anova_res)
    cat("\nEstimated Marginal Means:\n")
    print(summary(emms))
    cat("\nPairwise Comparisons:\n")
    print(pairwise)
  }
}
# Block 4
run_mixed_length_lmms(step_summary_block45, target_block = 4, seq_length = 6)

=========== Block 4 | 6-Step Trials ===========--- Axis: X ---Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
      Chisq Df Pr(>Chisq)  
Step 11.495  5    0.04241 *
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Marginal Means:
 Step emmean     SE   df lower.CL upper.CL
 1     0.688 0.0821 17.3    0.515    0.861
 2     0.680 0.0821 17.3    0.507    0.853
 3     0.675 0.0821 17.3    0.502    0.848
 4     0.675 0.0821 17.3    0.502    0.848
 5     0.683 0.0821 17.3    0.510    0.856
 6     0.652 0.0821 17.3    0.479    0.825

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

Pairwise Comparisons:
 contrast      estimate     SE   df t.ratio p.value
 Step1 - Step2  0.00820 0.0117 1275   0.698  0.9822
 Step1 - Step3  0.01280 0.0117 1275   1.090  0.8856
 Step1 - Step4  0.01280 0.0117 1275   1.090  0.8856
 Step1 - Step5  0.00532 0.0117 1275   0.453  0.9976
 Step1 - Step6  0.03630 0.0117 1275   3.091  0.0249
 Step2 - Step3  0.00460 0.0117 1275   0.392  0.9988
 Step2 - Step4  0.00460 0.0117 1275   0.392  0.9988
 Step2 - Step5 -0.00288 0.0117 1275  -0.245  0.9999
 Step2 - Step6  0.02810 0.0117 1275   2.393  0.1595
 Step3 - Step4  0.00000 0.0117 1275   0.000  1.0000
 Step3 - Step5 -0.00748 0.0117 1275  -0.637  0.9882
 Step3 - Step6  0.02350 0.0117 1275   2.001  0.3423
 Step4 - Step5 -0.00748 0.0117 1275  -0.637  0.9882
 Step4 - Step6  0.02350 0.0117 1275   2.001  0.3423
 Step5 - Step6  0.03098 0.0117 1275   2.638  0.0891

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 6 estimates 
--- Axis: Y ---Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
      Chisq Df Pr(>Chisq)   
Step 17.643  5   0.003429 **
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Marginal Means:
 Step emmean     SE   df lower.CL upper.CL
 1     0.748 0.0834 17.3    0.572    0.924
 2     0.738 0.0834 17.3    0.563    0.914
 3     0.748 0.0834 17.3    0.572    0.924
 4     0.748 0.0834 17.3    0.572    0.924
 5     0.755 0.0834 17.3    0.579    0.930
 6     0.708 0.0834 17.3    0.532    0.883

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

Pairwise Comparisons:
 contrast       estimate     SE   df t.ratio p.value
 Step1 - Step2  9.48e-03 0.0128 1275   0.741  0.9767
 Step1 - Step3  8.26e-05 0.0128 1275   0.006  1.0000
 Step1 - Step4  8.26e-05 0.0128 1275   0.006  1.0000
 Step1 - Step5 -6.76e-03 0.0128 1275  -0.529  0.9950
 Step1 - Step6  4.02e-02 0.0128 1275   3.144  0.0211
 Step2 - Step3 -9.39e-03 0.0128 1275  -0.735  0.9776
 Step2 - Step4 -9.39e-03 0.0128 1275  -0.735  0.9776
 Step2 - Step5 -1.62e-02 0.0128 1275  -1.270  0.8014
 Step2 - Step6  3.07e-02 0.0128 1275   2.403  0.1560
 Step3 - Step4  0.00e+00 0.0128 1275   0.000  1.0000
 Step3 - Step5 -6.84e-03 0.0128 1275  -0.535  0.9947
 Step3 - Step6  4.01e-02 0.0128 1275   3.138  0.0215
 Step4 - Step5 -6.84e-03 0.0128 1275  -0.535  0.9947
 Step4 - Step6  4.01e-02 0.0128 1275   3.138  0.0215
 Step5 - Step6  4.69e-02 0.0128 1275   3.673  0.0034

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 6 estimates 
--- Axis: Z ---Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
      Chisq Df Pr(>Chisq)    
Step 45.445  5  1.178e-08 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Marginal Means:
 Step emmean    SE   df lower.CL upper.CL
 1      1.60 0.145 17.4     1.29     1.90
 2      1.57 0.145 17.4     1.26     1.87
 3      1.53 0.145 17.4     1.23     1.84
 4      1.53 0.145 17.4     1.23     1.84
 5      1.52 0.145 17.4     1.21     1.82
 6      1.45 0.145 17.4     1.15     1.76

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

Pairwise Comparisons:
 contrast      estimate     SE   df t.ratio p.value
 Step1 - Step2   0.0309 0.0227 1275   1.362  0.7497
 Step1 - Step3   0.0616 0.0227 1275   2.717  0.0726
 Step1 - Step4   0.0616 0.0227 1275   2.717  0.0726
 Step1 - Step5   0.0789 0.0227 1275   3.482  0.0068
 Step1 - Step6   0.1430 0.0227 1275   6.313  <.0001
 Step2 - Step3   0.0307 0.0227 1275   1.355  0.7539
 Step2 - Step4   0.0307 0.0227 1275   1.355  0.7539
 Step2 - Step5   0.0480 0.0227 1275   2.120  0.2774
 Step2 - Step6   0.1122 0.0227 1275   4.951  <.0001
 Step3 - Step4   0.0000 0.0227 1275   0.000  1.0000
 Step3 - Step5   0.0173 0.0227 1275   0.765  0.9732
 Step3 - Step6   0.0815 0.0227 1275   3.596  0.0045
 Step4 - Step5   0.0173 0.0227 1275   0.765  0.9732
 Step4 - Step6   0.0815 0.0227 1275   3.596  0.0045
 Step5 - Step6   0.0641 0.0227 1275   2.831  0.0533

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 6 estimates 
run_mixed_length_lmms(step_summary_block45, target_block = 4, seq_length = 12)

=========== Block 4 | 12-Step Trials ===========--- Axis: X ---Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
      Chisq Df Pr(>Chisq)    
Step 82.031 11  5.965e-13 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Marginal Means:
 Step emmean     SE   df lower.CL upper.CL
 1     0.660 0.0741 18.5    0.505    0.816
 2     0.680 0.0741 18.5    0.525    0.836
 3     0.692 0.0741 18.5    0.537    0.847
 4     0.695 0.0741 18.5    0.540    0.851
 5     0.713 0.0741 18.5    0.557    0.868
 6     0.698 0.0741 18.5    0.542    0.853
 7     0.691 0.0741 18.5    0.535    0.846
 8     0.682 0.0741 18.5    0.527    0.838
 9     0.656 0.0741 18.5    0.501    0.811
 10    0.638 0.0741 18.5    0.482    0.793
 11    0.620 0.0741 18.5    0.464    0.775
 12    0.562 0.0741 18.5    0.406    0.717

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

Pairwise Comparisons:
 contrast        estimate    SE   df t.ratio p.value
 Step1 - Step2   -0.01971 0.022 2871  -0.897  0.9992
 Step1 - Step3   -0.03163 0.022 2871  -1.439  0.9558
 Step1 - Step4   -0.03484 0.022 2871  -1.585  0.9146
 Step1 - Step5   -0.05257 0.022 2871  -2.392  0.4117
 Step1 - Step6   -0.03745 0.022 2871  -1.704  0.8668
 Step1 - Step7   -0.03037 0.022 2871  -1.382  0.9670
 Step1 - Step8   -0.02208 0.022 2871  -1.005  0.9976
 Step1 - Step9    0.00437 0.022 2871   0.199  1.0000
 Step1 - Step10   0.02281 0.022 2871   1.038  0.9968
 Step1 - Step11   0.04085 0.022 2871   1.858  0.7849
 Step1 - Step12   0.09872 0.022 2871   4.492  0.0005
 Step2 - Step3   -0.01191 0.022 2871  -0.542  1.0000
 Step2 - Step4   -0.01513 0.022 2871  -0.688  0.9999
 Step2 - Step5   -0.03286 0.022 2871  -1.495  0.9422
 Step2 - Step6   -0.01774 0.022 2871  -0.807  0.9997
 Step2 - Step7   -0.01066 0.022 2871  -0.485  1.0000
 Step2 - Step8   -0.00237 0.022 2871  -0.108  1.0000
 Step2 - Step9    0.02408 0.022 2871   1.096  0.9949
 Step2 - Step10   0.04252 0.022 2871   1.935  0.7374
 Step2 - Step11   0.06056 0.022 2871   2.755  0.2001
 Step2 - Step12   0.11843 0.022 2871   5.389  <.0001
 Step3 - Step4   -0.00322 0.022 2871  -0.146  1.0000
 Step3 - Step5   -0.02094 0.022 2871  -0.953  0.9985
 Step3 - Step6   -0.00582 0.022 2871  -0.265  1.0000
 Step3 - Step7    0.00126 0.022 2871   0.057  1.0000
 Step3 - Step8    0.00955 0.022 2871   0.434  1.0000
 Step3 - Step9    0.03600 0.022 2871   1.638  0.8951
 Step3 - Step10   0.05443 0.022 2871   2.477  0.3551
 Step3 - Step11   0.07247 0.022 2871   3.297  0.0460
 Step3 - Step12   0.13035 0.022 2871   5.931  <.0001
 Step4 - Step5   -0.01773 0.022 2871  -0.807  0.9997
 Step4 - Step6   -0.00261 0.022 2871  -0.119  1.0000
 Step4 - Step7    0.00447 0.022 2871   0.203  1.0000
 Step4 - Step8    0.01276 0.022 2871   0.581  1.0000
 Step4 - Step9    0.03921 0.022 2871   1.784  0.8269
 Step4 - Step10   0.05765 0.022 2871   2.623  0.2671
 Step4 - Step11   0.07569 0.022 2871   3.444  0.0288
 Step4 - Step12   0.13356 0.022 2871   6.077  <.0001
 Step5 - Step6    0.01512 0.022 2871   0.688  0.9999
 Step5 - Step7    0.02220 0.022 2871   1.010  0.9975
 Step5 - Step8    0.03049 0.022 2871   1.387  0.9661
 Step5 - Step9    0.05694 0.022 2871   2.591  0.2852
 Step5 - Step10   0.07538 0.022 2871   3.430  0.0302
 Step5 - Step11   0.09342 0.022 2871   4.250  0.0013
 Step5 - Step12   0.15129 0.022 2871   6.884  <.0001
 Step6 - Step7    0.00708 0.022 2871   0.322  1.0000
 Step6 - Step8    0.01537 0.022 2871   0.699  0.9999
 Step6 - Step9    0.04182 0.022 2871   1.903  0.7578
 Step6 - Step10   0.06025 0.022 2871   2.742  0.2065
 Step6 - Step11   0.07829 0.022 2871   3.562  0.0193
 Step6 - Step12   0.13617 0.022 2871   6.196  <.0001
 Step7 - Step8    0.00829 0.022 2871   0.377  1.0000
 Step7 - Step9    0.03474 0.022 2871   1.581  0.9162
 Step7 - Step10   0.05318 0.022 2871   2.420  0.3929
 Step7 - Step11   0.07122 0.022 2871   3.240  0.0549
 Step7 - Step12   0.12909 0.022 2871   5.873  <.0001
 Step8 - Step9    0.02645 0.022 2871   1.203  0.9888
 Step8 - Step10   0.04489 0.022 2871   2.042  0.6642
 Step8 - Step11   0.06293 0.022 2871   2.863  0.1549
 Step8 - Step12   0.12080 0.022 2871   5.496  <.0001
 Step9 - Step10   0.01844 0.022 2871   0.839  0.9996
 Step9 - Step11   0.03648 0.022 2871   1.660  0.8862
 Step9 - Step12   0.09435 0.022 2871   4.293  0.0011
 Step10 - Step11  0.01804 0.022 2871   0.821  0.9996
 Step10 - Step12  0.07591 0.022 2871   3.454  0.0278
 Step11 - Step12  0.05787 0.022 2871   2.633  0.2615

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 12 estimates 
--- Axis: Y ---Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
      Chisq Df Pr(>Chisq)    
Step 258.72 11  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Marginal Means:
 Step emmean     SE   df lower.CL upper.CL
 1     0.817 0.0859 18.7    0.637    0.997
 2     0.813 0.0859 18.7    0.633    0.994
 3     0.821 0.0859 18.7    0.641    1.001
 4     0.802 0.0859 18.7    0.622    0.982
 5     0.806 0.0859 18.7    0.626    0.986
 6     0.741 0.0859 18.7    0.561    0.921
 7     0.719 0.0859 18.7    0.539    0.899
 8     0.687 0.0859 18.7    0.506    0.867
 9     0.654 0.0859 18.7    0.474    0.834
 10    0.615 0.0859 18.7    0.435    0.795
 11    0.601 0.0859 18.7    0.421    0.781
 12    0.563 0.0859 18.7    0.383    0.743

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

Pairwise Comparisons:
 contrast        estimate     SE   df t.ratio p.value
 Step1 - Step2    0.00392 0.0275 2871   0.142  1.0000
 Step1 - Step3   -0.00391 0.0275 2871  -0.142  1.0000
 Step1 - Step4    0.01565 0.0275 2871   0.568  1.0000
 Step1 - Step5    0.01185 0.0275 2871   0.430  1.0000
 Step1 - Step6    0.07634 0.0275 2871   2.772  0.1924
 Step1 - Step7    0.09804 0.0275 2871   3.561  0.0194
 Step1 - Step8    0.13088 0.0275 2871   4.753  0.0001
 Step1 - Step9    0.16336 0.0275 2871   5.933  <.0001
 Step1 - Step10   0.20241 0.0275 2871   7.351  <.0001
 Step1 - Step11   0.21613 0.0275 2871   7.849  <.0001
 Step1 - Step12   0.25410 0.0275 2871   9.228  <.0001
 Step2 - Step3   -0.00783 0.0275 2871  -0.284  1.0000
 Step2 - Step4    0.01173 0.0275 2871   0.426  1.0000
 Step2 - Step5    0.00793 0.0275 2871   0.288  1.0000
 Step2 - Step6    0.07241 0.0275 2871   2.630  0.2633
 Step2 - Step7    0.09412 0.0275 2871   3.418  0.0313
 Step2 - Step8    0.12696 0.0275 2871   4.611  0.0003
 Step2 - Step9    0.15944 0.0275 2871   5.790  <.0001
 Step2 - Step10   0.19849 0.0275 2871   7.208  <.0001
 Step2 - Step11   0.21221 0.0275 2871   7.707  <.0001
 Step2 - Step12   0.25017 0.0275 2871   9.085  <.0001
 Step3 - Step4    0.01956 0.0275 2871   0.710  0.9999
 Step3 - Step5    0.01576 0.0275 2871   0.572  1.0000
 Step3 - Step6    0.08025 0.0275 2871   2.914  0.1363
 Step3 - Step7    0.10195 0.0275 2871   3.703  0.0117
 Step3 - Step8    0.13479 0.0275 2871   4.895  0.0001
 Step3 - Step9    0.16727 0.0275 2871   6.075  <.0001
 Step3 - Step10   0.20632 0.0275 2871   7.493  <.0001
 Step3 - Step11   0.22004 0.0275 2871   7.991  <.0001
 Step3 - Step12   0.25800 0.0275 2871   9.370  <.0001
 Step4 - Step5   -0.00380 0.0275 2871  -0.138  1.0000
 Step4 - Step6    0.06069 0.0275 2871   2.204  0.5468
 Step4 - Step7    0.08240 0.0275 2871   2.992  0.1112
 Step4 - Step8    0.11524 0.0275 2871   4.185  0.0017
 Step4 - Step9    0.14771 0.0275 2871   5.364  <.0001
 Step4 - Step10   0.18677 0.0275 2871   6.783  <.0001
 Step4 - Step11   0.20049 0.0275 2871   7.281  <.0001
 Step4 - Step12   0.23845 0.0275 2871   8.660  <.0001
 Step5 - Step6    0.06448 0.0275 2871   2.342  0.4468
 Step5 - Step7    0.08619 0.0275 2871   3.130  0.0759
 Step5 - Step8    0.11903 0.0275 2871   4.323  0.0010
 Step5 - Step9    0.15151 0.0275 2871   5.502  <.0001
 Step5 - Step10   0.19056 0.0275 2871   6.920  <.0001
 Step5 - Step11   0.20428 0.0275 2871   7.419  <.0001
 Step5 - Step12   0.24224 0.0275 2871   8.797  <.0001
 Step6 - Step7    0.02171 0.0275 2871   0.788  0.9998
 Step6 - Step8    0.05455 0.0275 2871   1.981  0.7066
 Step6 - Step9    0.08702 0.0275 2871   3.160  0.0696
 Step6 - Step10   0.12608 0.0275 2871   4.579  0.0003
 Step6 - Step11   0.13980 0.0275 2871   5.077  <.0001
 Step6 - Step12   0.17776 0.0275 2871   6.456  <.0001
 Step7 - Step8    0.03284 0.0275 2871   1.193  0.9896
 Step7 - Step9    0.06532 0.0275 2871   2.372  0.4255
 Step7 - Step10   0.10437 0.0275 2871   3.790  0.0085
 Step7 - Step11   0.11809 0.0275 2871   4.289  0.0011
 Step7 - Step12   0.15605 0.0275 2871   5.667  <.0001
 Step8 - Step9    0.03248 0.0275 2871   1.179  0.9905
 Step8 - Step10   0.07153 0.0275 2871   2.598  0.2813
 Step8 - Step11   0.08525 0.0275 2871   3.096  0.0837
 Step8 - Step12   0.12321 0.0275 2871   4.475  0.0005
 Step9 - Step10   0.03905 0.0275 2871   1.418  0.9602
 Step9 - Step11   0.05277 0.0275 2871   1.917  0.7490
 Step9 - Step12   0.09074 0.0275 2871   3.295  0.0464
 Step10 - Step11  0.01372 0.0275 2871   0.498  1.0000
 Step10 - Step12  0.05168 0.0275 2871   1.877  0.7738
 Step11 - Step12  0.03796 0.0275 2871   1.379  0.9676

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 12 estimates 
--- Axis: Z ---Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
      Chisq Df Pr(>Chisq)    
Step 259.74 11  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Marginal Means:
 Step emmean   SE   df lower.CL upper.CL
 1      1.65 0.16 18.2    1.316     1.99
 2      1.66 0.16 18.2    1.320     1.99
 3      1.64 0.16 18.2    1.303     1.97
 4      1.62 0.16 18.2    1.284     1.95
 5      1.61 0.16 18.2    1.274     1.94
 6      1.53 0.16 18.2    1.193     1.86
 7      1.49 0.16 18.2    1.159     1.83
 8      1.45 0.16 18.2    1.115     1.79
 9      1.38 0.16 18.2    1.042     1.71
 10     1.34 0.16 18.2    1.005     1.68
 11     1.31 0.16 18.2    0.978     1.65
 12     1.23 0.16 18.2    0.898     1.57

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

Pairwise Comparisons:
 contrast        estimate     SE   df t.ratio p.value
 Step1 - Step2   -0.00448 0.0431 2871  -0.104  1.0000
 Step1 - Step3    0.01291 0.0431 2871   0.300  1.0000
 Step1 - Step4    0.03168 0.0431 2871   0.735  0.9999
 Step1 - Step5    0.04161 0.0431 2871   0.966  0.9983
 Step1 - Step6    0.12306 0.0431 2871   2.856  0.1577
 Step1 - Step7    0.15719 0.0431 2871   3.648  0.0142
 Step1 - Step8    0.20062 0.0431 2871   4.656  0.0002
 Step1 - Step9    0.27331 0.0431 2871   6.343  <.0001
 Step1 - Step10   0.31031 0.0431 2871   7.201  <.0001
 Step1 - Step11   0.33804 0.0431 2871   7.845  <.0001
 Step1 - Step12   0.41737 0.0431 2871   9.686  <.0001
 Step2 - Step3    0.01739 0.0431 2871   0.404  1.0000
 Step2 - Step4    0.03616 0.0431 2871   0.839  0.9996
 Step2 - Step5    0.04610 0.0431 2871   1.070  0.9959
 Step2 - Step6    0.12754 0.0431 2871   2.960  0.1211
 Step2 - Step7    0.16167 0.0431 2871   3.752  0.0098
 Step2 - Step8    0.20510 0.0431 2871   4.760  0.0001
 Step2 - Step9    0.27779 0.0431 2871   6.447  <.0001
 Step2 - Step10   0.31479 0.0431 2871   7.305  <.0001
 Step2 - Step11   0.34252 0.0431 2871   7.949  <.0001
 Step2 - Step12   0.42185 0.0431 2871   9.790  <.0001
 Step3 - Step4    0.01877 0.0431 2871   0.436  1.0000
 Step3 - Step5    0.02871 0.0431 2871   0.666  1.0000
 Step3 - Step6    0.11015 0.0431 2871   2.556  0.3055
 Step3 - Step7    0.14428 0.0431 2871   3.348  0.0392
 Step3 - Step8    0.18771 0.0431 2871   4.356  0.0008
 Step3 - Step9    0.26041 0.0431 2871   6.043  <.0001
 Step3 - Step10   0.29740 0.0431 2871   6.902  <.0001
 Step3 - Step11   0.32513 0.0431 2871   7.545  <.0001
 Step3 - Step12   0.40447 0.0431 2871   9.386  <.0001
 Step4 - Step5    0.00993 0.0431 2871   0.231  1.0000
 Step4 - Step6    0.09138 0.0431 2871   2.121  0.6079
 Step4 - Step7    0.12551 0.0431 2871   2.913  0.1368
 Step4 - Step8    0.16894 0.0431 2871   3.921  0.0051
 Step4 - Step9    0.24163 0.0431 2871   5.608  <.0001
 Step4 - Step10   0.27863 0.0431 2871   6.466  <.0001
 Step4 - Step11   0.30636 0.0431 2871   7.110  <.0001
 Step4 - Step12   0.38569 0.0431 2871   8.951  <.0001
 Step5 - Step6    0.08145 0.0431 2871   1.890  0.7656
 Step5 - Step7    0.11558 0.0431 2871   2.682  0.2356
 Step5 - Step8    0.15900 0.0431 2871   3.690  0.0122
 Step5 - Step9    0.23170 0.0431 2871   5.377  <.0001
 Step5 - Step10   0.26869 0.0431 2871   6.236  <.0001
 Step5 - Step11   0.29642 0.0431 2871   6.879  <.0001
 Step5 - Step12   0.37576 0.0431 2871   8.720  <.0001
 Step6 - Step7    0.03413 0.0431 2871   0.792  0.9997
 Step6 - Step8    0.07756 0.0431 2871   1.800  0.8184
 Step6 - Step9    0.15025 0.0431 2871   3.487  0.0249
 Step6 - Step10   0.18725 0.0431 2871   4.346  0.0009
 Step6 - Step11   0.21498 0.0431 2871   4.989  <.0001
 Step6 - Step12   0.29431 0.0431 2871   6.830  <.0001
 Step7 - Step8    0.04343 0.0431 2871   1.008  0.9976
 Step7 - Step9    0.11612 0.0431 2871   2.695  0.2291
 Step7 - Step10   0.15312 0.0431 2871   3.553  0.0199
 Step7 - Step11   0.18085 0.0431 2871   4.197  0.0017
 Step7 - Step12   0.26018 0.0431 2871   6.038  <.0001
 Step8 - Step9    0.07270 0.0431 2871   1.687  0.8744
 Step8 - Step10   0.10969 0.0431 2871   2.546  0.3119
 Step8 - Step11   0.13742 0.0431 2871   3.189  0.0639
 Step8 - Step12   0.21676 0.0431 2871   5.030  <.0001
 Step9 - Step10   0.03700 0.0431 2871   0.859  0.9994
 Step9 - Step11   0.06473 0.0431 2871   1.502  0.9403
 Step9 - Step12   0.14406 0.0431 2871   3.343  0.0399
 Step10 - Step11  0.02773 0.0431 2871   0.644  1.0000
 Step10 - Step12  0.10706 0.0431 2871   2.485  0.3499
 Step11 - Step12  0.07933 0.0431 2871   1.841  0.7951

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 12 estimates 
run_mixed_length_lmms(step_summary_block45, target_block = 4, seq_length = 18)

=========== Block 4 | 18-Step Trials ===========--- Axis: X ---Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
      Chisq Df Pr(>Chisq)    
Step 168.51 17  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Marginal Means:
 Step emmean     SE df lower.CL upper.CL
 1     0.712 0.0774 19    0.550    0.874
 2     0.725 0.0774 19    0.563    0.887
 3     0.739 0.0774 19    0.577    0.902
 4     0.731 0.0774 19    0.569    0.893
 5     0.736 0.0774 19    0.573    0.898
 6     0.719 0.0774 19    0.556    0.881
 7     0.700 0.0774 19    0.538    0.862
 8     0.694 0.0774 19    0.532    0.856
 9     0.690 0.0774 19    0.528    0.852
 10    0.675 0.0774 19    0.513    0.837
 11    0.674 0.0774 19    0.512    0.836
 12    0.672 0.0774 19    0.510    0.834
 13    0.649 0.0774 19    0.487    0.811
 14    0.634 0.0774 19    0.472    0.796
 15    0.613 0.0774 19    0.450    0.775
 16    0.588 0.0774 19    0.426    0.750
 17    0.568 0.0774 19    0.406    0.730
 18    0.550 0.0774 19    0.388    0.712

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

Pairwise Comparisons:
 contrast         estimate     SE   df t.ratio p.value
 Step1 - Step2   -0.012210 0.0263 4607  -0.464  1.0000
 Step1 - Step3   -0.027059 0.0263 4607  -1.028  0.9999
 Step1 - Step4   -0.018715 0.0263 4607  -0.711  1.0000
 Step1 - Step5   -0.023106 0.0263 4607  -0.878  1.0000
 Step1 - Step6   -0.006146 0.0263 4607  -0.234  1.0000
 Step1 - Step7    0.012599 0.0263 4607   0.479  1.0000
 Step1 - Step8    0.018323 0.0263 4607   0.696  1.0000
 Step1 - Step9    0.022601 0.0263 4607   0.859  1.0000
 Step1 - Step10   0.037658 0.0263 4607   1.431  0.9945
 Step1 - Step11   0.038232 0.0263 4607   1.453  0.9935
 Step1 - Step12   0.040537 0.0263 4607   1.541  0.9877
 Step1 - Step13   0.063584 0.0263 4607   2.417  0.5952
 Step1 - Step14   0.078633 0.0263 4607   2.989  0.2059
 Step1 - Step15   0.099891 0.0263 4607   3.796  0.0175
 Step1 - Step16   0.124087 0.0263 4607   4.716  0.0004
 Step1 - Step17   0.144161 0.0263 4607   5.479  <.0001
 Step1 - Step18   0.162179 0.0263 4607   6.164  <.0001
 Step2 - Step3   -0.014849 0.0263 4607  -0.564  1.0000
 Step2 - Step4   -0.006505 0.0263 4607  -0.247  1.0000
 Step2 - Step5   -0.010896 0.0263 4607  -0.414  1.0000
 Step2 - Step6    0.006064 0.0263 4607   0.230  1.0000
 Step2 - Step7    0.024809 0.0263 4607   0.943  1.0000
 Step2 - Step8    0.030533 0.0263 4607   1.160  0.9996
 Step2 - Step9    0.034811 0.0263 4607   1.323  0.9978
 Step2 - Step10   0.049868 0.0263 4607   1.895  0.9139
 Step2 - Step11   0.050442 0.0263 4607   1.917  0.9057
 Step2 - Step12   0.052747 0.0263 4607   2.005  0.8674
 Step2 - Step13   0.075794 0.0263 4607   2.881  0.2638
 Step2 - Step14   0.090843 0.0263 4607   3.453  0.0565
 Step2 - Step15   0.112101 0.0263 4607   4.261  0.0028
 Step2 - Step16   0.136297 0.0263 4607   5.180  <.0001
 Step2 - Step17   0.156371 0.0263 4607   5.943  <.0001
 Step2 - Step18   0.174389 0.0263 4607   6.628  <.0001
 Step3 - Step4    0.008344 0.0263 4607   0.317  1.0000
 Step3 - Step5    0.003953 0.0263 4607   0.150  1.0000
 Step3 - Step6    0.020913 0.0263 4607   0.795  1.0000
 Step3 - Step7    0.039659 0.0263 4607   1.507  0.9902
 Step3 - Step8    0.045382 0.0263 4607   1.725  0.9621
 Step3 - Step9    0.049660 0.0263 4607   1.887  0.9168
 Step3 - Step10   0.064717 0.0263 4607   2.460  0.5617
 Step3 - Step11   0.065291 0.0263 4607   2.481  0.5448
 Step3 - Step12   0.067597 0.0263 4607   2.569  0.4771
 Step3 - Step13   0.090643 0.0263 4607   3.445  0.0578
 Step3 - Step14   0.105692 0.0263 4607   4.017  0.0075
 Step3 - Step15   0.126950 0.0263 4607   4.825  0.0002
 Step3 - Step16   0.151147 0.0263 4607   5.745  <.0001
 Step3 - Step17   0.171220 0.0263 4607   6.507  <.0001
 Step3 - Step18   0.189238 0.0263 4607   7.192  <.0001
 Step4 - Step5   -0.004391 0.0263 4607  -0.167  1.0000
 Step4 - Step6    0.012569 0.0263 4607   0.478  1.0000
 Step4 - Step7    0.031314 0.0263 4607   1.190  0.9994
 Step4 - Step8    0.037038 0.0263 4607   1.408  0.9955
 Step4 - Step9    0.041316 0.0263 4607   1.570  0.9849
 Step4 - Step10   0.056373 0.0263 4607   2.143  0.7910
 Step4 - Step11   0.056947 0.0263 4607   2.164  0.7773
 Step4 - Step12   0.059252 0.0263 4607   2.252  0.7181
 Step4 - Step13   0.082299 0.0263 4607   3.128  0.1450
 Step4 - Step14   0.097348 0.0263 4607   3.700  0.0247
 Step4 - Step15   0.118606 0.0263 4607   4.508  0.0009
 Step4 - Step16   0.142803 0.0263 4607   5.427  <.0001
 Step4 - Step17   0.162876 0.0263 4607   6.190  <.0001
 Step4 - Step18   0.180894 0.0263 4607   6.875  <.0001
 Step5 - Step6    0.016960 0.0263 4607   0.645  1.0000
 Step5 - Step7    0.035705 0.0263 4607   1.357  0.9970
 Step5 - Step8    0.041429 0.0263 4607   1.575  0.9845
 Step5 - Step9    0.045707 0.0263 4607   1.737  0.9595
 Step5 - Step10   0.060763 0.0263 4607   2.309  0.6766
 Step5 - Step11   0.061338 0.0263 4607   2.331  0.6603
 Step5 - Step12   0.063643 0.0263 4607   2.419  0.5934
 Step5 - Step13   0.086690 0.0263 4607   3.295  0.0912
 Step5 - Step14   0.101739 0.0263 4607   3.867  0.0135
 Step5 - Step15   0.122997 0.0263 4607   4.675  0.0004
 Step5 - Step16   0.147193 0.0263 4607   5.594  <.0001
 Step5 - Step17   0.167267 0.0263 4607   6.357  <.0001
 Step5 - Step18   0.185284 0.0263 4607   7.042  <.0001
 Step6 - Step7    0.018745 0.0263 4607   0.712  1.0000
 Step6 - Step8    0.024469 0.0263 4607   0.930  1.0000
 Step6 - Step9    0.028747 0.0263 4607   1.093  0.9998
 Step6 - Step10   0.043804 0.0263 4607   1.665  0.9729
 Step6 - Step11   0.044378 0.0263 4607   1.687  0.9693
 Step6 - Step12   0.046683 0.0263 4607   1.774  0.9509
 Step6 - Step13   0.069730 0.0263 4607   2.650  0.4163
 Step6 - Step14   0.084779 0.0263 4607   3.222  0.1122
 Step6 - Step15   0.106037 0.0263 4607   4.030  0.0072
 Step6 - Step16   0.130233 0.0263 4607   4.950  0.0001
 Step6 - Step17   0.150307 0.0263 4607   5.713  <.0001
 Step6 - Step18   0.168325 0.0263 4607   6.397  <.0001
 Step7 - Step8    0.005724 0.0263 4607   0.218  1.0000
 Step7 - Step9    0.010002 0.0263 4607   0.380  1.0000
 Step7 - Step10   0.025058 0.0263 4607   0.952  1.0000
 Step7 - Step11   0.025633 0.0263 4607   0.974  1.0000
 Step7 - Step12   0.027938 0.0263 4607   1.062  0.9999
 Step7 - Step13   0.050985 0.0263 4607   1.938  0.8974
 Step7 - Step14   0.066034 0.0263 4607   2.510  0.5228
 Step7 - Step15   0.087292 0.0263 4607   3.318  0.0853
 Step7 - Step16   0.111488 0.0263 4607   4.237  0.0031
 Step7 - Step17   0.131562 0.0263 4607   5.000  0.0001
 Step7 - Step18   0.149579 0.0263 4607   5.685  <.0001
 Step8 - Step9    0.004278 0.0263 4607   0.163  1.0000
 Step8 - Step10   0.019335 0.0263 4607   0.735  1.0000
 Step8 - Step11   0.019909 0.0263 4607   0.757  1.0000
 Step8 - Step12   0.022214 0.0263 4607   0.844  1.0000
 Step8 - Step13   0.045261 0.0263 4607   1.720  0.9630
 Step8 - Step14   0.060310 0.0263 4607   2.292  0.6892
 Step8 - Step15   0.081568 0.0263 4607   3.100  0.1559
 Step8 - Step16   0.105764 0.0263 4607   4.020  0.0075
 Step8 - Step17   0.125838 0.0263 4607   4.783  0.0003
 Step8 - Step18   0.143856 0.0263 4607   5.467  <.0001
 Step9 - Step10   0.015057 0.0263 4607   0.572  1.0000
 Step9 - Step11   0.015631 0.0263 4607   0.594  1.0000
 Step9 - Step12   0.017936 0.0263 4607   0.682  1.0000
 Step9 - Step13   0.040983 0.0263 4607   1.558  0.9862
 Step9 - Step14   0.056032 0.0263 4607   2.130  0.7990
 Step9 - Step15   0.077290 0.0263 4607   2.938  0.2321
 Step9 - Step16   0.101487 0.0263 4607   3.857  0.0139
 Step9 - Step17   0.121560 0.0263 4607   4.620  0.0006
 Step9 - Step18   0.139578 0.0263 4607   5.305  <.0001
 Step10 - Step11  0.000574 0.0263 4607   0.022  1.0000
 Step10 - Step12  0.002880 0.0263 4607   0.109  1.0000
 Step10 - Step13  0.025926 0.0263 4607   0.985  1.0000
 Step10 - Step14  0.040975 0.0263 4607   1.557  0.9862
 Step10 - Step15  0.062233 0.0263 4607   2.365  0.6346
 Step10 - Step16  0.086430 0.0263 4607   3.285  0.0939
 Step10 - Step17  0.106503 0.0263 4607   4.048  0.0067
 Step10 - Step18  0.124521 0.0263 4607   4.733  0.0003
 Step11 - Step12  0.002305 0.0263 4607   0.088  1.0000
 Step11 - Step13  0.025352 0.0263 4607   0.964  1.0000
 Step11 - Step14  0.040401 0.0263 4607   1.536  0.9881
 Step11 - Step15  0.061659 0.0263 4607   2.343  0.6511
 Step11 - Step16  0.085856 0.0263 4607   3.263  0.1000
 Step11 - Step17  0.105929 0.0263 4607   4.026  0.0073
 Step11 - Step18  0.123947 0.0263 4607   4.711  0.0004
 Step12 - Step13  0.023047 0.0263 4607   0.876  1.0000
 Step12 - Step14  0.038096 0.0263 4607   1.448  0.9937
 Step12 - Step15  0.059354 0.0263 4607   2.256  0.7154
 Step12 - Step16  0.083550 0.0263 4607   3.175  0.1277
 Step12 - Step17  0.103624 0.0263 4607   3.938  0.0102
 Step12 - Step18  0.121641 0.0263 4607   4.623  0.0005
 Step13 - Step14  0.015049 0.0263 4607   0.572  1.0000
 Step13 - Step15  0.036307 0.0263 4607   1.380  0.9964
 Step13 - Step16  0.060503 0.0263 4607   2.300  0.6839
 Step13 - Step17  0.080577 0.0263 4607   3.062  0.1717
 Step13 - Step18  0.098595 0.0263 4607   3.747  0.0209
 Step14 - Step15  0.021258 0.0263 4607   0.808  1.0000
 Step14 - Step16  0.045454 0.0263 4607   1.728  0.9615
 Step14 - Step17  0.065528 0.0263 4607   2.490  0.5378
 Step14 - Step18  0.083545 0.0263 4607   3.175  0.1277
 Step15 - Step16  0.024196 0.0263 4607   0.920  1.0000
 Step15 - Step17  0.044270 0.0263 4607   1.683  0.9700
 Step15 - Step18  0.062288 0.0263 4607   2.367  0.6330
 Step16 - Step17  0.020073 0.0263 4607   0.763  1.0000
 Step16 - Step18  0.038091 0.0263 4607   1.448  0.9938
 Step17 - Step18  0.018018 0.0263 4607   0.685  1.0000

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 18 estimates 
--- Axis: Y ---Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
      Chisq Df Pr(>Chisq)    
Step 368.68 17  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Marginal Means:
 Step emmean     SE   df lower.CL upper.CL
 1     0.834 0.0764 18.9    0.674    0.994
 2     0.826 0.0764 18.9    0.666    0.986
 3     0.814 0.0764 18.9    0.654    0.974
 4     0.806 0.0764 18.9    0.646    0.966
 5     0.796 0.0764 18.9    0.636    0.956
 6     0.747 0.0764 18.9    0.587    0.907
 7     0.727 0.0764 18.9    0.567    0.887
 8     0.714 0.0764 18.9    0.554    0.874
 9     0.700 0.0764 18.9    0.540    0.860
 10    0.698 0.0764 18.9    0.538    0.858
 11    0.687 0.0764 18.9    0.527    0.847
 12    0.673 0.0764 18.9    0.513    0.833
 13    0.664 0.0764 18.9    0.504    0.824
 14    0.643 0.0764 18.9    0.483    0.803
 15    0.629 0.0764 18.9    0.469    0.789
 16    0.611 0.0764 18.9    0.451    0.771
 17    0.588 0.0764 18.9    0.428    0.748
 18    0.575 0.0764 18.9    0.415    0.734

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

Pairwise Comparisons:
 contrast        estimate     SE   df t.ratio p.value
 Step1 - Step2    0.00755 0.0251 4607   0.301  1.0000
 Step1 - Step3    0.01958 0.0251 4607   0.780  1.0000
 Step1 - Step4    0.02739 0.0251 4607   1.092  0.9998
 Step1 - Step5    0.03796 0.0251 4607   1.513  0.9899
 Step1 - Step6    0.08659 0.0251 4607   3.451  0.0568
 Step1 - Step7    0.10695 0.0251 4607   4.262  0.0028
 Step1 - Step8    0.11966 0.0251 4607   4.769  0.0003
 Step1 - Step9    0.13328 0.0251 4607   5.312  <.0001
 Step1 - Step10   0.13565 0.0251 4607   5.406  <.0001
 Step1 - Step11   0.14669 0.0251 4607   5.846  <.0001
 Step1 - Step12   0.16101 0.0251 4607   6.416  <.0001
 Step1 - Step13   0.17001 0.0251 4607   6.775  <.0001
 Step1 - Step14   0.19040 0.0251 4607   7.588  <.0001
 Step1 - Step15   0.20443 0.0251 4607   8.147  <.0001
 Step1 - Step16   0.22292 0.0251 4607   8.884  <.0001
 Step1 - Step17   0.24551 0.0251 4607   9.784  <.0001
 Step1 - Step18   0.25903 0.0251 4607  10.323  <.0001
 Step2 - Step3    0.01203 0.0251 4607   0.480  1.0000
 Step2 - Step4    0.01984 0.0251 4607   0.791  1.0000
 Step2 - Step5    0.03041 0.0251 4607   1.212  0.9993
 Step2 - Step6    0.07905 0.0251 4607   3.150  0.1366
 Step2 - Step7    0.09940 0.0251 4607   3.961  0.0094
 Step2 - Step8    0.11211 0.0251 4607   4.468  0.0011
 Step2 - Step9    0.12574 0.0251 4607   5.011  0.0001
 Step2 - Step10   0.12810 0.0251 4607   5.105  0.0001
 Step2 - Step11   0.13914 0.0251 4607   5.545  <.0001
 Step2 - Step12   0.15346 0.0251 4607   6.116  <.0001
 Step2 - Step13   0.16246 0.0251 4607   6.474  <.0001
 Step2 - Step14   0.18285 0.0251 4607   7.287  <.0001
 Step2 - Step15   0.19688 0.0251 4607   7.846  <.0001
 Step2 - Step16   0.21537 0.0251 4607   8.583  <.0001
 Step2 - Step17   0.23796 0.0251 4607   9.483  <.0001
 Step2 - Step18   0.25149 0.0251 4607  10.022  <.0001
 Step3 - Step4    0.00781 0.0251 4607   0.311  1.0000
 Step3 - Step5    0.01838 0.0251 4607   0.732  1.0000
 Step3 - Step6    0.06701 0.0251 4607   2.671  0.4015
 Step3 - Step7    0.08737 0.0251 4607   3.482  0.0514
 Step3 - Step8    0.10008 0.0251 4607   3.988  0.0084
 Step3 - Step9    0.11370 0.0251 4607   4.531  0.0008
 Step3 - Step10   0.11607 0.0251 4607   4.626  0.0005
 Step3 - Step11   0.12711 0.0251 4607   5.065  0.0001
 Step3 - Step12   0.14143 0.0251 4607   5.636  <.0001
 Step3 - Step13   0.15043 0.0251 4607   5.995  <.0001
 Step3 - Step14   0.17082 0.0251 4607   6.807  <.0001
 Step3 - Step15   0.18485 0.0251 4607   7.367  <.0001
 Step3 - Step16   0.20334 0.0251 4607   8.104  <.0001
 Step3 - Step17   0.22593 0.0251 4607   9.004  <.0001
 Step3 - Step18   0.23945 0.0251 4607   9.543  <.0001
 Step4 - Step5    0.01057 0.0251 4607   0.421  1.0000
 Step4 - Step6    0.05920 0.0251 4607   2.359  0.6391
 Step4 - Step7    0.07956 0.0251 4607   3.171  0.1294
 Step4 - Step8    0.09227 0.0251 4607   3.677  0.0268
 Step4 - Step9    0.10589 0.0251 4607   4.220  0.0033
 Step4 - Step10   0.10826 0.0251 4607   4.314  0.0022
 Step4 - Step11   0.11930 0.0251 4607   4.754  0.0003
 Step4 - Step12   0.13362 0.0251 4607   5.325  <.0001
 Step4 - Step13   0.14262 0.0251 4607   5.684  <.0001
 Step4 - Step14   0.16301 0.0251 4607   6.496  <.0001
 Step4 - Step15   0.17704 0.0251 4607   7.055  <.0001
 Step4 - Step16   0.19553 0.0251 4607   7.792  <.0001
 Step4 - Step17   0.21812 0.0251 4607   8.692  <.0001
 Step4 - Step18   0.23164 0.0251 4607   9.231  <.0001
 Step5 - Step6    0.04864 0.0251 4607   1.938  0.8971
 Step5 - Step7    0.06899 0.0251 4607   2.750  0.3463
 Step5 - Step8    0.08170 0.0251 4607   3.256  0.1020
 Step5 - Step9    0.09533 0.0251 4607   3.799  0.0173
 Step5 - Step10   0.09769 0.0251 4607   3.893  0.0122
 Step5 - Step11   0.10873 0.0251 4607   4.333  0.0020
 Step5 - Step12   0.12305 0.0251 4607   4.904  0.0001
 Step5 - Step13   0.13205 0.0251 4607   5.262  <.0001
 Step5 - Step14   0.15244 0.0251 4607   6.075  <.0001
 Step5 - Step15   0.16647 0.0251 4607   6.634  <.0001
 Step5 - Step16   0.18496 0.0251 4607   7.371  <.0001
 Step5 - Step17   0.20755 0.0251 4607   8.271  <.0001
 Step5 - Step18   0.22107 0.0251 4607   8.810  <.0001
 Step6 - Step7    0.02036 0.0251 4607   0.811  1.0000
 Step6 - Step8    0.03306 0.0251 4607   1.318  0.9979
 Step6 - Step9    0.04669 0.0251 4607   1.861  0.9260
 Step6 - Step10   0.04905 0.0251 4607   1.955  0.8901
 Step6 - Step11   0.06009 0.0251 4607   2.395  0.6120
 Step6 - Step12   0.07441 0.0251 4607   2.965  0.2175
 Step6 - Step13   0.08341 0.0251 4607   3.324  0.0837
 Step6 - Step14   0.10380 0.0251 4607   4.137  0.0047
 Step6 - Step15   0.11784 0.0251 4607   4.696  0.0004
 Step6 - Step16   0.13633 0.0251 4607   5.433  <.0001
 Step6 - Step17   0.15891 0.0251 4607   6.333  <.0001
 Step6 - Step18   0.17244 0.0251 4607   6.872  <.0001
 Step7 - Step8    0.01271 0.0251 4607   0.506  1.0000
 Step7 - Step9    0.02633 0.0251 4607   1.049  0.9999
 Step7 - Step10   0.02870 0.0251 4607   1.144  0.9997
 Step7 - Step11   0.03974 0.0251 4607   1.584  0.9836
 Step7 - Step12   0.05406 0.0251 4607   2.154  0.7837
 Step7 - Step13   0.06306 0.0251 4607   2.513  0.5203
 Step7 - Step14   0.08345 0.0251 4607   3.326  0.0833
 Step7 - Step15   0.09748 0.0251 4607   3.885  0.0126
 Step7 - Step16   0.11597 0.0251 4607   4.622  0.0006
 Step7 - Step17   0.13856 0.0251 4607   5.522  <.0001
 Step7 - Step18   0.15208 0.0251 4607   6.061  <.0001
 Step8 - Step9    0.01363 0.0251 4607   0.543  1.0000
 Step8 - Step10   0.01599 0.0251 4607   0.637  1.0000
 Step8 - Step11   0.02703 0.0251 4607   1.077  0.9998
 Step8 - Step12   0.04135 0.0251 4607   1.648  0.9755
 Step8 - Step13   0.05035 0.0251 4607   2.007  0.8665
 Step8 - Step14   0.07074 0.0251 4607   2.819  0.3009
 Step8 - Step15   0.08477 0.0251 4607   3.378  0.0711
 Step8 - Step16   0.10326 0.0251 4607   4.115  0.0051
 Step8 - Step17   0.12585 0.0251 4607   5.015  0.0001
 Step8 - Step18   0.13938 0.0251 4607   5.554  <.0001
 Step9 - Step10   0.00237 0.0251 4607   0.094  1.0000
 Step9 - Step11   0.01340 0.0251 4607   0.534  1.0000
 Step9 - Step12   0.02772 0.0251 4607   1.105  0.9998
 Step9 - Step13   0.03672 0.0251 4607   1.464  0.9929
 Step9 - Step14   0.05711 0.0251 4607   2.276  0.7009
 Step9 - Step15   0.07115 0.0251 4607   2.835  0.2908
 Step9 - Step16   0.08964 0.0251 4607   3.572  0.0383
 Step9 - Step17   0.11223 0.0251 4607   4.472  0.0011
 Step9 - Step18   0.12575 0.0251 4607   5.011  0.0001
 Step10 - Step11  0.01104 0.0251 4607   0.440  1.0000
 Step10 - Step12  0.02536 0.0251 4607   1.011  0.9999
 Step10 - Step13  0.03436 0.0251 4607   1.369  0.9967
 Step10 - Step14  0.05475 0.0251 4607   2.182  0.7659
 Step10 - Step15  0.06878 0.0251 4607   2.741  0.3520
 Step10 - Step16  0.08727 0.0251 4607   3.478  0.0521
 Step10 - Step17  0.10986 0.0251 4607   4.378  0.0017
 Step10 - Step18  0.12338 0.0251 4607   4.917  0.0001
 Step11 - Step12  0.01432 0.0251 4607   0.571  1.0000
 Step11 - Step13  0.02332 0.0251 4607   0.929  1.0000
 Step11 - Step14  0.04371 0.0251 4607   1.742  0.9584
 Step11 - Step15  0.05774 0.0251 4607   2.301  0.6826
 Step11 - Step16  0.07623 0.0251 4607   3.038  0.1825
 Step11 - Step17  0.09882 0.0251 4607   3.938  0.0102
 Step11 - Step18  0.11234 0.0251 4607   4.477  0.0011
 Step12 - Step13  0.00900 0.0251 4607   0.359  1.0000
 Step12 - Step14  0.02939 0.0251 4607   1.171  0.9995
 Step12 - Step15  0.04342 0.0251 4607   1.731  0.9609
 Step12 - Step16  0.06192 0.0251 4607   2.467  0.5557
 Step12 - Step17  0.08450 0.0251 4607   3.368  0.0735
 Step12 - Step18  0.09803 0.0251 4607   3.907  0.0116
 Step13 - Step14  0.02039 0.0251 4607   0.813  1.0000
 Step13 - Step15  0.03442 0.0251 4607   1.372  0.9966
 Step13 - Step16  0.05291 0.0251 4607   2.109  0.8115
 Step13 - Step17  0.07550 0.0251 4607   3.009  0.1960
 Step13 - Step18  0.08903 0.0251 4607   3.548  0.0415
 Step14 - Step15  0.01403 0.0251 4607   0.559  1.0000
 Step14 - Step16  0.03253 0.0251 4607   1.296  0.9983
 Step14 - Step17  0.05511 0.0251 4607   2.196  0.7563
 Step14 - Step18  0.06864 0.0251 4607   2.735  0.3560
 Step15 - Step16  0.01849 0.0251 4607   0.737  1.0000
 Step15 - Step17  0.04108 0.0251 4607   1.637  0.9770
 Step15 - Step18  0.05460 0.0251 4607   2.176  0.7697
 Step16 - Step17  0.02259 0.0251 4607   0.900  1.0000
 Step16 - Step18  0.03611 0.0251 4607   1.439  0.9942
 Step17 - Step18  0.01352 0.0251 4607   0.539  1.0000

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 18 estimates 
--- Axis: Z ---Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
     Chisq Df Pr(>Chisq)    
Step 459.7 17  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Marginal Means:
 Step emmean    SE   df lower.CL upper.CL
 1      1.67 0.155 18.5    1.339     1.99
 2      1.66 0.155 18.5    1.332     1.98
 3      1.67 0.155 18.5    1.347     2.00
 4      1.65 0.155 18.5    1.320     1.97
 5      1.62 0.155 18.5    1.297     1.95
 6      1.56 0.155 18.5    1.230     1.88
 7      1.55 0.155 18.5    1.220     1.87
 8      1.53 0.155 18.5    1.204     1.86
 9      1.50 0.155 18.5    1.172     1.82
 10     1.49 0.155 18.5    1.159     1.81
 11     1.48 0.155 18.5    1.153     1.80
 12     1.46 0.155 18.5    1.137     1.79
 13     1.42 0.155 18.5    1.094     1.75
 14     1.37 0.155 18.5    1.042     1.69
 15     1.28 0.155 18.5    0.950     1.60
 16     1.24 0.155 18.5    0.911     1.56
 17     1.17 0.155 18.5    0.844     1.50
 18     1.13 0.155 18.5    0.806     1.46

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

Pairwise Comparisons:
 contrast        estimate     SE   df t.ratio p.value
 Step1 - Step2    0.00719 0.0464 4607   0.155  1.0000
 Step1 - Step3   -0.00751 0.0464 4607  -0.162  1.0000
 Step1 - Step4    0.01942 0.0464 4607   0.418  1.0000
 Step1 - Step5    0.04192 0.0464 4607   0.903  1.0000
 Step1 - Step6    0.10942 0.0464 4607   2.357  0.6405
 Step1 - Step7    0.11865 0.0464 4607   2.556  0.4869
 Step1 - Step8    0.13517 0.0464 4607   2.912  0.2459
 Step1 - Step9    0.16665 0.0464 4607   3.590  0.0360
 Step1 - Step10   0.17966 0.0464 4607   3.871  0.0133
 Step1 - Step11   0.18638 0.0464 4607   4.016  0.0076
 Step1 - Step12   0.20219 0.0464 4607   4.356  0.0018
 Step1 - Step13   0.24532 0.0464 4607   5.285  <.0001
 Step1 - Step14   0.29679 0.0464 4607   6.394  <.0001
 Step1 - Step15   0.38876 0.0464 4607   8.375  <.0001
 Step1 - Step16   0.42815 0.0464 4607   9.224  <.0001
 Step1 - Step17   0.49494 0.0464 4607  10.663  <.0001
 Step1 - Step18   0.53270 0.0464 4607  11.477  <.0001
 Step2 - Step3   -0.01470 0.0464 4607  -0.317  1.0000
 Step2 - Step4    0.01223 0.0464 4607   0.264  1.0000
 Step2 - Step5    0.03473 0.0464 4607   0.748  1.0000
 Step2 - Step6    0.10224 0.0464 4607   2.203  0.7522
 Step2 - Step7    0.11146 0.0464 4607   2.401  0.6069
 Step2 - Step8    0.12799 0.0464 4607   2.757  0.3410
 Step2 - Step9    0.15946 0.0464 4607   3.436  0.0596
 Step2 - Step10   0.17247 0.0464 4607   3.716  0.0233
 Step2 - Step11   0.17919 0.0464 4607   3.861  0.0138
 Step2 - Step12   0.19500 0.0464 4607   4.201  0.0036
 Step2 - Step13   0.23813 0.0464 4607   5.130  <.0001
 Step2 - Step14   0.28960 0.0464 4607   6.239  <.0001
 Step2 - Step15   0.38157 0.0464 4607   8.221  <.0001
 Step2 - Step16   0.42096 0.0464 4607   9.069  <.0001
 Step2 - Step17   0.48775 0.0464 4607  10.508  <.0001
 Step2 - Step18   0.52551 0.0464 4607  11.322  <.0001
 Step3 - Step4    0.02693 0.0464 4607   0.580  1.0000
 Step3 - Step5    0.04943 0.0464 4607   1.065  0.9999
 Step3 - Step6    0.11693 0.0464 4607   2.519  0.5154
 Step3 - Step7    0.12616 0.0464 4607   2.718  0.3679
 Step3 - Step8    0.14268 0.0464 4607   3.074  0.1667
 Step3 - Step9    0.17416 0.0464 4607   3.752  0.0205
 Step3 - Step10   0.18717 0.0464 4607   4.032  0.0071
 Step3 - Step11   0.19389 0.0464 4607   4.177  0.0039
 Step3 - Step12   0.20970 0.0464 4607   4.518  0.0009
 Step3 - Step13   0.25283 0.0464 4607   5.447  <.0001
 Step3 - Step14   0.30430 0.0464 4607   6.556  <.0001
 Step3 - Step15   0.39627 0.0464 4607   8.537  <.0001
 Step3 - Step16   0.43566 0.0464 4607   9.386  <.0001
 Step3 - Step17   0.50245 0.0464 4607  10.825  <.0001
 Step3 - Step18   0.54021 0.0464 4607  11.639  <.0001
 Step4 - Step5    0.02250 0.0464 4607   0.485  1.0000
 Step4 - Step6    0.09000 0.0464 4607   1.939  0.8968
 Step4 - Step7    0.09923 0.0464 4607   2.138  0.7939
 Step4 - Step8    0.11575 0.0464 4607   2.494  0.5352
 Step4 - Step9    0.14723 0.0464 4607   3.172  0.1289
 Step4 - Step10   0.16024 0.0464 4607   3.452  0.0565
 Step4 - Step11   0.16696 0.0464 4607   3.597  0.0352
 Step4 - Step12   0.18277 0.0464 4607   3.938  0.0103
 Step4 - Step13   0.22590 0.0464 4607   4.867  0.0002
 Step4 - Step14   0.27737 0.0464 4607   5.976  <.0001
 Step4 - Step15   0.36933 0.0464 4607   7.957  <.0001
 Step4 - Step16   0.40873 0.0464 4607   8.806  <.0001
 Step4 - Step17   0.47551 0.0464 4607  10.245  <.0001
 Step4 - Step18   0.51328 0.0464 4607  11.058  <.0001
 Step5 - Step6    0.06750 0.0464 4607   1.454  0.9934
 Step5 - Step7    0.07673 0.0464 4607   1.653  0.9747
 Step5 - Step8    0.09325 0.0464 4607   2.009  0.8653
 Step5 - Step9    0.12473 0.0464 4607   2.687  0.3895
 Step5 - Step10   0.13774 0.0464 4607   2.968  0.2164
 Step5 - Step11   0.14446 0.0464 4607   3.112  0.1510
 Step5 - Step12   0.16027 0.0464 4607   3.453  0.0564
 Step5 - Step13   0.20340 0.0464 4607   4.382  0.0016
 Step5 - Step14   0.25487 0.0464 4607   5.491  <.0001
 Step5 - Step15   0.34683 0.0464 4607   7.472  <.0001
 Step5 - Step16   0.38623 0.0464 4607   8.321  <.0001
 Step5 - Step17   0.45301 0.0464 4607   9.760  <.0001
 Step5 - Step18   0.49078 0.0464 4607  10.574  <.0001
 Step6 - Step7    0.00923 0.0464 4607   0.199  1.0000
 Step6 - Step8    0.02575 0.0464 4607   0.555  1.0000
 Step6 - Step9    0.05723 0.0464 4607   1.233  0.9991
 Step6 - Step10   0.07024 0.0464 4607   1.513  0.9898
 Step6 - Step11   0.07696 0.0464 4607   1.658  0.9740
 Step6 - Step12   0.09276 0.0464 4607   1.999  0.8703
 Step6 - Step13   0.13590 0.0464 4607   2.928  0.2373
 Step6 - Step14   0.18737 0.0464 4607   4.037  0.0070
 Step6 - Step15   0.27933 0.0464 4607   6.018  <.0001
 Step6 - Step16   0.31873 0.0464 4607   6.867  <.0001
 Step6 - Step17   0.38551 0.0464 4607   8.306  <.0001
 Step6 - Step18   0.42328 0.0464 4607   9.119  <.0001
 Step7 - Step8    0.01652 0.0464 4607   0.356  1.0000
 Step7 - Step9    0.04800 0.0464 4607   1.034  0.9999
 Step7 - Step10   0.06101 0.0464 4607   1.314  0.9980
 Step7 - Step11   0.06773 0.0464 4607   1.459  0.9932
 Step7 - Step12   0.08354 0.0464 4607   1.800  0.9443
 Step7 - Step13   0.12667 0.0464 4607   2.729  0.3602
 Step7 - Step14   0.17814 0.0464 4607   3.838  0.0150
 Step7 - Step15   0.27011 0.0464 4607   5.819  <.0001
 Step7 - Step16   0.30950 0.0464 4607   6.668  <.0001
 Step7 - Step17   0.37629 0.0464 4607   8.107  <.0001
 Step7 - Step18   0.41405 0.0464 4607   8.921  <.0001
 Step8 - Step9    0.03148 0.0464 4607   0.678  1.0000
 Step8 - Step10   0.04449 0.0464 4607   0.958  1.0000
 Step8 - Step11   0.05121 0.0464 4607   1.103  0.9998
 Step8 - Step12   0.06701 0.0464 4607   1.444  0.9939
 Step8 - Step13   0.11015 0.0464 4607   2.373  0.6286
 Step8 - Step14   0.16162 0.0464 4607   3.482  0.0514
 Step8 - Step15   0.25358 0.0464 4607   5.463  <.0001
 Step8 - Step16   0.29298 0.0464 4607   6.312  <.0001
 Step8 - Step17   0.35976 0.0464 4607   7.751  <.0001
 Step8 - Step18   0.39753 0.0464 4607   8.565  <.0001
 Step9 - Step10   0.01301 0.0464 4607   0.280  1.0000
 Step9 - Step11   0.01973 0.0464 4607   0.425  1.0000
 Step9 - Step12   0.03554 0.0464 4607   0.766  1.0000
 Step9 - Step13   0.07867 0.0464 4607   1.695  0.9678
 Step9 - Step14   0.13014 0.0464 4607   2.804  0.3106
 Step9 - Step15   0.22210 0.0464 4607   4.785  0.0003
 Step9 - Step16   0.26150 0.0464 4607   5.634  <.0001
 Step9 - Step17   0.32828 0.0464 4607   7.073  <.0001
 Step9 - Step18   0.36605 0.0464 4607   7.886  <.0001
 Step10 - Step11  0.00672 0.0464 4607   0.145  1.0000
 Step10 - Step12  0.02253 0.0464 4607   0.485  1.0000
 Step10 - Step13  0.06566 0.0464 4607   1.415  0.9952
 Step10 - Step14  0.11713 0.0464 4607   2.523  0.5121
 Step10 - Step15  0.20909 0.0464 4607   4.505  0.0009
 Step10 - Step16  0.24849 0.0464 4607   5.354  <.0001
 Step10 - Step17  0.31527 0.0464 4607   6.792  <.0001
 Step10 - Step18  0.35304 0.0464 4607   7.606  <.0001
 Step11 - Step12  0.01580 0.0464 4607   0.340  1.0000
 Step11 - Step13  0.05894 0.0464 4607   1.270  0.9987
 Step11 - Step14  0.11041 0.0464 4607   2.379  0.6244
 Step11 - Step15  0.20237 0.0464 4607   4.360  0.0018
 Step11 - Step16  0.24177 0.0464 4607   5.209  <.0001
 Step11 - Step17  0.30855 0.0464 4607   6.648  <.0001
 Step11 - Step18  0.34632 0.0464 4607   7.461  <.0001
 Step12 - Step13  0.04314 0.0464 4607   0.929  1.0000
 Step12 - Step14  0.09460 0.0464 4607   2.038  0.8506
 Step12 - Step15  0.18657 0.0464 4607   4.019  0.0075
 Step12 - Step16  0.22597 0.0464 4607   4.868  0.0002
 Step12 - Step17  0.29275 0.0464 4607   6.307  <.0001
 Step12 - Step18  0.33052 0.0464 4607   7.121  <.0001
 Step13 - Step14  0.05147 0.0464 4607   1.109  0.9998
 Step13 - Step15  0.14343 0.0464 4607   3.090  0.1600
 Step13 - Step16  0.18283 0.0464 4607   3.939  0.0102
 Step13 - Step17  0.24961 0.0464 4607   5.378  <.0001
 Step13 - Step18  0.28738 0.0464 4607   6.191  <.0001
 Step14 - Step15  0.09196 0.0464 4607   1.981  0.8784
 Step14 - Step16  0.13136 0.0464 4607   2.830  0.2941
 Step14 - Step17  0.19814 0.0464 4607   4.269  0.0027
 Step14 - Step18  0.23591 0.0464 4607   5.083  0.0001
 Step15 - Step16  0.03940 0.0464 4607   0.849  1.0000
 Step15 - Step17  0.10618 0.0464 4607   2.288  0.6926
 Step15 - Step18  0.14395 0.0464 4607   3.101  0.1555
 Step16 - Step17  0.06678 0.0464 4607   1.439  0.9942
 Step16 - Step18  0.10455 0.0464 4607   2.252  0.7178
 Step17 - Step18  0.03777 0.0464 4607   0.814  1.0000

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 18 estimates 
# Block 5
run_mixed_length_lmms(step_summary_block45, target_block = 5, seq_length = 6)

=========== Block 5 | 6-Step Trials ===========--- Axis: X ---Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
      Chisq Df Pr(>Chisq)    
Step 29.785  5  1.626e-05 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Marginal Means:
 Step emmean     SE   df lower.CL upper.CL
 1     0.576 0.0483 17.6    0.474    0.677
 2     0.575 0.0483 17.6    0.473    0.677
 3     0.573 0.0483 17.6    0.471    0.675
 4     0.573 0.0483 17.6    0.471    0.675
 5     0.539 0.0483 17.6    0.438    0.641
 6     0.543 0.0483 17.6    0.442    0.645

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

Pairwise Comparisons:
 contrast       estimate      SE   df t.ratio p.value
 Step1 - Step2  0.000868 0.00993 1370   0.087  1.0000
 Step1 - Step3  0.002848 0.00993 1370   0.287  0.9997
 Step1 - Step4  0.002848 0.00993 1370   0.287  0.9997
 Step1 - Step5  0.036714 0.00993 1370   3.696  0.0031
 Step1 - Step6  0.032638 0.00993 1370   3.286  0.0133
 Step2 - Step3  0.001980 0.00993 1370   0.199  1.0000
 Step2 - Step4  0.001980 0.00993 1370   0.199  1.0000
 Step2 - Step5  0.035847 0.00993 1370   3.609  0.0043
 Step2 - Step6  0.031770 0.00993 1370   3.198  0.0177
 Step3 - Step4  0.000000 0.00993 1370   0.000  1.0000
 Step3 - Step5  0.033867 0.00993 1370   3.409  0.0088
 Step3 - Step6  0.029790 0.00993 1370   2.999  0.0329
 Step4 - Step5  0.033867 0.00993 1370   3.409  0.0088
 Step4 - Step6  0.029790 0.00993 1370   2.999  0.0329
 Step5 - Step6 -0.004077 0.00993 1370  -0.410  0.9985

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 6 estimates 
--- Axis: Y ---Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
      Chisq Df Pr(>Chisq)    
Step 29.255  5  2.067e-05 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Marginal Means:
 Step emmean     SE   df lower.CL upper.CL
 1     0.623 0.0578 17.6    0.502    0.745
 2     0.625 0.0578 17.6    0.503    0.746
 3     0.624 0.0578 17.6    0.502    0.745
 4     0.624 0.0578 17.6    0.502    0.745
 5     0.604 0.0578 17.6    0.483    0.726
 6     0.575 0.0578 17.6    0.453    0.697

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

Pairwise Comparisons:
 contrast       estimate     SE   df t.ratio p.value
 Step1 - Step2 -0.001374 0.0116 1370  -0.118  1.0000
 Step1 - Step3 -0.000388 0.0116 1370  -0.033  1.0000
 Step1 - Step4 -0.000388 0.0116 1370  -0.033  1.0000
 Step1 - Step5  0.018927 0.0116 1370   1.629  0.5792
 Step1 - Step6  0.048118 0.0116 1370   4.142  0.0005
 Step2 - Step3  0.000986 0.0116 1370   0.085  1.0000
 Step2 - Step4  0.000986 0.0116 1370   0.085  1.0000
 Step2 - Step5  0.020301 0.0116 1370   1.748  0.5004
 Step2 - Step6  0.049493 0.0116 1370   4.260  0.0003
 Step3 - Step4  0.000000 0.0116 1370   0.000  1.0000
 Step3 - Step5  0.019315 0.0116 1370   1.663  0.5568
 Step3 - Step6  0.048507 0.0116 1370   4.176  0.0005
 Step4 - Step5  0.019315 0.0116 1370   1.663  0.5568
 Step4 - Step6  0.048507 0.0116 1370   4.176  0.0005
 Step5 - Step6  0.029191 0.0116 1370   2.513  0.1210

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 6 estimates 
--- Axis: Z ---Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
      Chisq Df Pr(>Chisq)    
Step 57.448  5  4.088e-11 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Marginal Means:
 Step emmean    SE   df lower.CL upper.CL
 1      1.31 0.135 17.3    1.029     1.60
 2      1.29 0.135 17.3    1.002     1.57
 3      1.27 0.135 17.3    0.984     1.55
 4      1.27 0.135 17.3    0.984     1.55
 5      1.23 0.135 17.3    0.951     1.52
 6      1.18 0.135 17.3    0.901     1.47

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

Pairwise Comparisons:
 contrast      estimate     SE   df t.ratio p.value
 Step1 - Step2   0.0265 0.0185 1370   1.432  0.7073
 Step1 - Step3   0.0450 0.0185 1370   2.437  0.1444
 Step1 - Step4   0.0450 0.0185 1370   2.437  0.1444
 Step1 - Step5   0.0778 0.0185 1370   4.216  0.0004
 Step1 - Step6   0.1274 0.0185 1370   6.900  <.0001
 Step2 - Step3   0.0185 0.0185 1370   1.004  0.9166
 Step2 - Step4   0.0185 0.0185 1370   1.004  0.9166
 Step2 - Step5   0.0514 0.0185 1370   2.783  0.0607
 Step2 - Step6   0.1010 0.0185 1370   5.468  <.0001
 Step3 - Step4   0.0000 0.0185 1370   0.000  1.0000
 Step3 - Step5   0.0329 0.0185 1370   1.779  0.4798
 Step3 - Step6   0.0824 0.0185 1370   4.463  0.0001
 Step4 - Step5   0.0329 0.0185 1370   1.779  0.4798
 Step4 - Step6   0.0824 0.0185 1370   4.463  0.0001
 Step5 - Step6   0.0496 0.0185 1370   2.684  0.0790

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 6 estimates 
run_mixed_length_lmms(step_summary_block45, target_block = 5, seq_length = 12)

=========== Block 5 | 12-Step Trials ===========--- Axis: X ---Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
      Chisq Df Pr(>Chisq)    
Step 33.393 11  0.0004542 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Marginal Means:
 Step emmean     SE   df lower.CL upper.CL
 1     0.585 0.0485 19.2    0.484    0.687
 2     0.592 0.0485 19.2    0.491    0.694
 3     0.598 0.0485 19.2    0.497    0.700
 4     0.594 0.0485 19.2    0.493    0.696
 5     0.587 0.0485 19.2    0.486    0.689
 6     0.572 0.0485 19.2    0.470    0.673
 7     0.567 0.0485 19.2    0.466    0.669
 8     0.579 0.0485 19.2    0.477    0.680
 9     0.566 0.0485 19.2    0.465    0.667
 10    0.551 0.0485 19.2    0.449    0.652
 11    0.548 0.0485 19.2    0.446    0.649
 12    0.528 0.0485 19.2    0.426    0.629

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

Pairwise Comparisons:
 contrast        estimate     SE   df t.ratio p.value
 Step1 - Step2   -0.00707 0.0176 2970  -0.402  1.0000
 Step1 - Step3   -0.01308 0.0176 2970  -0.745  0.9999
 Step1 - Step4   -0.00903 0.0176 2970  -0.514  1.0000
 Step1 - Step5   -0.00199 0.0176 2970  -0.113  1.0000
 Step1 - Step6    0.01390 0.0176 2970   0.791  0.9997
 Step1 - Step7    0.01808 0.0176 2970   1.029  0.9971
 Step1 - Step8    0.00671 0.0176 2970   0.382  1.0000
 Step1 - Step9    0.01937 0.0176 2970   1.103  0.9946
 Step1 - Step10   0.03473 0.0176 2970   1.977  0.7094
 Step1 - Step11   0.03783 0.0176 2970   2.153  0.5841
 Step1 - Step12   0.05768 0.0176 2970   3.283  0.0481
 Step2 - Step3   -0.00601 0.0176 2970  -0.342  1.0000
 Step2 - Step4   -0.00195 0.0176 2970  -0.111  1.0000
 Step2 - Step5    0.00508 0.0176 2970   0.289  1.0000
 Step2 - Step6    0.02097 0.0176 2970   1.193  0.9895
 Step2 - Step7    0.02515 0.0176 2970   1.431  0.9574
 Step2 - Step8    0.01378 0.0176 2970   0.784  0.9998
 Step2 - Step9    0.02645 0.0176 2970   1.505  0.9395
 Step2 - Step10   0.04180 0.0176 2970   2.379  0.4205
 Step2 - Step11   0.04490 0.0176 2970   2.556  0.3059
 Step2 - Step12   0.06476 0.0176 2970   3.686  0.0124
 Step3 - Step4    0.00406 0.0176 2970   0.231  1.0000
 Step3 - Step5    0.01109 0.0176 2970   0.631  1.0000
 Step3 - Step6    0.02698 0.0176 2970   1.535  0.9308
 Step3 - Step7    0.03116 0.0176 2970   1.773  0.8325
 Step3 - Step8    0.01979 0.0176 2970   1.126  0.9935
 Step3 - Step9    0.03246 0.0176 2970   1.847  0.7915
 Step3 - Step10   0.04781 0.0176 2970   2.721  0.2160
 Step3 - Step11   0.05091 0.0176 2970   2.898  0.1421
 Step3 - Step12   0.07077 0.0176 2970   4.028  0.0033
 Step4 - Step5    0.00704 0.0176 2970   0.401  1.0000
 Step4 - Step6    0.02292 0.0176 2970   1.305  0.9787
 Step4 - Step7    0.02710 0.0176 2970   1.543  0.9286
 Step4 - Step8    0.01574 0.0176 2970   0.896  0.9992
 Step4 - Step9    0.02840 0.0176 2970   1.616  0.9034
 Step4 - Step10   0.04376 0.0176 2970   2.491  0.3461
 Step4 - Step11   0.04686 0.0176 2970   2.667  0.2434
 Step4 - Step12   0.06671 0.0176 2970   3.797  0.0082
 Step5 - Step6    0.01589 0.0176 2970   0.904  0.9991
 Step5 - Step7    0.02007 0.0176 2970   1.142  0.9927
 Step5 - Step8    0.00870 0.0176 2970   0.495  1.0000
 Step5 - Step9    0.02136 0.0176 2970   1.216  0.9878
 Step5 - Step10   0.03672 0.0176 2970   2.090  0.6300
 Step5 - Step11   0.03982 0.0176 2970   2.266  0.5011
 Step5 - Step12   0.05967 0.0176 2970   3.396  0.0336
 Step6 - Step7    0.00418 0.0176 2970   0.238  1.0000
 Step6 - Step8   -0.00719 0.0176 2970  -0.409  1.0000
 Step6 - Step9    0.00548 0.0176 2970   0.312  1.0000
 Step6 - Step10   0.02084 0.0176 2970   1.186  0.9901
 Step6 - Step11   0.02393 0.0176 2970   1.362  0.9704
 Step6 - Step12   0.04379 0.0176 2970   2.492  0.3450
 Step7 - Step8   -0.01137 0.0176 2970  -0.647  1.0000
 Step7 - Step9    0.00130 0.0176 2970   0.074  1.0000
 Step7 - Step10   0.01665 0.0176 2970   0.948  0.9986
 Step7 - Step11   0.01975 0.0176 2970   1.124  0.9936
 Step7 - Step12   0.03961 0.0176 2970   2.254  0.5099
 Step8 - Step9    0.01266 0.0176 2970   0.721  0.9999
 Step8 - Step10   0.02802 0.0176 2970   1.595  0.9112
 Step8 - Step11   0.03112 0.0176 2970   1.771  0.8337
 Step8 - Step12   0.05097 0.0176 2970   2.901  0.1408
 Step9 - Step10   0.01536 0.0176 2970   0.874  0.9993
 Step9 - Step11   0.01846 0.0176 2970   1.050  0.9965
 Step9 - Step12   0.03831 0.0176 2970   2.181  0.5640
 Step10 - Step11  0.00310 0.0176 2970   0.176  1.0000
 Step10 - Step12  0.02295 0.0176 2970   1.306  0.9785
 Step11 - Step12  0.01985 0.0176 2970   1.130  0.9934

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 12 estimates 
--- Axis: Y ---Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
      Chisq Df Pr(>Chisq)    
Step 131.58 11  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Marginal Means:
 Step emmean     SE   df lower.CL upper.CL
 1     0.658 0.0587 18.5    0.535    0.781
 2     0.658 0.0587 18.5    0.535    0.781
 3     0.641 0.0587 18.5    0.518    0.764
 4     0.630 0.0587 18.5    0.507    0.753
 5     0.621 0.0587 18.5    0.498    0.744
 6     0.581 0.0587 18.5    0.458    0.704
 7     0.582 0.0587 18.5    0.459    0.705
 8     0.568 0.0587 18.5    0.445    0.691
 9     0.558 0.0587 18.5    0.435    0.681
 10    0.557 0.0587 18.5    0.434    0.680
 11    0.556 0.0587 18.5    0.433    0.679
 12    0.543 0.0587 18.5    0.420    0.666

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

Pairwise Comparisons:
 contrast         estimate     SE   df t.ratio p.value
 Step1 - Step2    3.77e-05 0.0174 2970   0.002  1.0000
 Step1 - Step3    1.67e-02 0.0174 2970   0.960  0.9984
 Step1 - Step4    2.73e-02 0.0174 2970   1.565  0.9215
 Step1 - Step5    3.67e-02 0.0174 2970   2.103  0.6206
 Step1 - Step6    7.63e-02 0.0174 2970   4.377  0.0008
 Step1 - Step7    7.58e-02 0.0174 2970   4.345  0.0009
 Step1 - Step8    8.92e-02 0.0174 2970   5.117  <.0001
 Step1 - Step9    9.97e-02 0.0174 2970   5.716  <.0001
 Step1 - Step10   1.01e-01 0.0174 2970   5.780  <.0001
 Step1 - Step11   1.02e-01 0.0174 2970   5.849  <.0001
 Step1 - Step12   1.15e-01 0.0174 2970   6.574  <.0001
 Step2 - Step3    1.67e-02 0.0174 2970   0.958  0.9985
 Step2 - Step4    2.73e-02 0.0174 2970   1.563  0.9222
 Step2 - Step5    3.66e-02 0.0174 2970   2.101  0.6222
 Step2 - Step6    7.63e-02 0.0174 2970   4.375  0.0008
 Step2 - Step7    7.57e-02 0.0174 2970   4.343  0.0009
 Step2 - Step8    8.92e-02 0.0174 2970   5.115  <.0001
 Step2 - Step9    9.96e-02 0.0174 2970   5.714  <.0001
 Step2 - Step10   1.01e-01 0.0174 2970   5.778  <.0001
 Step2 - Step11   1.02e-01 0.0174 2970   5.847  <.0001
 Step2 - Step12   1.15e-01 0.0174 2970   6.572  <.0001
 Step3 - Step4    1.05e-02 0.0174 2970   0.605  1.0000
 Step3 - Step5    1.99e-02 0.0174 2970   1.143  0.9927
 Step3 - Step6    5.96e-02 0.0174 2970   3.417  0.0315
 Step3 - Step7    5.90e-02 0.0174 2970   3.385  0.0349
 Step3 - Step8    7.25e-02 0.0174 2970   4.156  0.0020
 Step3 - Step9    8.29e-02 0.0174 2970   4.755  0.0001
 Step3 - Step10   8.41e-02 0.0174 2970   4.819  0.0001
 Step3 - Step11   8.53e-02 0.0174 2970   4.889  0.0001
 Step3 - Step12   9.79e-02 0.0174 2970   5.614  <.0001
 Step4 - Step5    9.39e-03 0.0174 2970   0.538  1.0000
 Step4 - Step6    4.90e-02 0.0174 2970   2.812  0.1752
 Step4 - Step7    4.85e-02 0.0174 2970   2.780  0.1889
 Step4 - Step8    6.19e-02 0.0174 2970   3.552  0.0200
 Step4 - Step9    7.24e-02 0.0174 2970   4.151  0.0020
 Step4 - Step10   7.35e-02 0.0174 2970   4.215  0.0015
 Step4 - Step11   7.47e-02 0.0174 2970   4.284  0.0011
 Step4 - Step12   8.74e-02 0.0174 2970   5.009  <.0001
 Step5 - Step6    3.97e-02 0.0174 2970   2.274  0.4956
 Step5 - Step7    3.91e-02 0.0174 2970   2.242  0.5189
 Step5 - Step8    5.26e-02 0.0174 2970   3.014  0.1050
 Step5 - Step9    6.30e-02 0.0174 2970   3.613  0.0161
 Step5 - Step10   6.41e-02 0.0174 2970   3.677  0.0128
 Step5 - Step11   6.53e-02 0.0174 2970   3.746  0.0100
 Step5 - Step12   7.80e-02 0.0174 2970   4.471  0.0005
 Step6 - Step7   -5.56e-04 0.0174 2970  -0.032  1.0000
 Step6 - Step8    1.29e-02 0.0174 2970   0.740  0.9999
 Step6 - Step9    2.33e-02 0.0174 2970   1.339  0.9740
 Step6 - Step10   2.45e-02 0.0174 2970   1.403  0.9632
 Step6 - Step11   2.57e-02 0.0174 2970   1.472  0.9480
 Step6 - Step12   3.83e-02 0.0174 2970   2.197  0.5517
 Step7 - Step8    1.35e-02 0.0174 2970   0.772  0.9998
 Step7 - Step9    2.39e-02 0.0174 2970   1.371  0.9690
 Step7 - Step10   2.50e-02 0.0174 2970   1.435  0.9567
 Step7 - Step11   2.62e-02 0.0174 2970   1.504  0.9398
 Step7 - Step12   3.89e-02 0.0174 2970   2.229  0.5283
 Step8 - Step9    1.04e-02 0.0174 2970   0.599  1.0000
 Step8 - Step10   1.16e-02 0.0174 2970   0.663  1.0000
 Step8 - Step11   1.28e-02 0.0174 2970   0.733  0.9999
 Step8 - Step12   2.54e-02 0.0174 2970   1.458  0.9516
 Step9 - Step10   1.12e-03 0.0174 2970   0.064  1.0000
 Step9 - Step11   2.33e-03 0.0174 2970   0.134  1.0000
 Step9 - Step12   1.50e-02 0.0174 2970   0.859  0.9994
 Step10 - Step11  1.21e-03 0.0174 2970   0.070  1.0000
 Step10 - Step12  1.39e-02 0.0174 2970   0.795  0.9997
 Step11 - Step12  1.26e-02 0.0174 2970   0.725  0.9999

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 12 estimates 
--- Axis: Z ---Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
      Chisq Df Pr(>Chisq)    
Step 198.35 11  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Marginal Means:
 Step emmean   SE   df lower.CL upper.CL
 1      1.33 0.14 17.8    1.031     1.62
 2      1.32 0.14 17.8    1.029     1.62
 3      1.32 0.14 17.8    1.027     1.62
 4      1.31 0.14 17.8    1.019     1.61
 5      1.29 0.14 17.8    0.996     1.58
 6      1.23 0.14 17.8    0.935     1.52
 7      1.20 0.14 17.8    0.908     1.50
 8      1.19 0.14 17.8    0.893     1.48
 9      1.16 0.14 17.8    0.866     1.45
 10     1.13 0.14 17.8    0.838     1.43
 11     1.11 0.14 17.8    0.812     1.40
 12     1.06 0.14 17.8    0.768     1.36

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

Pairwise Comparisons:
 contrast        estimate     SE   df t.ratio p.value
 Step1 - Step2    0.00254 0.0311 2970   0.082  1.0000
 Step1 - Step3    0.00479 0.0311 2970   0.154  1.0000
 Step1 - Step4    0.01232 0.0311 2970   0.396  1.0000
 Step1 - Step5    0.03570 0.0311 2970   1.147  0.9925
 Step1 - Step6    0.09657 0.0311 2970   3.103  0.0819
 Step1 - Step7    0.12326 0.0311 2970   3.961  0.0044
 Step1 - Step8    0.13843 0.0311 2970   4.448  0.0006
 Step1 - Step9    0.16506 0.0311 2970   5.304  <.0001
 Step1 - Step10   0.19356 0.0311 2970   6.220  <.0001
 Step1 - Step11   0.21914 0.0311 2970   7.042  <.0001
 Step1 - Step12   0.26338 0.0311 2970   8.464  <.0001
 Step2 - Step3    0.00224 0.0311 2970   0.072  1.0000
 Step2 - Step4    0.00978 0.0311 2970   0.314  1.0000
 Step2 - Step5    0.03316 0.0311 2970   1.066  0.9960
 Step2 - Step6    0.09403 0.0311 2970   3.022  0.1028
 Step2 - Step7    0.12072 0.0311 2970   3.879  0.0060
 Step2 - Step8    0.13588 0.0311 2970   4.367  0.0008
 Step2 - Step9    0.16251 0.0311 2970   5.222  <.0001
 Step2 - Step10   0.19101 0.0311 2970   6.138  <.0001
 Step2 - Step11   0.21660 0.0311 2970   6.960  <.0001
 Step2 - Step12   0.26083 0.0311 2970   8.382  <.0001
 Step3 - Step4    0.00753 0.0311 2970   0.242  1.0000
 Step3 - Step5    0.03092 0.0311 2970   0.993  0.9979
 Step3 - Step6    0.09178 0.0311 2970   2.949  0.1244
 Step3 - Step7    0.11847 0.0311 2970   3.807  0.0079
 Step3 - Step8    0.13364 0.0311 2970   4.294  0.0011
 Step3 - Step9    0.16027 0.0311 2970   5.150  <.0001
 Step3 - Step10   0.18877 0.0311 2970   6.066  <.0001
 Step3 - Step11   0.21435 0.0311 2970   6.888  <.0001
 Step3 - Step12   0.25859 0.0311 2970   8.310  <.0001
 Step4 - Step5    0.02338 0.0311 2970   0.751  0.9998
 Step4 - Step6    0.08425 0.0311 2970   2.707  0.2229
 Step4 - Step7    0.11094 0.0311 2970   3.565  0.0191
 Step4 - Step8    0.12610 0.0311 2970   4.052  0.0030
 Step4 - Step9    0.15273 0.0311 2970   4.908  0.0001
 Step4 - Step10   0.18123 0.0311 2970   5.824  <.0001
 Step4 - Step11   0.20682 0.0311 2970   6.646  <.0001
 Step4 - Step12   0.25105 0.0311 2970   8.068  <.0001
 Step5 - Step6    0.06087 0.0311 2970   1.956  0.7233
 Step5 - Step7    0.08756 0.0311 2970   2.814  0.1746
 Step5 - Step8    0.10272 0.0311 2970   3.301  0.0455
 Step5 - Step9    0.12935 0.0311 2970   4.157  0.0020
 Step5 - Step10   0.15785 0.0311 2970   5.073  <.0001
 Step5 - Step11   0.18344 0.0311 2970   5.895  <.0001
 Step5 - Step12   0.22767 0.0311 2970   7.316  <.0001
 Step6 - Step7    0.02669 0.0311 2970   0.858  0.9994
 Step6 - Step8    0.04185 0.0311 2970   1.345  0.9731
 Step6 - Step9    0.06848 0.0311 2970   2.201  0.5492
 Step6 - Step10   0.09698 0.0311 2970   3.117  0.0789
 Step6 - Step11   0.12257 0.0311 2970   3.939  0.0048
 Step6 - Step12   0.16680 0.0311 2970   5.360  <.0001
 Step7 - Step8    0.01517 0.0311 2970   0.487  1.0000
 Step7 - Step9    0.04179 0.0311 2970   1.343  0.9734
 Step7 - Step10   0.07030 0.0311 2970   2.259  0.5065
 Step7 - Step11   0.09588 0.0311 2970   3.081  0.0872
 Step7 - Step12   0.14012 0.0311 2970   4.503  0.0004
 Step8 - Step9    0.02663 0.0311 2970   0.856  0.9995
 Step8 - Step10   0.05513 0.0311 2970   1.772  0.8335
 Step8 - Step11   0.08071 0.0311 2970   2.594  0.2835
 Step8 - Step12   0.12495 0.0311 2970   4.015  0.0035
 Step9 - Step10   0.02850 0.0311 2970   0.916  0.9990
 Step9 - Step11   0.05409 0.0311 2970   1.738  0.8505
 Step9 - Step12   0.09832 0.0311 2970   3.160  0.0697
 Step10 - Step11  0.02559 0.0311 2970   0.822  0.9996
 Step10 - Step12  0.06982 0.0311 2970   2.244  0.5176
 Step11 - Step12  0.04424 0.0311 2970   1.422  0.9595

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 12 estimates 
run_mixed_length_lmms(step_summary_block45, target_block = 5, seq_length = 18)

=========== Block 5 | 18-Step Trials ===========--- Axis: X ---Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
     Chisq Df Pr(>Chisq)    
Step 62.91 17  3.451e-07 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Marginal Means:
 Step emmean     SE   df lower.CL upper.CL
 1     0.632 0.0563 19.7    0.514    0.749
 2     0.630 0.0563 19.7    0.512    0.747
 3     0.634 0.0563 19.7    0.517    0.752
 4     0.630 0.0563 19.7    0.513    0.748
 5     0.607 0.0563 19.7    0.489    0.725
 6     0.604 0.0563 19.7    0.486    0.722
 7     0.594 0.0563 19.7    0.476    0.712
 8     0.599 0.0563 19.7    0.481    0.717
 9     0.585 0.0563 19.7    0.468    0.703
 10    0.573 0.0563 19.7    0.456    0.691
 11    0.574 0.0563 19.7    0.456    0.691
 12    0.597 0.0563 19.7    0.480    0.715
 13    0.588 0.0563 19.7    0.470    0.705
 14    0.575 0.0563 19.7    0.458    0.693
 15    0.554 0.0563 19.7    0.436    0.672
 16    0.559 0.0563 19.7    0.442    0.677
 17    0.554 0.0563 19.7    0.436    0.672
 18    0.535 0.0563 19.7    0.418    0.653

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

Pairwise Comparisons:
 contrast         estimate     SE   df t.ratio p.value
 Step1 - Step2    0.002072 0.0217 4403   0.095  1.0000
 Step1 - Step3   -0.002645 0.0217 4403  -0.122  1.0000
 Step1 - Step4    0.001392 0.0217 4403   0.064  1.0000
 Step1 - Step5    0.024627 0.0217 4403   1.134  0.9997
 Step1 - Step6    0.027744 0.0217 4403   1.278  0.9986
 Step1 - Step7    0.037488 0.0217 4403   1.727  0.9616
 Step1 - Step8    0.032507 0.0217 4403   1.497  0.9909
 Step1 - Step9    0.046461 0.0217 4403   2.140  0.7925
 Step1 - Step10   0.058221 0.0217 4403   2.682  0.3934
 Step1 - Step11   0.057970 0.0217 4403   2.670  0.4017
 Step1 - Step12   0.034198 0.0217 4403   1.575  0.9844
 Step1 - Step13   0.043992 0.0217 4403   2.026  0.8566
 Step1 - Step14   0.056123 0.0217 4403   2.585  0.4648
 Step1 - Step15   0.077723 0.0217 4403   3.580  0.0373
 Step1 - Step16   0.072145 0.0217 4403   3.323  0.0839
 Step1 - Step17   0.077617 0.0217 4403   3.575  0.0379
 Step1 - Step18   0.096413 0.0217 4403   4.441  0.0013
 Step2 - Step3   -0.004717 0.0217 4403  -0.217  1.0000
 Step2 - Step4   -0.000679 0.0217 4403  -0.031  1.0000
 Step2 - Step5    0.022555 0.0217 4403   1.039  0.9999
 Step2 - Step6    0.025672 0.0217 4403   1.183  0.9995
 Step2 - Step7    0.035417 0.0217 4403   1.631  0.9778
 Step2 - Step8    0.030435 0.0217 4403   1.402  0.9957
 Step2 - Step9    0.044389 0.0217 4403   2.045  0.8472
 Step2 - Step10   0.056150 0.0217 4403   2.586  0.4639
 Step2 - Step11   0.055898 0.0217 4403   2.575  0.4727
 Step2 - Step12   0.032126 0.0217 4403   1.480  0.9920
 Step2 - Step13   0.041920 0.0217 4403   1.931  0.9001
 Step2 - Step14   0.054051 0.0217 4403   2.490  0.5383
 Step2 - Step15   0.075651 0.0217 4403   3.485  0.0510
 Step2 - Step16   0.070073 0.0217 4403   3.228  0.1105
 Step2 - Step17   0.075546 0.0217 4403   3.480  0.0518
 Step2 - Step18   0.094342 0.0217 4403   4.346  0.0019
 Step3 - Step4    0.004038 0.0217 4403   0.186  1.0000
 Step3 - Step5    0.027273 0.0217 4403   1.256  0.9988
 Step3 - Step6    0.030389 0.0217 4403   1.400  0.9957
 Step3 - Step7    0.040134 0.0217 4403   1.849  0.9299
 Step3 - Step8    0.035152 0.0217 4403   1.619  0.9794
 Step3 - Step9    0.049106 0.0217 4403   2.262  0.7110
 Step3 - Step10   0.060867 0.0217 4403   2.804  0.3107
 Step3 - Step11   0.060616 0.0217 4403   2.792  0.3181
 Step3 - Step12   0.036843 0.0217 4403   1.697  0.9674
 Step3 - Step13   0.046637 0.0217 4403   2.148  0.7874
 Step3 - Step14   0.058769 0.0217 4403   2.707  0.3755
 Step3 - Step15   0.080368 0.0217 4403   3.702  0.0245
 Step3 - Step16   0.074790 0.0217 4403   3.445  0.0578
 Step3 - Step17   0.080263 0.0217 4403   3.697  0.0249
 Step3 - Step18   0.099059 0.0217 4403   4.563  0.0007
 Step4 - Step5    0.023235 0.0217 4403   1.070  0.9999
 Step4 - Step6    0.026351 0.0217 4403   1.214  0.9993
 Step4 - Step7    0.036096 0.0217 4403   1.663  0.9732
 Step4 - Step8    0.031114 0.0217 4403   1.433  0.9944
 Step4 - Step9    0.045068 0.0217 4403   2.076  0.8303
 Step4 - Step10   0.056829 0.0217 4403   2.618  0.4404
 Step4 - Step11   0.056578 0.0217 4403   2.606  0.4490
 Step4 - Step12   0.032805 0.0217 4403   1.511  0.9900
 Step4 - Step13   0.042599 0.0217 4403   1.962  0.8870
 Step4 - Step14   0.054731 0.0217 4403   2.521  0.5140
 Step4 - Step15   0.076330 0.0217 4403   3.516  0.0461
 Step4 - Step16   0.070752 0.0217 4403   3.259  0.1011
 Step4 - Step17   0.076225 0.0217 4403   3.511  0.0468
 Step4 - Step18   0.095021 0.0217 4403   4.377  0.0017
 Step5 - Step6    0.003116 0.0217 4403   0.144  1.0000
 Step5 - Step7    0.012861 0.0217 4403   0.592  1.0000
 Step5 - Step8    0.007880 0.0217 4403   0.363  1.0000
 Step5 - Step9    0.021834 0.0217 4403   1.006  0.9999
 Step5 - Step10   0.033594 0.0217 4403   1.547  0.9871
 Step5 - Step11   0.033343 0.0217 4403   1.536  0.9881
 Step5 - Step12   0.009571 0.0217 4403   0.441  1.0000
 Step5 - Step13   0.019365 0.0217 4403   0.892  1.0000
 Step5 - Step14   0.031496 0.0217 4403   1.451  0.9936
 Step5 - Step15   0.053096 0.0217 4403   2.446  0.5726
 Step5 - Step16   0.047518 0.0217 4403   2.189  0.7613
 Step5 - Step17   0.052990 0.0217 4403   2.441  0.5763
 Step5 - Step18   0.071786 0.0217 4403   3.307  0.0881
 Step6 - Step7    0.009745 0.0217 4403   0.449  1.0000
 Step6 - Step8    0.004763 0.0217 4403   0.219  1.0000
 Step6 - Step9    0.018717 0.0217 4403   0.862  1.0000
 Step6 - Step10   0.030478 0.0217 4403   1.404  0.9956
 Step6 - Step11   0.030226 0.0217 4403   1.392  0.9960
 Step6 - Step12   0.006454 0.0217 4403   0.297  1.0000
 Step6 - Step13   0.016248 0.0217 4403   0.748  1.0000
 Step6 - Step14   0.028379 0.0217 4403   1.307  0.9981
 Step6 - Step15   0.049979 0.0217 4403   2.302  0.6819
 Step6 - Step16   0.044401 0.0217 4403   2.045  0.8469
 Step6 - Step17   0.049874 0.0217 4403   2.297  0.6854
 Step6 - Step18   0.068670 0.0217 4403   3.163  0.1320
 Step7 - Step8   -0.004982 0.0217 4403  -0.229  1.0000
 Step7 - Step9    0.008972 0.0217 4403   0.413  1.0000
 Step7 - Step10   0.020733 0.0217 4403   0.955  1.0000
 Step7 - Step11   0.020482 0.0217 4403   0.943  1.0000
 Step7 - Step12  -0.003291 0.0217 4403  -0.152  1.0000
 Step7 - Step13   0.006503 0.0217 4403   0.300  1.0000
 Step7 - Step14   0.018635 0.0217 4403   0.858  1.0000
 Step7 - Step15   0.040234 0.0217 4403   1.853  0.9284
 Step7 - Step16   0.034656 0.0217 4403   1.596  0.9822
 Step7 - Step17   0.040129 0.0217 4403   1.848  0.9300
 Step7 - Step18   0.058925 0.0217 4403   2.714  0.3705
 Step8 - Step9    0.013954 0.0217 4403   0.643  1.0000
 Step8 - Step10   0.025714 0.0217 4403   1.184  0.9995
 Step8 - Step11   0.025463 0.0217 4403   1.173  0.9995
 Step8 - Step12   0.001691 0.0217 4403   0.078  1.0000
 Step8 - Step13   0.011485 0.0217 4403   0.529  1.0000
 Step8 - Step14   0.023616 0.0217 4403   1.088  0.9998
 Step8 - Step15   0.045216 0.0217 4403   2.083  0.8264
 Step8 - Step16   0.039638 0.0217 4403   1.826  0.9369
 Step8 - Step17   0.045110 0.0217 4403   2.078  0.8292
 Step8 - Step18   0.063906 0.0217 4403   2.944  0.2288
 Step9 - Step10   0.011760 0.0217 4403   0.542  1.0000
 Step9 - Step11   0.011509 0.0217 4403   0.530  1.0000
 Step9 - Step12  -0.012263 0.0217 4403  -0.565  1.0000
 Step9 - Step13  -0.002469 0.0217 4403  -0.114  1.0000
 Step9 - Step14   0.009662 0.0217 4403   0.445  1.0000
 Step9 - Step15   0.031262 0.0217 4403   1.440  0.9941
 Step9 - Step16   0.025684 0.0217 4403   1.183  0.9995
 Step9 - Step17   0.031156 0.0217 4403   1.435  0.9943
 Step9 - Step18   0.049952 0.0217 4403   2.301  0.6828
 Step10 - Step11 -0.000251 0.0217 4403  -0.012  1.0000
 Step10 - Step12 -0.024024 0.0217 4403  -1.107  0.9998
 Step10 - Step13 -0.014230 0.0217 4403  -0.655  1.0000
 Step10 - Step14 -0.002098 0.0217 4403  -0.097  1.0000
 Step10 - Step15  0.019501 0.0217 4403   0.898  1.0000
 Step10 - Step16  0.013923 0.0217 4403   0.641  1.0000
 Step10 - Step17  0.019396 0.0217 4403   0.893  1.0000
 Step10 - Step18  0.038192 0.0217 4403   1.759  0.9545
 Step11 - Step12 -0.023772 0.0217 4403  -1.095  0.9998
 Step11 - Step13 -0.013978 0.0217 4403  -0.644  1.0000
 Step11 - Step14 -0.001847 0.0217 4403  -0.085  1.0000
 Step11 - Step15  0.019753 0.0217 4403   0.910  1.0000
 Step11 - Step16  0.014175 0.0217 4403   0.653  1.0000
 Step11 - Step17  0.019647 0.0217 4403   0.905  1.0000
 Step11 - Step18  0.038443 0.0217 4403   1.771  0.9518
 Step12 - Step13  0.009794 0.0217 4403   0.451  1.0000
 Step12 - Step14  0.021925 0.0217 4403   1.010  0.9999
 Step12 - Step15  0.043525 0.0217 4403   2.005  0.8673
 Step12 - Step16  0.037947 0.0217 4403   1.748  0.9571
 Step12 - Step17  0.043420 0.0217 4403   2.000  0.8696
 Step12 - Step18  0.062216 0.0217 4403   2.866  0.2725
 Step13 - Step14  0.012131 0.0217 4403   0.559  1.0000
 Step13 - Step15  0.033731 0.0217 4403   1.554  0.9865
 Step13 - Step16  0.028153 0.0217 4403   1.297  0.9983
 Step13 - Step17  0.033626 0.0217 4403   1.549  0.9870
 Step13 - Step18  0.052422 0.0217 4403   2.415  0.5966
 Step14 - Step15  0.021600 0.0217 4403   0.995  0.9999
 Step14 - Step16  0.016022 0.0217 4403   0.738  1.0000
 Step14 - Step17  0.021494 0.0217 4403   0.990  1.0000
 Step14 - Step18  0.040290 0.0217 4403   1.856  0.9276
 Step15 - Step16 -0.005578 0.0217 4403  -0.257  1.0000
 Step15 - Step17 -0.000105 0.0217 4403  -0.005  1.0000
 Step15 - Step18  0.018691 0.0217 4403   0.861  1.0000
 Step16 - Step17  0.005473 0.0217 4403   0.252  1.0000
 Step16 - Step18  0.024269 0.0217 4403   1.118  0.9997
 Step17 - Step18  0.018796 0.0217 4403   0.866  1.0000

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 18 estimates 
--- Axis: Y ---Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
      Chisq Df Pr(>Chisq)    
Step 105.94 17   6.96e-15 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Marginal Means:
 Step emmean     SE df lower.CL upper.CL
 1     0.727 0.0646 21    0.593    0.861
 2     0.706 0.0646 21    0.572    0.840
 3     0.691 0.0646 21    0.557    0.826
 4     0.681 0.0646 21    0.547    0.815
 5     0.668 0.0646 21    0.534    0.803
 6     0.649 0.0646 21    0.515    0.784
 7     0.626 0.0646 21    0.491    0.760
 8     0.639 0.0646 21    0.505    0.773
 9     0.632 0.0646 21    0.498    0.767
 10    0.625 0.0646 21    0.491    0.759
 11    0.633 0.0646 21    0.499    0.767
 12    0.639 0.0646 21    0.505    0.774
 13    0.621 0.0646 21    0.487    0.756
 14    0.605 0.0646 21    0.471    0.739
 15    0.561 0.0646 21    0.427    0.695
 16    0.560 0.0646 21    0.426    0.694
 17    0.558 0.0646 21    0.423    0.692
 18    0.538 0.0646 21    0.404    0.673

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

Pairwise Comparisons:
 contrast         estimate   SE   df t.ratio p.value
 Step1 - Step2    0.020729 0.03 4403   0.691  1.0000
 Step1 - Step3    0.035553 0.03 4403   1.186  0.9994
 Step1 - Step4    0.046150 0.03 4403   1.539  0.9878
 Step1 - Step5    0.058654 0.03 4403   1.956  0.8897
 Step1 - Step6    0.077498 0.03 4403   2.584  0.4656
 Step1 - Step7    0.101206 0.03 4403   3.375  0.0719
 Step1 - Step8    0.087762 0.03 4403   2.926  0.2381
 Step1 - Step9    0.094627 0.03 4403   3.155  0.1348
 Step1 - Step10   0.102042 0.03 4403   3.403  0.0660
 Step1 - Step11   0.094054 0.03 4403   3.136  0.1418
 Step1 - Step12   0.087635 0.03 4403   2.922  0.2404
 Step1 - Step13   0.105500 0.03 4403   3.518  0.0458
 Step1 - Step14   0.121916 0.03 4403   4.065  0.0062
 Step1 - Step15   0.166197 0.03 4403   5.542  <.0001
 Step1 - Step16   0.167098 0.03 4403   5.572  <.0001
 Step1 - Step17   0.169263 0.03 4403   5.644  <.0001
 Step1 - Step18   0.188541 0.03 4403   6.287  <.0001
 Step2 - Step3    0.014824 0.03 4403   0.494  1.0000
 Step2 - Step4    0.025421 0.03 4403   0.848  1.0000
 Step2 - Step5    0.037925 0.03 4403   1.265  0.9987
 Step2 - Step6    0.056768 0.03 4403   1.893  0.9147
 Step2 - Step7    0.080477 0.03 4403   2.684  0.3922
 Step2 - Step8    0.067032 0.03 4403   2.235  0.7299
 Step2 - Step9    0.073898 0.03 4403   2.464  0.5582
 Step2 - Step10   0.081313 0.03 4403   2.711  0.3725
 Step2 - Step11   0.073324 0.03 4403   2.445  0.5731
 Step2 - Step12   0.066906 0.03 4403   2.231  0.7328
 Step2 - Step13   0.084771 0.03 4403   2.827  0.2962
 Step2 - Step14   0.101186 0.03 4403   3.374  0.0720
 Step2 - Step15   0.145468 0.03 4403   4.851  0.0002
 Step2 - Step16   0.146369 0.03 4403   4.881  0.0002
 Step2 - Step17   0.148534 0.03 4403   4.953  0.0001
 Step2 - Step18   0.167812 0.03 4403   5.596  <.0001
 Step3 - Step4    0.010597 0.03 4403   0.353  1.0000
 Step3 - Step5    0.023101 0.03 4403   0.770  1.0000
 Step3 - Step6    0.041944 0.03 4403   1.399  0.9958
 Step3 - Step7    0.065653 0.03 4403   2.189  0.7611
 Step3 - Step8    0.052208 0.03 4403   1.741  0.9587
 Step3 - Step9    0.059074 0.03 4403   1.970  0.8836
 Step3 - Step10   0.066489 0.03 4403   2.217  0.7423
 Step3 - Step11   0.058500 0.03 4403   1.951  0.8919
 Step3 - Step12   0.052082 0.03 4403   1.737  0.9596
 Step3 - Step13   0.069947 0.03 4403   2.332  0.6594
 Step3 - Step14   0.086362 0.03 4403   2.880  0.2643
 Step3 - Step15   0.130644 0.03 4403   4.356  0.0018
 Step3 - Step16   0.131545 0.03 4403   4.386  0.0016
 Step3 - Step17   0.133710 0.03 4403   4.459  0.0012
 Step3 - Step18   0.152988 0.03 4403   5.101  0.0001
 Step4 - Step5    0.012503 0.03 4403   0.417  1.0000
 Step4 - Step6    0.031347 0.03 4403   1.045  0.9999
 Step4 - Step7    0.055056 0.03 4403   1.836  0.9339
 Step4 - Step8    0.041611 0.03 4403   1.388  0.9962
 Step4 - Step9    0.048476 0.03 4403   1.616  0.9797
 Step4 - Step10   0.055892 0.03 4403   1.864  0.9250
 Step4 - Step11   0.047903 0.03 4403   1.597  0.9820
 Step4 - Step12   0.041485 0.03 4403   1.383  0.9963
 Step4 - Step13   0.059350 0.03 4403   1.979  0.8794
 Step4 - Step14   0.075765 0.03 4403   2.526  0.5099
 Step4 - Step15   0.120047 0.03 4403   4.003  0.0080
 Step4 - Step16   0.120948 0.03 4403   4.033  0.0071
 Step4 - Step17   0.123113 0.03 4403   4.105  0.0053
 Step4 - Step18   0.142391 0.03 4403   4.748  0.0003
 Step5 - Step6    0.018844 0.03 4403   0.628  1.0000
 Step5 - Step7    0.042552 0.03 4403   1.419  0.9950
 Step5 - Step8    0.029108 0.03 4403   0.971  1.0000
 Step5 - Step9    0.035973 0.03 4403   1.200  0.9994
 Step5 - Step10   0.043388 0.03 4403   1.447  0.9938
 Step5 - Step11   0.035400 0.03 4403   1.180  0.9995
 Step5 - Step12   0.028981 0.03 4403   0.966  1.0000
 Step5 - Step13   0.046847 0.03 4403   1.562  0.9857
 Step5 - Step14   0.063262 0.03 4403   2.110  0.8110
 Step5 - Step15   0.107543 0.03 4403   3.586  0.0365
 Step5 - Step16   0.108444 0.03 4403   3.616  0.0330
 Step5 - Step17   0.110610 0.03 4403   3.688  0.0257
 Step5 - Step18   0.129887 0.03 4403   4.331  0.0021
 Step6 - Step7    0.023708 0.03 4403   0.791  1.0000
 Step6 - Step8    0.010264 0.03 4403   0.342  1.0000
 Step6 - Step9    0.017129 0.03 4403   0.571  1.0000
 Step6 - Step10   0.024544 0.03 4403   0.818  1.0000
 Step6 - Step11   0.016556 0.03 4403   0.552  1.0000
 Step6 - Step12   0.010137 0.03 4403   0.338  1.0000
 Step6 - Step13   0.028003 0.03 4403   0.934  1.0000
 Step6 - Step14   0.044418 0.03 4403   1.481  0.9919
 Step6 - Step15   0.088699 0.03 4403   2.958  0.2215
 Step6 - Step16   0.089600 0.03 4403   2.988  0.2063
 Step6 - Step17   0.091766 0.03 4403   3.060  0.1728
 Step6 - Step18   0.111043 0.03 4403   3.703  0.0244
 Step7 - Step8   -0.013444 0.03 4403  -0.448  1.0000
 Step7 - Step9   -0.006579 0.03 4403  -0.219  1.0000
 Step7 - Step10   0.000836 0.03 4403   0.028  1.0000
 Step7 - Step11  -0.007152 0.03 4403  -0.238  1.0000
 Step7 - Step12  -0.013571 0.03 4403  -0.453  1.0000
 Step7 - Step13   0.004294 0.03 4403   0.143  1.0000
 Step7 - Step14   0.020710 0.03 4403   0.691  1.0000
 Step7 - Step15   0.064991 0.03 4403   2.167  0.7754
 Step7 - Step16   0.065892 0.03 4403   2.197  0.7558
 Step7 - Step17   0.068057 0.03 4403   2.269  0.7057
 Step7 - Step18   0.087335 0.03 4403   2.912  0.2459
 Step8 - Step9    0.006865 0.03 4403   0.229  1.0000
 Step8 - Step10   0.014280 0.03 4403   0.476  1.0000
 Step8 - Step11   0.006292 0.03 4403   0.210  1.0000
 Step8 - Step12  -0.000126 0.03 4403  -0.004  1.0000
 Step8 - Step13   0.017739 0.03 4403   0.592  1.0000
 Step8 - Step14   0.034154 0.03 4403   1.139  0.9997
 Step8 - Step15   0.078436 0.03 4403   2.615  0.4420
 Step8 - Step16   0.079336 0.03 4403   2.646  0.4198
 Step8 - Step17   0.081502 0.03 4403   2.718  0.3681
 Step8 - Step18   0.100780 0.03 4403   3.361  0.0751
 Step9 - Step10   0.007415 0.03 4403   0.247  1.0000
 Step9 - Step11  -0.000573 0.03 4403  -0.019  1.0000
 Step9 - Step12  -0.006992 0.03 4403  -0.233  1.0000
 Step9 - Step13   0.010874 0.03 4403   0.363  1.0000
 Step9 - Step14   0.027289 0.03 4403   0.910  1.0000
 Step9 - Step15   0.071570 0.03 4403   2.387  0.6183
 Step9 - Step16   0.072471 0.03 4403   2.417  0.5952
 Step9 - Step17   0.074637 0.03 4403   2.489  0.5391
 Step9 - Step18   0.093914 0.03 4403   3.132  0.1436
 Step10 - Step11 -0.007988 0.03 4403  -0.266  1.0000
 Step10 - Step12 -0.014407 0.03 4403  -0.480  1.0000
 Step10 - Step13  0.003458 0.03 4403   0.115  1.0000
 Step10 - Step14  0.019874 0.03 4403   0.663  1.0000
 Step10 - Step15  0.064155 0.03 4403   2.139  0.7930
 Step10 - Step16  0.065056 0.03 4403   2.169  0.7740
 Step10 - Step17  0.067221 0.03 4403   2.242  0.7255
 Step10 - Step18  0.086499 0.03 4403   2.884  0.2617
 Step11 - Step12 -0.006419 0.03 4403  -0.214  1.0000
 Step11 - Step13  0.011447 0.03 4403   0.382  1.0000
 Step11 - Step14  0.027862 0.03 4403   0.929  1.0000
 Step11 - Step15  0.072143 0.03 4403   2.406  0.6036
 Step11 - Step16  0.073044 0.03 4403   2.436  0.5804
 Step11 - Step17  0.075210 0.03 4403   2.508  0.5242
 Step11 - Step18  0.094487 0.03 4403   3.151  0.1365
 Step12 - Step13  0.017865 0.03 4403   0.596  1.0000
 Step12 - Step14  0.034281 0.03 4403   1.143  0.9997
 Step12 - Step15  0.078562 0.03 4403   2.620  0.4389
 Step12 - Step16  0.079463 0.03 4403   2.650  0.4167
 Step12 - Step17  0.081628 0.03 4403   2.722  0.3652
 Step12 - Step18  0.100906 0.03 4403   3.365  0.0741
 Step13 - Step14  0.016415 0.03 4403   0.547  1.0000
 Step13 - Step15  0.060697 0.03 4403   2.024  0.8579
 Step13 - Step16  0.061598 0.03 4403   2.054  0.8423
 Step13 - Step17  0.063763 0.03 4403   2.126  0.8010
 Step13 - Step18  0.083041 0.03 4403   2.769  0.3332
 Step14 - Step15  0.044281 0.03 4403   1.477  0.9922
 Step14 - Step16  0.045182 0.03 4403   1.507  0.9903
 Step14 - Step17  0.047348 0.03 4403   1.579  0.9841
 Step14 - Step18  0.066625 0.03 4403   2.222  0.7392
 Step15 - Step16  0.000901 0.03 4403   0.030  1.0000
 Step15 - Step17  0.003066 0.03 4403   0.102  1.0000
 Step15 - Step18  0.022344 0.03 4403   0.745  1.0000
 Step16 - Step17  0.002165 0.03 4403   0.072  1.0000
 Step16 - Step18  0.021443 0.03 4403   0.715  1.0000
 Step17 - Step18  0.019278 0.03 4403   0.643  1.0000

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 18 estimates 
--- Axis: Z ---Analysis of Deviance Table (Type II Wald chisquare tests)

Response: RMS
      Chisq Df Pr(>Chisq)    
Step 146.27 17  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Marginal Means:
 Step emmean    SE   df lower.CL upper.CL
 1      1.47 0.181 17.9    1.086     1.85
 2      1.45 0.181 17.9    1.066     1.83
 3      1.43 0.181 17.9    1.049     1.81
 4      1.43 0.181 17.9    1.052     1.81
 5      1.40 0.181 17.9    1.022     1.78
 6      1.35 0.181 17.9    0.969     1.73
 7      1.32 0.181 17.9    0.943     1.71
 8      1.30 0.181 17.9    0.918     1.68
 9      1.27 0.181 17.9    0.892     1.65
 10     1.27 0.181 17.9    0.894     1.66
 11     1.26 0.181 17.9    0.881     1.64
 12     1.28 0.181 17.9    0.898     1.66
 13     1.29 0.181 17.9    0.910     1.67
 14     1.26 0.181 17.9    0.875     1.64
 15     1.25 0.181 17.9    0.864     1.63
 16     1.24 0.181 17.9    0.860     1.62
 17     1.22 0.181 17.9    0.837     1.60
 18     1.18 0.181 17.9    0.795     1.56

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

Pairwise Comparisons:
 contrast        estimate     SE   df t.ratio p.value
 Step1 - Step2    0.02021 0.0417 4403   0.484  1.0000
 Step1 - Step3    0.03650 0.0417 4403   0.875  1.0000
 Step1 - Step4    0.03412 0.0417 4403   0.818  1.0000
 Step1 - Step5    0.06408 0.0417 4403   1.536  0.9881
 Step1 - Step6    0.11679 0.0417 4403   2.799  0.3137
 Step1 - Step7    0.14230 0.0417 4403   3.410  0.0644
 Step1 - Step8    0.16778 0.0417 4403   4.021  0.0074
 Step1 - Step9    0.19355 0.0417 4403   4.639  0.0005
 Step1 - Step10   0.19213 0.0417 4403   4.605  0.0006
 Step1 - Step11   0.20428 0.0417 4403   4.896  0.0001
 Step1 - Step12   0.18757 0.0417 4403   4.495  0.0010
 Step1 - Step13   0.17606 0.0417 4403   4.220  0.0033
 Step1 - Step14   0.21042 0.0417 4403   5.043  0.0001
 Step1 - Step15   0.22173 0.0417 4403   5.314  <.0001
 Step1 - Step16   0.22604 0.0417 4403   5.417  <.0001
 Step1 - Step17   0.24916 0.0417 4403   5.971  <.0001
 Step1 - Step18   0.29054 0.0417 4403   6.963  <.0001
 Step2 - Step3    0.01629 0.0417 4403   0.390  1.0000
 Step2 - Step4    0.01391 0.0417 4403   0.333  1.0000
 Step2 - Step5    0.04388 0.0417 4403   1.052  0.9999
 Step2 - Step6    0.09659 0.0417 4403   2.315  0.6726
 Step2 - Step7    0.12210 0.0417 4403   2.926  0.2383
 Step2 - Step8    0.14757 0.0417 4403   3.537  0.0431
 Step2 - Step9    0.17335 0.0417 4403   4.154  0.0043
 Step2 - Step10   0.17192 0.0417 4403   4.120  0.0050
 Step2 - Step11   0.18408 0.0417 4403   4.412  0.0014
 Step2 - Step12   0.16737 0.0417 4403   4.011  0.0077
 Step2 - Step13   0.15586 0.0417 4403   3.735  0.0218
 Step2 - Step14   0.19021 0.0417 4403   4.559  0.0007
 Step2 - Step15   0.20152 0.0417 4403   4.830  0.0002
 Step2 - Step16   0.20583 0.0417 4403   4.933  0.0001
 Step2 - Step17   0.22895 0.0417 4403   5.487  <.0001
 Step2 - Step18   0.27033 0.0417 4403   6.479  <.0001
 Step3 - Step4   -0.00238 0.0417 4403  -0.057  1.0000
 Step3 - Step5    0.02758 0.0417 4403   0.661  1.0000
 Step3 - Step6    0.08029 0.0417 4403   1.924  0.9028
 Step3 - Step7    0.10580 0.0417 4403   2.536  0.5027
 Step3 - Step8    0.13128 0.0417 4403   3.146  0.1381
 Step3 - Step9    0.15705 0.0417 4403   3.764  0.0196
 Step3 - Step10   0.15563 0.0417 4403   3.730  0.0222
 Step3 - Step11   0.16778 0.0417 4403   4.021  0.0074
 Step3 - Step12   0.15107 0.0417 4403   3.621  0.0325
 Step3 - Step13   0.13956 0.0417 4403   3.345  0.0787
 Step3 - Step14   0.17392 0.0417 4403   4.168  0.0041
 Step3 - Step15   0.18523 0.0417 4403   4.439  0.0013
 Step3 - Step16   0.18954 0.0417 4403   4.543  0.0008
 Step3 - Step17   0.21266 0.0417 4403   5.097  0.0001
 Step3 - Step18   0.25404 0.0417 4403   6.088  <.0001
 Step4 - Step5    0.02996 0.0417 4403   0.718  1.0000
 Step4 - Step6    0.08267 0.0417 4403   1.981  0.8784
 Step4 - Step7    0.10818 0.0417 4403   2.593  0.4591
 Step4 - Step8    0.13366 0.0417 4403   3.203  0.1183
 Step4 - Step9    0.15943 0.0417 4403   3.821  0.0160
 Step4 - Step10   0.15801 0.0417 4403   3.787  0.0181
 Step4 - Step11   0.17016 0.0417 4403   4.078  0.0059
 Step4 - Step12   0.15345 0.0417 4403   3.678  0.0267
 Step4 - Step13   0.14194 0.0417 4403   3.402  0.0662
 Step4 - Step14   0.17630 0.0417 4403   4.225  0.0032
 Step4 - Step15   0.18761 0.0417 4403   4.496  0.0010
 Step4 - Step16   0.19192 0.0417 4403   4.600  0.0006
 Step4 - Step17   0.21504 0.0417 4403   5.154  <.0001
 Step4 - Step18   0.25642 0.0417 4403   6.145  <.0001
 Step5 - Step6    0.05271 0.0417 4403   1.263  0.9988
 Step5 - Step7    0.07822 0.0417 4403   1.875  0.9213
 Step5 - Step8    0.10370 0.0417 4403   2.485  0.5419
 Step5 - Step9    0.12947 0.0417 4403   3.103  0.1548
 Step5 - Step10   0.12804 0.0417 4403   3.069  0.1690
 Step5 - Step11   0.14020 0.0417 4403   3.360  0.0752
 Step5 - Step12   0.12349 0.0417 4403   2.960  0.2205
 Step5 - Step13   0.11198 0.0417 4403   2.684  0.3920
 Step5 - Step14   0.14634 0.0417 4403   3.507  0.0474
 Step5 - Step15   0.15764 0.0417 4403   3.778  0.0187
 Step5 - Step16   0.16196 0.0417 4403   3.882  0.0127
 Step5 - Step17   0.18508 0.0417 4403   4.436  0.0013
 Step5 - Step18   0.22646 0.0417 4403   5.427  <.0001
 Step6 - Step7    0.02551 0.0417 4403   0.611  1.0000
 Step6 - Step8    0.05099 0.0417 4403   1.222  0.9992
 Step6 - Step9    0.07676 0.0417 4403   1.840  0.9327
 Step6 - Step10   0.07533 0.0417 4403   1.805  0.9427
 Step6 - Step11   0.08749 0.0417 4403   2.097  0.8184
 Step6 - Step12   0.07078 0.0417 4403   1.696  0.9675
 Step6 - Step13   0.05927 0.0417 4403   1.421  0.9950
 Step6 - Step14   0.09363 0.0417 4403   2.244  0.7238
 Step6 - Step15   0.10493 0.0417 4403   2.515  0.5188
 Step6 - Step16   0.10925 0.0417 4403   2.618  0.4400
 Step6 - Step17   0.13237 0.0417 4403   3.172  0.1288
 Step6 - Step18   0.17375 0.0417 4403   4.164  0.0042
 Step7 - Step8    0.02548 0.0417 4403   0.611  1.0000
 Step7 - Step9    0.05125 0.0417 4403   1.228  0.9991
 Step7 - Step10   0.04982 0.0417 4403   1.194  0.9994
 Step7 - Step11   0.06198 0.0417 4403   1.485  0.9917
 Step7 - Step12   0.04527 0.0417 4403   1.085  0.9998
 Step7 - Step13   0.03376 0.0417 4403   0.809  1.0000
 Step7 - Step14   0.06812 0.0417 4403   1.632  0.9777
 Step7 - Step15   0.07942 0.0417 4403   1.903  0.9109
 Step7 - Step16   0.08374 0.0417 4403   2.007  0.8663
 Step7 - Step17   0.10686 0.0417 4403   2.561  0.4833
 Step7 - Step18   0.14824 0.0417 4403   3.553  0.0408
 Step8 - Step9    0.02578 0.0417 4403   0.618  1.0000
 Step8 - Step10   0.02435 0.0417 4403   0.584  1.0000
 Step8 - Step11   0.03650 0.0417 4403   0.875  1.0000
 Step8 - Step12   0.01979 0.0417 4403   0.474  1.0000
 Step8 - Step13   0.00829 0.0417 4403   0.199  1.0000
 Step8 - Step14   0.04264 0.0417 4403   1.022  0.9999
 Step8 - Step15   0.05395 0.0417 4403   1.293  0.9983
 Step8 - Step16   0.05826 0.0417 4403   1.396  0.9959
 Step8 - Step17   0.08138 0.0417 4403   1.950  0.8921
 Step8 - Step18   0.12276 0.0417 4403   2.942  0.2297
 Step9 - Step10  -0.00143 0.0417 4403  -0.034  1.0000
 Step9 - Step11   0.01073 0.0417 4403   0.257  1.0000
 Step9 - Step12  -0.00598 0.0417 4403  -0.143  1.0000
 Step9 - Step13  -0.01749 0.0417 4403  -0.419  1.0000
 Step9 - Step14   0.01686 0.0417 4403   0.404  1.0000
 Step9 - Step15   0.02817 0.0417 4403   0.675  1.0000
 Step9 - Step16   0.03249 0.0417 4403   0.779  1.0000
 Step9 - Step17   0.05561 0.0417 4403   1.333  0.9976
 Step9 - Step18   0.09699 0.0417 4403   2.324  0.6654
 Step10 - Step11  0.01216 0.0417 4403   0.291  1.0000
 Step10 - Step12 -0.00455 0.0417 4403  -0.109  1.0000
 Step10 - Step13 -0.01606 0.0417 4403  -0.385  1.0000
 Step10 - Step14  0.01829 0.0417 4403   0.438  1.0000
 Step10 - Step15  0.02960 0.0417 4403   0.709  1.0000
 Step10 - Step16  0.03391 0.0417 4403   0.813  1.0000
 Step10 - Step17  0.05703 0.0417 4403   1.367  0.9968
 Step10 - Step18  0.09841 0.0417 4403   2.359  0.6397
 Step11 - Step12 -0.01671 0.0417 4403  -0.400  1.0000
 Step11 - Step13 -0.02822 0.0417 4403  -0.676  1.0000
 Step11 - Step14  0.00613 0.0417 4403   0.147  1.0000
 Step11 - Step15  0.01744 0.0417 4403   0.418  1.0000
 Step11 - Step16  0.02176 0.0417 4403   0.521  1.0000
 Step11 - Step17  0.04488 0.0417 4403   1.076  0.9998
 Step11 - Step18  0.08626 0.0417 4403   2.067  0.8351
 Step12 - Step13 -0.01151 0.0417 4403  -0.276  1.0000
 Step12 - Step14  0.02284 0.0417 4403   0.548  1.0000
 Step12 - Step15  0.03415 0.0417 4403   0.819  1.0000
 Step12 - Step16  0.03847 0.0417 4403   0.922  1.0000
 Step12 - Step17  0.06159 0.0417 4403   1.476  0.9922
 Step12 - Step18  0.10297 0.0417 4403   2.468  0.5554
 Step13 - Step14  0.03435 0.0417 4403   0.823  1.0000
 Step13 - Step15  0.04566 0.0417 4403   1.094  0.9998
 Step13 - Step16  0.04998 0.0417 4403   1.198  0.9994
 Step13 - Step17  0.07310 0.0417 4403   1.752  0.9562
 Step13 - Step18  0.11448 0.0417 4403   2.744  0.3503
 Step14 - Step15  0.01131 0.0417 4403   0.271  1.0000
 Step14 - Step16  0.01562 0.0417 4403   0.374  1.0000
 Step14 - Step17  0.03874 0.0417 4403   0.929  1.0000
 Step14 - Step18  0.08012 0.0417 4403   1.920  0.9044
 Step15 - Step16  0.00431 0.0417 4403   0.103  1.0000
 Step15 - Step17  0.02743 0.0417 4403   0.657  1.0000
 Step15 - Step18  0.06881 0.0417 4403   1.649  0.9753
 Step16 - Step17  0.02312 0.0417 4403   0.554  1.0000
 Step16 - Step18  0.06450 0.0417 4403   1.546  0.9872
 Step17 - Step18  0.04138 0.0417 4403   0.992  1.0000

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 18 estimates 
plot_stepwise_rms_block45_faceted <- function(step_summary_block45, seq_length) {
  step_levels <- as.character(1:seq_length)
  step_ticks <- step_levels[as.numeric(step_levels) %% 2 == 1 | step_levels == "1"]

  df <- step_summary_block45 %>%
    filter(
      Block %in% c("4", "5"),
      step_count == seq_length,
      Step %in% step_levels
    ) %>%
    mutate(
      Step = as.character(Step),
      Block = factor(Block, levels = c("4", "5"), labels = c("Block 4", "Block 5"))
    ) %>%
    group_by(Block, Step, Axis) %>%
    summarise(
      mean_rms = mean(RMS, na.rm = TRUE),
      sd_rms = sd(RMS, na.rm = TRUE),
      .groups = "drop"
    ) %>%
    mutate(
      Step = factor(Step, levels = step_levels)  # ✅ Enforce correct numeric order
    )

  ggplot(df, aes(x = Step, y = mean_rms, color = Block)) +
    geom_point(position = position_dodge(width = 0.5), size = 2) +
    geom_errorbar(
      aes(ymin = mean_rms - sd_rms, ymax = mean_rms + sd_rms),
      width = 0.3,
      position = position_dodge(width = 0.5)
    ) +
    facet_wrap(~ Axis, ncol = 3, scales = "free_y") +
    scale_x_discrete(breaks = step_ticks) +
    ylim(0, 3.25) +
    labs(
      title = paste(seq_length, "-Step Sequences: Step-wise RMS Acceleration — Block 4 vs Block 5"),
      x = "Step",
      y = "Mean RMS Acceleration (m/s²)",
      color = NULL
    ) +
    theme_minimal() +
    theme(
      panel.grid.major = element_blank(),
      panel.grid.minor = element_blank(),
      text = element_text(size = 12),
      plot.title = element_text(face = "bold"),
      legend.position = "top"
    )
}
plot_stepwise_rms_block45_faceted(step_summary_block45, seq_length = 6)

plot_stepwise_rms_block45_faceted(step_summary_block45, seq_length = 12)

plot_stepwise_rms_block45_faceted(step_summary_block45, seq_length = 18)

#4 Behavioural analysis

RT <- read.csv("/Users/can/Documents/Uni/Thesis/Data/E-Prime/all_excluded2.csv", sep = ";")

# Filter only response procedure entries, remove subject 12, convert to numeric
RTR <- RT %>%
  filter(procedure == "responsprocedure") %>%
  mutate(
    feedback.ACC = as.numeric(feedback.ACC),
    feedback.RT = as.numeric(feedback.RT)
  ) %>%
  filter(subject != 12)

# -------- Assign trial numbers dynamically --------
RTR <- RTR %>%
  group_by(subject, session) %>%
  mutate(trial = cumsum(sub.trial.number == 1)) %>%
  ungroup()

# -------- Compute trial-level accuracy and mean RT --------
df <- RTR %>%
  group_by(subject, session, trial) %>%
  mutate(
    trial.acc = sum(feedback.ACC, na.rm = TRUE) / n(),
    trial.RT = mean(feedback.RT, na.rm = TRUE)
  ) %>%
  ungroup()

# -------- Filter only trials with 80% accuracy --------
df_acc <- df %>%
  filter(
    (session %in% c(1, 2, 3) & trial.acc >= 0.8) |
    (session %in% c(4, 5) & trial.acc == 1)
  ) %>%
  mutate(
    subject = as.factor(subject),
    sub.trial.number = as.factor(sub.trial.number),
    session = as.factor(session)
  )


# -------- Add corr_trials per subject --------
df_acc5 <- df_acc %>%
  distinct(subject, trial, session) %>%
  count(subject, name = "corr_trials")

df_acc <- left_join(df_acc, df_acc5, by = "subject")

df_acc <- df_acc %>% select(-feedback.CRESP, -feedback.RESP, -cue.OnsetDelay, -cue.OnsetTime)

#4.1.1 RT per block

# Ensure correct factor levels
df_acc$session <- factor(df_acc$session, levels = 1:5, labels = paste("Block", 1:5))

# -------- Training Blocks Only (1–3) --------
df_train <- df_acc %>% filter(session %in% c("Block 1", "Block 2", "Block 3"))

model_rt_train <- lmer(feedback.RT ~ session + (1 | subject), data = df_train)
cat("=== LMM Summary: Training Blocks (RT) ===\n")
=== LMM Summary: Training Blocks (RT) ===
print(summary(model_rt_train))
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: feedback.RT ~ session + (1 | subject)
   Data: df_train

REML criterion at convergence: 322915

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.9479 -0.4784 -0.2247  0.1839 29.4415 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept)  46657   216.0   
 Residual             117302   342.5   
Number of obs: 22248, groups:  subject, 18

Fixed effects:
                Estimate Std. Error        df t value Pr(>|t|)    
(Intercept)    5.034e+02  5.117e+01 1.727e+01   9.837  1.7e-08 ***
sessionBlock 2 4.255e-01  6.502e+00 2.223e+04   0.065    0.948    
sessionBlock 3 3.553e+01  6.215e+00 2.223e+04   5.717  1.1e-08 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) sssnB2
sessinBlck2 -0.080       
sessinBlck3 -0.084  0.663
cat("\n=== Type II ANOVA ===\n")

=== Type II ANOVA ===
print(Anova(model_rt_train, type = 2))
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: feedback.RT
        Chisq Df Pr(>Chisq)    
session 57.47  2  3.316e-13 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
emm_train <- emmeans(model_rt_train, ~ session)
print(summary(emm_train))
 session emmean   SE   df lower.CL upper.CL
 Block 1    503 51.2 17.3      396      611
 Block 2    504 51.1 17.1      396      612
 Block 3    539 51.0 17.1      431      647

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
print(summary(pairs(emm_train), infer = c(TRUE, TRUE)))
 contrast          estimate   SE    df lower.CL upper.CL t.ratio p.value
 Block 1 - Block 2   -0.425 6.50 22229    -15.7     14.8  -0.065  0.9976
 Block 1 - Block 3  -35.532 6.21 22230    -50.1    -21.0  -5.717  <.0001
 Block 2 - Block 3  -35.107 5.23 22230    -47.4    -22.9  -6.719  <.0001

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
Conf-level adjustment: tukey method for comparing a family of 3 estimates 
P value adjustment: tukey method for comparing a family of 3 estimates 
plot_rt_train <- df_train %>%
  group_by(session) %>%
  summarise(mean_RT = mean(feedback.RT), sd_RT = sd(feedback.RT), n = n())

ggplot(plot_rt_train, aes(x = session, y = mean_RT)) +
  geom_point(size = 4, color = "steelblue") +
  geom_errorbar(aes(ymin = mean_RT - sd_RT, ymax = mean_RT + sd_RT), width = 0.2, color = "steelblue") +
  labs(title = "Mean RT – Training Blocks ", x = "Block", y = "Mean RT (ms)") +
  theme_minimal(base_size = 13) +
  theme(panel.grid = element_blank())

# -------- Test Blocks Only (4–5) --------
df_test <- df_acc %>% filter(session %in% c("Block 4", "Block 5"))

model_rt_test <- lmer(feedback.RT ~ session + (1 | subject), data = df_test)
cat("\n\n=== LMM Summary: Test Blocks (RT) ===\n")


=== LMM Summary: Test Blocks (RT) ===
print(summary(model_rt_test))
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: feedback.RT ~ session + (1 | subject)
   Data: df_test

REML criterion at convergence: 180713.6

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.0432 -0.4163 -0.2051  0.1536 28.0193 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept)  30386   174.3   
 Residual             134940   367.3   
Number of obs: 12330, groups:  subject, 18

Fixed effects:
                Estimate Std. Error        df t value Pr(>|t|)    
(Intercept)      465.809     41.315    17.110   11.28 2.42e-09 ***
sessionBlock 5   116.233      6.977 12321.235   16.66  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr)
sessinBlck5 -0.066
cat("\n=== Type II ANOVA ===\n")

=== Type II ANOVA ===
print(Anova(model_rt_test, type = 2))
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: feedback.RT
        Chisq Df Pr(>Chisq)    
session 277.5  1  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
emm_test <- emmeans(model_rt_test, ~ session)
print(summary(emm_test))
 session emmean   SE   df lower.CL upper.CL
 Block 4    466 41.3 17.1      379      553
 Block 5    582 41.4 17.4      495      669

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
print(summary(pairs(emm_test), infer = c(TRUE, TRUE)))
 contrast          estimate   SE    df lower.CL upper.CL t.ratio p.value
 Block 4 - Block 5     -116 6.98 12321     -130     -103 -16.657  <.0001

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
plot_rt_test <- df_test %>%
  group_by(session) %>%
  summarise(mean_RT = mean(feedback.RT), sd_RT = sd(feedback.RT), n = n())

ggplot(plot_rt_test, aes(x = session, y = mean_RT)) +
  geom_point(size = 4, color = "darkgreen") +
  geom_errorbar(aes(ymin = mean_RT - sd_RT, ymax = mean_RT + sd_RT), width = 0.2, color = "darkgreen") +
  labs(title = "Mean RT – Test Blocks (± SD)", x = "Block", y = "Mean RT (ms)") +
  theme_minimal(base_size = 13) +
  theme(panel.grid = element_blank())

#4.1.2 RT per block divided into sequence lengths for test phase

# ====== Preparation ======

# Filter for test blocks (Block 4 & 5)
df_test_all <- df_acc %>%
  filter(session %in% c("Block 4", "Block 5")) %>%
  group_by(subject, session, trial) %>%
  mutate(seq_length_trial = n_distinct(sub.trial.number)) %>%
  ungroup() %>%
  mutate(
    subject = as.factor(subject),
    session = as.factor(session),
    seq_length_trial = as.factor(seq_length_trial)  # 6, 12, 18
  )

# ====== Linear Mixed Model ======
model_rt <- lmer(feedback.RT ~ session * seq_length_trial + (1 | subject), data = df_test_all)

cat("=== LMM Summary: feedback.RT ~ session * seq_length_trial ===\n")
=== LMM Summary: feedback.RT ~ session * seq_length_trial ===
print(summary(model_rt))
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: feedback.RT ~ session * seq_length_trial + (1 | subject)
   Data: df_test_all

REML criterion at convergence: 180663.8

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.1100 -0.4184 -0.2072  0.1509 28.0496 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept)  30532   174.7   
 Residual             134729   367.1   
Number of obs: 12330, groups:  subject, 18

Fixed effects:
                                   Estimate Std. Error        df t value
(Intercept)                         447.108     42.260    18.551  10.580
sessionBlock 5                      105.253     13.922 12308.336   7.560
seq_length_trial12                   21.682     11.827 12307.363   1.833
seq_length_trial18                   25.308     11.516 12308.455   2.198
sessionBlock 5:seq_length_trial12    36.256     18.104 12307.695   2.003
sessionBlock 5:seq_length_trial18     1.587     17.441 12308.629   0.091
                                  Pr(>|t|)    
(Intercept)                       2.71e-09 ***
sessionBlock 5                    4.30e-14 ***
seq_length_trial12                  0.0668 .  
seq_length_trial18                  0.0280 *  
sessionBlock 5:seq_length_trial12   0.0452 *  
sessionBlock 5:seq_length_trial18   0.9275    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) sssnB5 sq__12 sq__18 sB5:__12
sessinBlck5 -0.152                              
sq_lngth_12 -0.179  0.543                       
sq_lngth_18 -0.184  0.554  0.658                
sssnB5:__12  0.117 -0.763 -0.653 -0.429         
sssnB5:__18  0.121 -0.789 -0.434 -0.657  0.613  
cat("\n=== Type II ANOVA ===\n")

=== Type II ANOVA ===
print(Anova(model_rt, type = 2))
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: feedback.RT
                            Chisq Df Pr(>Chisq)    
session                  286.7283  1  < 2.2e-16 ***
seq_length_trial          17.1089  2  0.0001927 ***
session:seq_length_trial   6.0764  2  0.0479200 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
cat("\n=== Estimated Marginal Means ===\n")

=== Estimated Marginal Means ===
emm_rt <- emmeans(model_rt, ~ session * seq_length_trial)
print(summary(emm_rt))
 session seq_length_trial emmean   SE   df lower.CL upper.CL
 Block 4 6                   447 42.3 18.6      359      536
 Block 5 6                   552 42.4 18.9      464      641
 Block 4 12                  469 41.8 17.8      381      557
 Block 5 12                  610 42.2 18.5      522      699
 Block 4 18                  472 41.7 17.6      385      560
 Block 5 18                  579 42.0 18.2      491      668

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
cat("\n=== Pairwise Comparisons ===\n")

=== Pairwise Comparisons ===
print(summary(pairs(emm_rt), infer = c(TRUE, TRUE)))
 contrast                                                estimate    SE    df
 Block 4 seq_length_trial6 - Block 5 seq_length_trial6    -105.25 13.90 12308
 Block 4 seq_length_trial6 - Block 4 seq_length_trial12    -21.68 11.80 12307
 Block 4 seq_length_trial6 - Block 5 seq_length_trial12   -163.19 13.30 12310
 Block 4 seq_length_trial6 - Block 4 seq_length_trial18    -25.31 11.50 12308
 Block 4 seq_length_trial6 - Block 5 seq_length_trial18   -132.15 12.70 12312
 Block 5 seq_length_trial6 - Block 4 seq_length_trial12     83.57 12.40 12309
 Block 5 seq_length_trial6 - Block 5 seq_length_trial12    -57.94 13.70 12308
 Block 5 seq_length_trial6 - Block 4 seq_length_trial18     79.94 12.20 12311
 Block 5 seq_length_trial6 - Block 5 seq_length_trial18    -26.90 13.10 12310
 Block 4 seq_length_trial12 - Block 5 seq_length_trial12  -141.51 11.70 12311
 Block 4 seq_length_trial12 - Block 4 seq_length_trial18    -3.63  9.66 12309
 Block 4 seq_length_trial12 - Block 5 seq_length_trial18  -110.47 11.10 12314
 Block 5 seq_length_trial12 - Block 4 seq_length_trial18   137.88 11.40 12313
 Block 5 seq_length_trial12 - Block 5 seq_length_trial18    31.04 12.40 12309
 Block 4 seq_length_trial18 - Block 5 seq_length_trial18  -106.84 10.70 12316
 lower.CL upper.CL t.ratio p.value
  -144.93   -65.57  -7.560  <.0001
   -55.39    12.03  -1.833  0.4443
  -200.99  -125.39 -12.305  <.0001
   -58.13     7.52  -2.198  0.2388
  -168.35   -95.94 -10.403  <.0001
    48.10   119.04   6.716  <.0001
   -97.01   -18.87  -4.226  0.0003
    45.19   114.70   6.557  <.0001
   -64.37    10.58  -2.046  0.3164
  -174.85  -108.17 -12.096  <.0001
   -31.15    23.90  -0.376  0.9990
  -141.97   -78.96  -9.995  <.0001
   105.33   170.44  12.071  <.0001
    -4.17    66.26   2.512  0.1205
  -137.39   -76.29  -9.967  <.0001

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
Conf-level adjustment: tukey method for comparing a family of 6 estimates 
P value adjustment: tukey method for comparing a family of 6 estimates 
# ====== Plot: Combined plot per sequence length ======
plot_data_rt <- df_test_all %>%
  group_by(session, seq_length_trial) %>%
  summarise(
    mean_RT = mean(feedback.RT, na.rm = TRUE),
    sd_RT = sd(feedback.RT, na.rm = TRUE),
    n = n()
  )
`summarise()` has grouped output by 'session'. You can override using the
`.groups` argument.
ggplot(plot_data_rt, aes(x = seq_length_trial, y = mean_RT, color = session, group = session)) +
  geom_point(size = 4, position = position_dodge(width = 0.4)) +
  geom_errorbar(aes(ymin = mean_RT - sd_RT, ymax = mean_RT + sd_RT),
                width = 0.2, position = position_dodge(width = 0.4)) +
  labs(
    title = "Mean Reaction Time by Block and Sequence Length",
    x = "Sequence Length (Steps)",
    y = "Mean RT (ms)",
    color = "Block"
  ) +
  theme_minimal(base_size = 13) +
  theme(panel.grid = element_blank())

#4.2.1 correct trials per block

# --------- Step 1: Ensure correct filtering logic ---------
df_acc <- df %>%
  filter(
    (session %in% c(1, 2, 3) & trial.acc >= 0.8) |
    (session %in% c(4, 5) & trial.acc == 1)
  ) %>%
  mutate(
    subject = as.factor(subject),
    sub.trial.number = as.factor(sub.trial.number),
    session = as.factor(session)
  )

# --------- Step 2: Count correct trials per subject × session ---------
correct_trials_df <- df_acc %>%
  distinct(subject, session, trial) %>%
  count(subject, session, name = "correct_trials") %>%
  mutate(session = factor(session, levels = 1:5, labels = paste("Block", 1:5)))

# --------- Step 3a: Training Blocks Only (Block 1–3) ---------
train_trials <- correct_trials_df %>%
  filter(session %in% c("Block 1", "Block 2", "Block 3"))

if (nrow(train_trials) > 0) {
  model_train <- lmer(correct_trials ~ session + (1 | subject), data = train_trials)
  
  cat("=== LMM Summary: Training Blocks (Block 1–3) ===\n")
  print(summary(model_train))
  
  cat("\n=== Type II ANOVA (Chi-square) ===\n")
  print(Anova(model_train, type = 2))
  
  cat("\n=== Estimated Marginal Means (Training) ===\n")
  emm_train <- emmeans(model_train, ~ session)
  print(summary(emm_train))
  
  cat("\n=== Pairwise Comparisons Between Training Blocks ===\n")
  print(summary(pairs(emm_train), infer = c(TRUE, TRUE)))
  
  # Plot for training blocks
  plot_train <- train_trials %>%
    group_by(session) %>%
    summarise(
      mean_corr_trials = mean(correct_trials),
      sd_corr_trials = sd(correct_trials),
      n = n()
    )
  
  ggplot(plot_train, aes(x = session, y = mean_corr_trials)) +
    geom_point(size = 4, color = "firebrick") +
    geom_errorbar(aes(ymin = mean_corr_trials - sd_corr_trials,
                      ymax = mean_corr_trials + sd_corr_trials),
                  width = 0.2, color = "firebrick") +
    labs(
      title = "Correct Trials – Training Blocks ",
      x = "Block",
      y = "Correct Trials"
    ) +
    theme_minimal(base_size = 13) +
    theme(
      panel.grid.major = element_blank(),
      panel.grid.minor = element_blank()
    )
} else {
  cat("⚠️ No valid training block data (Block 1–3)\n")
}
=== LMM Summary: Training Blocks (Block 1–3) ===
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: correct_trials ~ session + (1 | subject)
   Data: train_trials

REML criterion at convergence: 352.3

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.4185 -0.4628  0.0811  0.5994  1.5145 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept) 22.25    4.716   
 Residual             34.49    5.872   
Number of obs: 54, groups:  subject, 18

Fixed effects:
               Estimate Std. Error     df t value Pr(>|t|)    
(Intercept)      40.833      1.775 39.005  23.001  < 2e-16 ***
sessionBlock 2   -5.667      1.957 34.000  -2.895  0.00658 ** 
sessionBlock 3   -9.222      1.957 34.000  -4.711 4.05e-05 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) sssnB2
sessinBlck2 -0.551       
sessinBlck3 -0.551  0.500

=== Type II ANOVA (Chi-square) ===
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: correct_trials
         Chisq Df Pr(>Chisq)    
session 22.584  2  1.247e-05 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

=== Estimated Marginal Means (Training) ===
 session emmean   SE df lower.CL upper.CL
 Block 1   40.8 1.78 39     37.2     44.4
 Block 2   35.2 1.78 39     31.6     38.8
 Block 3   31.6 1.78 39     28.0     35.2

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

=== Pairwise Comparisons Between Training Blocks ===
 contrast          estimate   SE df lower.CL upper.CL t.ratio p.value
 Block 1 - Block 2     5.67 1.96 34     0.87    10.46   2.895  0.0176
 Block 1 - Block 3     9.22 1.96 34     4.43    14.02   4.711  0.0001
 Block 2 - Block 3     3.56 1.96 34    -1.24     8.35   1.816  0.1795

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
Conf-level adjustment: tukey method for comparing a family of 3 estimates 
P value adjustment: tukey method for comparing a family of 3 estimates 

# --------- Step 3b: Test Blocks Only (Block 4–5) ---------
test_trials <- correct_trials_df %>%
  filter(session %in% c("Block 4", "Block 5"))

if (nrow(test_trials) > 0) {
  model_test <- lmer(correct_trials ~ session + (1 | subject), data = test_trials)
  
  cat("\n\n=== LMM Summary: Test Blocks (Block 4–5) ===\n")
  print(summary(model_test))
  
  cat("\n=== Type II ANOVA (Chi-square) ===\n")
  print(Anova(model_test, type = 2))
  
  cat("\n=== Estimated Marginal Means (Test) ===\n")
  emm_test <- emmeans(model_test, ~ session)
  print(summary(emm_test))
  
  cat("\n=== Pairwise Comparisons Between Test Blocks ===\n")
  print(summary(pairs(emm_test), infer = c(TRUE, TRUE)))
  
  # Plot for test blocks
  plot_test <- test_trials %>%
    group_by(session) %>%
    summarise(
      mean_corr_trials = mean(correct_trials),
      sd_corr_trials = sd(correct_trials),
      n = n()
    )
  
  ggplot(plot_test, aes(x = session, y = mean_corr_trials)) +
    geom_point(size = 4, color = "darkred") +
    geom_errorbar(aes(ymin = mean_corr_trials - sd_corr_trials,
                      ymax = mean_corr_trials + sd_corr_trials),
                  width = 0.2, color = "darkred") +
    labs(
      title = "Correct Trials – Test Blocks",
      x = "Block",
      y = "Correct Trials"
    ) +
    theme_minimal(base_size = 13) +
    theme(
      panel.grid.major = element_blank(),
      panel.grid.minor = element_blank()
    )
} else {
  cat("⚠️ No valid test block data (Block 4–5)\n")
}


=== LMM Summary: Test Blocks (Block 4–5) ===
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: correct_trials ~ session + (1 | subject)
   Data: test_trials

REML criterion at convergence: 227.6

Scaled residuals: 
     Min       1Q   Median       3Q      Max 
-2.22385 -0.42259  0.01505  0.61002  1.34895 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept) 11.58    3.403   
 Residual             38.38    6.195   
Number of obs: 35, groups:  subject, 18

Fixed effects:
               Estimate Std. Error     df t value Pr(>|t|)    
(Intercept)      36.278      1.666 31.311  21.775  < 2e-16 ***
sessionBlock 5   -8.865      2.102 16.286  -4.217 0.000632 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr)
sessinBlck5 -0.609

=== Type II ANOVA (Chi-square) ===
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: correct_trials
         Chisq Df Pr(>Chisq)    
session 17.782  1  2.478e-05 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

=== Estimated Marginal Means (Test) ===
 session emmean   SE   df lower.CL upper.CL
 Block 4   36.3 1.67 31.4     32.9     39.7
 Block 5   27.4 1.72 31.7     23.9     30.9

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

=== Pairwise Comparisons Between Test Blocks ===
 contrast          estimate   SE   df lower.CL upper.CL t.ratio p.value
 Block 4 - Block 5     8.86 2.11 16.6     4.41     13.3   4.208  0.0006

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

#4.2.2 correct trials per block divided into sequence lengths for test phase

# ====== Step 1: Prepare Full Accuracy-Filtered Data ======
df_acc <- df %>%
  filter(
    (session %in% c(1, 2, 3) & trial.acc >= 0.8) |
    (session %in% c(4, 5) & trial.acc == 1)
  ) %>%
  mutate(
    subject = as.factor(subject),
    session = factor(session, levels = 1:5, labels = paste("Block", 1:5))
  )

# ====== Step 2: Add seq_length_trial variable ======
df_acc <- df_acc %>%
  group_by(subject, session, trial) %>%
  mutate(seq_length_trial = n_distinct(sub.trial.number)) %>%
  ungroup() %>%
  mutate(seq_length_trial = as.factor(seq_length_trial))

# ====== Step 3: Count correct trials per subject × session × sequence length ======
correct_trials_df <- df_acc %>%
  distinct(subject, session, trial, seq_length_trial) %>%
  count(subject, session, seq_length_trial, name = "correct_trials")

# ====== Step 4: Run LMM for Test Blocks Only (Block 4 & 5) ======
test_trials <- correct_trials_df %>%
  filter(session %in% c("Block 4", "Block 5"))

if (nrow(test_trials) > 0) {
  model_test <- lmer(correct_trials ~ session * seq_length_trial + (1 | subject), data = test_trials)
  
  cat("\n=== LMM Summary: Correct Trials – Test Blocks ===\n")
  print(summary(model_test))
  
  cat("\n=== Type II ANOVA (Chi-square) ===\n")
  print(Anova(model_test, type = 2))
  
  cat("\n=== Estimated Marginal Means ===\n")
  emm_test <- emmeans(model_test, ~ session * seq_length_trial)
  print(summary(emm_test))
  
  cat("\n=== Pairwise Comparisons (Session × Sequence Length) ===\n")
  print(summary(pairs(emm_test), infer = c(TRUE, TRUE)))
  
  # ====== Step 5: Plot Combined Accuracy by Sequence Length ======
  plot_test <- test_trials %>%
    group_by(session, seq_length_trial) %>%
    summarise(
      mean_corr_trials = mean(correct_trials),
      sd_corr_trials = sd(correct_trials),
      n = n(),
      .groups = "drop"
    )
  
  ggplot(plot_test, aes(x = seq_length_trial, y = mean_corr_trials, color = session, group = session)) +
    geom_point(size = 4, position = position_dodge(width = 0.4)) +
    geom_errorbar(aes(ymin = mean_corr_trials - sd_corr_trials,
                      ymax = mean_corr_trials + sd_corr_trials),
                  width = 0.2, position = position_dodge(width = 0.4)) +
    labs(
      title = "Correct Trials – Test Blocks by Sequence Length",
      x = "Sequence Length (Steps)",
      y = "Correct Trials",
      color = "Block"
    ) +
    theme_minimal(base_size = 13) +
    theme(panel.grid = element_blank())
  
} else {
  cat("⚠️ No valid test block data (Block 4–5)\n")
}

=== LMM Summary: Correct Trials – Test Blocks ===
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: correct_trials ~ session * seq_length_trial + (1 | subject)
   Data: test_trials

REML criterion at convergence: 485.2

Scaled residuals: 
     Min       1Q   Median       3Q      Max 
-2.07486 -0.52085  0.03835  0.54790  2.11017 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept) 2.327    1.526   
 Residual             5.631    2.373   
Number of obs: 104, groups:  subject, 18

Fixed effects:
                                  Estimate Std. Error      df t value Pr(>|t|)
(Intercept)                        13.9444     0.6649 68.7570  20.971  < 2e-16
sessionBlock 5                     -1.0262     0.8047 81.1751  -1.275  0.20581
seq_length_trial12                 -1.5000     0.7910 80.6262  -1.896  0.06150
seq_length_trial18                 -4.0556     0.7910 80.6262  -5.127 1.98e-06
sessionBlock 5:seq_length_trial12  -3.4412     1.1350 80.6262  -3.032  0.00327
sessionBlock 5:seq_length_trial18  -1.8478     1.1453 80.7892  -1.613  0.11056
                                     
(Intercept)                       ***
sessionBlock 5                       
seq_length_trial12                .  
seq_length_trial18                ***
sessionBlock 5:seq_length_trial12 ** 
sessionBlock 5:seq_length_trial18    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) sssnB5 sq__12 sq__18 sB5:__12
sessinBlck5 -0.585                              
sq_lngth_12 -0.595  0.492                       
sq_lngth_18 -0.595  0.492  0.500                
sssnB5:__12  0.415 -0.705 -0.697 -0.348         
sssnB5:__18  0.411 -0.699 -0.345 -0.691  0.496  

=== Type II ANOVA (Chi-square) ===
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: correct_trials
                           Chisq Df Pr(>Chisq)    
session                  35.2349  1  2.922e-09 ***
seq_length_trial         77.1714  2  < 2.2e-16 ***
session:seq_length_trial  9.2091  2    0.01001 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

=== Estimated Marginal Means ===
 session seq_length_trial emmean    SE   df lower.CL upper.CL
 Block 4 6                 13.94 0.665 69.4    12.62    15.27
 Block 5 6                 12.92 0.681 71.9    11.56    14.28
 Block 4 12                12.44 0.665 69.4    11.12    13.77
 Block 5 12                 7.98 0.681 71.9     6.62     9.34
 Block 4 18                 9.89 0.665 69.4     8.56    11.22
 Block 5 18                 7.01 0.699 74.7     5.62     8.41

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

=== Pairwise Comparisons (Session × Sequence Length) ===
 contrast                                                estimate    SE   df
 Block 4 seq_length_trial6 - Block 5 seq_length_trial6      1.026 0.805 81.6
 Block 4 seq_length_trial6 - Block 4 seq_length_trial12     1.500 0.791 81.0
 Block 4 seq_length_trial6 - Block 5 seq_length_trial12     5.967 0.805 81.6
 Block 4 seq_length_trial6 - Block 4 seq_length_trial18     4.056 0.791 81.0
 Block 4 seq_length_trial6 - Block 5 seq_length_trial18     6.930 0.820 81.9
 Block 5 seq_length_trial6 - Block 4 seq_length_trial12     0.474 0.805 81.6
 Block 5 seq_length_trial6 - Block 5 seq_length_trial12     4.941 0.814 81.0
 Block 5 seq_length_trial6 - Block 4 seq_length_trial18     3.029 0.805 81.6
 Block 5 seq_length_trial6 - Block 5 seq_length_trial18     5.903 0.828 81.4
 Block 4 seq_length_trial12 - Block 5 seq_length_trial12    4.467 0.805 81.6
 Block 4 seq_length_trial12 - Block 4 seq_length_trial18    2.556 0.791 81.0
 Block 4 seq_length_trial12 - Block 5 seq_length_trial18    5.430 0.820 81.9
 Block 5 seq_length_trial12 - Block 4 seq_length_trial18   -1.912 0.805 81.6
 Block 5 seq_length_trial12 - Block 5 seq_length_trial18    0.962 0.828 81.4
 Block 4 seq_length_trial18 - Block 5 seq_length_trial18    2.874 0.820 81.9
 lower.CL upper.CL t.ratio p.value
   -1.323    3.376   1.275  0.7977
   -0.809    3.809   1.896  0.4119
    3.618    8.317   7.413  <.0001
    1.747    6.364   5.127  <.0001
    4.538    9.322   8.454  <.0001
   -1.876    2.823   0.589  0.9915
    2.565    7.317   6.071  <.0001
    0.680    5.379   3.763  0.0041
    3.485    8.321   7.126  <.0001
    2.118    6.817   5.550  <.0001
    0.247    4.864   3.231  0.0213
    3.038    7.822   6.624  <.0001
   -4.261    0.437  -2.375  0.1773
   -1.456    3.380   1.161  0.8537
    0.482    5.266   3.506  0.0093

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
Conf-level adjustment: tukey method for comparing a family of 6 estimates 
P value adjustment: tukey method for comparing a family of 6 estimates 

#4.3 concatenation training blocks

RT <- read.csv("/Users/can/Documents/Uni/Thesis/Data/E-Prime/all_excluded2.csv", sep = ";")

# Filter only response procedure entries, remove subject 12, convert to numeric
RTR <- RT %>%
  filter(procedure == "responsprocedure") %>%
  mutate(
    feedback.ACC = as.numeric(feedback.ACC),
    feedback.RT = as.numeric(feedback.RT)
  ) %>%
  filter(subject != 12)

# -------- Assign trial numbers dynamically --------
RTR <- RTR %>%
  group_by(subject, session) %>%
  mutate(trial = cumsum(sub.trial.number == 1)) %>%
  ungroup()

# -------- Compute trial-level accuracy and mean RT --------
df <- RTR %>%
  group_by(subject, session, trial) %>%
  mutate(
    trial.acc = sum(feedback.ACC, na.rm = TRUE) / n(),
    trial.RT = mean(feedback.RT, na.rm = TRUE)
  ) %>%
  ungroup()

# -------- Filter only trials with 80% accuracy --------
df_acc <- df %>%
  filter(
    (session %in% c(1, 2, 3) & trial.acc >= 0.8) |
    (session %in% c(4, 5) & trial.acc == 1)
  ) %>%
  mutate(
    subject = as.factor(subject),
    sub.trial.number = as.factor(sub.trial.number),
    session = as.factor(session)
  )


# -------- Add corr_trials per subject --------
df_acc5 <- df_acc %>%
  distinct(subject, trial, session) %>%
  count(subject, name = "corr_trials")

df_acc <- left_join(df_acc, df_acc5, by = "subject")

df_acc <- df_acc %>% select(-feedback.CRESP, -feedback.RESP, -cue.OnsetDelay, -cue.OnsetTime)
# Ensure session is treated as factor again

df_acc$session <- factor(df_acc$session)

# -------- Block 1: 6-step sequences --------
df_B1_steps <- df_acc %>% filter(session == 1)

model_B1 <- lmer(feedback.RT ~ sub.trial.number + (1 | subject), data = df_B1_steps)

cat("=== Block 1: Stepwise RT Model Summary ===\n")
=== Block 1: Stepwise RT Model Summary ===
print(summary(model_B1))
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: feedback.RT ~ sub.trial.number + (1 | subject)
   Data: df_B1_steps

REML criterion at convergence: 63902.2

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-4.2550 -0.4120 -0.1512  0.2137 28.3250 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept)  66052   257.0   
 Residual             114010   337.7   
Number of obs: 4410, groups:  subject, 18

Fixed effects:
                  Estimate Std. Error      df t value Pr(>|t|)    
(Intercept)         752.57      61.85   18.20   12.17 3.52e-10 ***
sub.trial.number2  -296.25      17.61 4386.99  -16.82  < 2e-16 ***
sub.trial.number3  -318.39      17.61 4386.99  -18.08  < 2e-16 ***
sub.trial.number4  -307.24      17.61 4386.99  -17.44  < 2e-16 ***
sub.trial.number5  -288.44      17.61 4386.99  -16.38  < 2e-16 ***
sub.trial.number6  -280.70      17.61 4386.99  -15.94  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) sb.t.2 sb.t.3 sb.t.4 sb.t.5
sb.trl.nmb2 -0.142                            
sb.trl.nmb3 -0.142  0.500                     
sb.trl.nmb4 -0.142  0.500  0.500              
sb.trl.nmb5 -0.142  0.500  0.500  0.500       
sb.trl.nmb6 -0.142  0.500  0.500  0.500  0.500
cat("\n=== Chi-square ANOVA (Block 1) ===\n")

=== Chi-square ANOVA (Block 1) ===
print(Anova(model_B1, type = 2))
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: feedback.RT
                  Chisq Df Pr(>Chisq)    
sub.trial.number 483.51  5  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
emm_B1 <- emmeans(model_B1, ~ sub.trial.number)
cat("\n=== Estimated Marginal Means per Step (Block 1) ===\n")

=== Estimated Marginal Means per Step (Block 1) ===
print(summary(emm_B1))
 sub.trial.number emmean   SE   df lower.CL upper.CL
 1                   753 61.8 18.2      623      882
 2                   456 61.8 18.2      326      586
 3                   434 61.8 18.2      304      564
 4                   445 61.8 18.2      315      575
 5                   464 61.8 18.2      334      594
 6                   472 61.8 18.2      342      602

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
step_comparisons_B1 <- contrast(emm_B1, method = "pairwise", adjust = "none")
cat("\n=== Stepwise Pairwise Comparisons (Block 1) ===\n")

=== Stepwise Pairwise Comparisons (Block 1) ===
print(summary(step_comparisons_B1, infer = c(TRUE, TRUE)))
 contrast                              estimate   SE   df lower.CL upper.CL
 sub.trial.number1 - sub.trial.number2   296.25 17.6 4387    261.7   330.78
 sub.trial.number1 - sub.trial.number3   318.39 17.6 4387    283.9   352.92
 sub.trial.number1 - sub.trial.number4   307.24 17.6 4387    272.7   341.77
 sub.trial.number1 - sub.trial.number5   288.44 17.6 4387    253.9   322.97
 sub.trial.number1 - sub.trial.number6   280.70 17.6 4387    246.2   315.23
 sub.trial.number2 - sub.trial.number3    22.14 17.6 4387    -12.4    56.67
 sub.trial.number2 - sub.trial.number4    10.99 17.6 4387    -23.5    45.52
 sub.trial.number2 - sub.trial.number5    -7.81 17.6 4387    -42.3    26.72
 sub.trial.number2 - sub.trial.number6   -15.55 17.6 4387    -50.1    18.98
 sub.trial.number3 - sub.trial.number4   -11.15 17.6 4387    -45.7    23.38
 sub.trial.number3 - sub.trial.number5   -29.95 17.6 4387    -64.5     4.58
 sub.trial.number3 - sub.trial.number6   -37.69 17.6 4387    -72.2    -3.16
 sub.trial.number4 - sub.trial.number5   -18.80 17.6 4387    -53.3    15.73
 sub.trial.number4 - sub.trial.number6   -26.54 17.6 4387    -61.1     7.99
 sub.trial.number5 - sub.trial.number6    -7.74 17.6 4387    -42.3    26.79
 t.ratio p.value
  16.820  <.0001
  18.077  <.0001
  17.444  <.0001
  16.376  <.0001
  15.937  <.0001
   1.257  0.2088
   0.624  0.5326
  -0.443  0.6575
  -0.883  0.3774
  -0.633  0.5267
  -1.701  0.0891
  -2.140  0.0324
  -1.067  0.2858
  -1.507  0.1319
  -0.439  0.6604

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
# -------- Block 2: 12-step sequences --------
df_B2_steps <- df_acc %>% filter(session == 2)

model_B2 <- lmer(feedback.RT ~ sub.trial.number + (1 | subject), data = df_B2_steps)

cat("\n\n=== Block 2: Stepwise RT Model Summary ===\n")


=== Block 2: Stepwise RT Model Summary ===
print(summary(model_B2))
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: feedback.RT ~ sub.trial.number + (1 | subject)
   Data: df_B2_steps

REML criterion at convergence: 107721.7

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.5089 -0.4615 -0.1869  0.1857 12.1535 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept) 61848    248.7   
 Residual             84366    290.5   
Number of obs: 7596, groups:  subject, 18

Fixed effects:
                   Estimate Std. Error      df t value Pr(>|t|)    
(Intercept)          763.10      59.75   18.17   12.77 1.62e-10 ***
sub.trial.number2   -288.81      16.33 7566.95  -17.69  < 2e-16 ***
sub.trial.number3   -318.54      16.33 7566.95  -19.51  < 2e-16 ***
sub.trial.number4   -349.02      16.33 7566.95  -21.38  < 2e-16 ***
sub.trial.number5   -238.88      16.33 7566.95  -14.63  < 2e-16 ***
sub.trial.number6   -276.63      16.33 7566.95  -16.94  < 2e-16 ***
sub.trial.number7   -230.88      16.33 7566.95  -14.14  < 2e-16 ***
sub.trial.number8   -262.55      16.33 7566.95  -16.08  < 2e-16 ***
sub.trial.number9   -238.26      16.33 7566.95  -14.59  < 2e-16 ***
sub.trial.number10  -265.18      16.33 7566.95  -16.24  < 2e-16 ***
sub.trial.number11  -302.70      16.33 7566.95  -18.54  < 2e-16 ***
sub.trial.number12  -281.80      16.33 7566.95  -17.26  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) sb.t.2 sb.t.3 sb.t.4 sb.t.5 sb.t.6 sb.t.7 sb.t.8 sb.t.9
sb.trl.nmb2 -0.137                                                        
sb.trl.nmb3 -0.137  0.500                                                 
sb.trl.nmb4 -0.137  0.500  0.500                                          
sb.trl.nmb5 -0.137  0.500  0.500  0.500                                   
sb.trl.nmb6 -0.137  0.500  0.500  0.500  0.500                            
sb.trl.nmb7 -0.137  0.500  0.500  0.500  0.500  0.500                     
sb.trl.nmb8 -0.137  0.500  0.500  0.500  0.500  0.500  0.500              
sb.trl.nmb9 -0.137  0.500  0.500  0.500  0.500  0.500  0.500  0.500       
sb.trl.nm10 -0.137  0.500  0.500  0.500  0.500  0.500  0.500  0.500  0.500
sb.trl.nm11 -0.137  0.500  0.500  0.500  0.500  0.500  0.500  0.500  0.500
sb.trl.nm12 -0.137  0.500  0.500  0.500  0.500  0.500  0.500  0.500  0.500
            sb..10 sb..11
sb.trl.nmb2              
sb.trl.nmb3              
sb.trl.nmb4              
sb.trl.nmb5              
sb.trl.nmb6              
sb.trl.nmb7              
sb.trl.nmb8              
sb.trl.nmb9              
sb.trl.nm10              
sb.trl.nm11  0.500       
sb.trl.nm12  0.500  0.500
cat("\n=== Chi-square ANOVA (Block 2) ===\n")

=== Chi-square ANOVA (Block 2) ===
print(Anova(model_B2, type = 2))
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: feedback.RT
                  Chisq Df Pr(>Chisq)    
sub.trial.number 628.64 11  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
emm_B2 <- emmeans(model_B2, ~ sub.trial.number)
cat("\n=== Estimated Marginal Means per Step (Block 2) ===\n")

=== Estimated Marginal Means per Step (Block 2) ===
print(summary(emm_B2))
 sub.trial.number emmean   SE   df lower.CL upper.CL
 1                   763 59.7 18.2      638      889
 2                   474 59.7 18.2      349      600
 3                   445 59.7 18.2      319      570
 4                   414 59.7 18.2      289      539
 5                   524 59.7 18.2      399      650
 6                   486 59.7 18.2      361      612
 7                   532 59.7 18.2      407      658
 8                   501 59.7 18.2      375      626
 9                   525 59.7 18.2      399      650
 10                  498 59.7 18.2      373      623
 11                  460 59.7 18.2      335      586
 12                  481 59.7 18.2      356      607

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
step_comparisons_B2 <- contrast(emm_B2, method = "pairwise", adjust = "none")
cat("\n=== Stepwise Pairwise Comparisons (Block 2) ===\n")

=== Stepwise Pairwise Comparisons (Block 2) ===
print(summary(step_comparisons_B2, infer = c(TRUE, TRUE)))
 contrast                                estimate   SE   df lower.CL upper.CL
 sub.trial.number1 - sub.trial.number2    288.807 16.3 7567  256.803   320.81
 sub.trial.number1 - sub.trial.number3    318.537 16.3 7567  286.532   350.54
 sub.trial.number1 - sub.trial.number4    349.021 16.3 7567  317.016   381.03
 sub.trial.number1 - sub.trial.number5    238.880 16.3 7567  206.875   270.88
 sub.trial.number1 - sub.trial.number6    276.632 16.3 7567  244.627   308.64
 sub.trial.number1 - sub.trial.number7    230.885 16.3 7567  198.880   262.89
 sub.trial.number1 - sub.trial.number8    262.545 16.3 7567  230.540   294.55
 sub.trial.number1 - sub.trial.number9    238.256 16.3 7567  206.251   270.26
 sub.trial.number1 - sub.trial.number10   265.180 16.3 7567  233.175   297.18
 sub.trial.number1 - sub.trial.number11   302.703 16.3 7567  270.698   334.71
 sub.trial.number1 - sub.trial.number12   281.799 16.3 7567  249.795   313.80
 sub.trial.number2 - sub.trial.number3     29.730 16.3 7567   -2.275    61.73
 sub.trial.number2 - sub.trial.number4     60.213 16.3 7567   28.209    92.22
 sub.trial.number2 - sub.trial.number5    -49.927 16.3 7567  -81.932   -17.92
 sub.trial.number2 - sub.trial.number6    -12.175 16.3 7567  -44.180    19.83
 sub.trial.number2 - sub.trial.number7    -57.923 16.3 7567  -89.927   -25.92
 sub.trial.number2 - sub.trial.number8    -26.262 16.3 7567  -58.267     5.74
 sub.trial.number2 - sub.trial.number9    -50.551 16.3 7567  -82.556   -18.55
 sub.trial.number2 - sub.trial.number10   -23.627 16.3 7567  -55.632     8.38
 sub.trial.number2 - sub.trial.number11    13.896 16.3 7567  -18.109    45.90
 sub.trial.number2 - sub.trial.number12    -7.008 16.3 7567  -39.013    25.00
 sub.trial.number3 - sub.trial.number4     30.483 16.3 7567   -1.521    62.49
 sub.trial.number3 - sub.trial.number5    -79.657 16.3 7567 -111.662   -47.65
 sub.trial.number3 - sub.trial.number6    -41.905 16.3 7567  -73.910    -9.90
 sub.trial.number3 - sub.trial.number7    -87.652 16.3 7567 -119.657   -55.65
 sub.trial.number3 - sub.trial.number8    -55.992 16.3 7567  -87.997   -23.99
 sub.trial.number3 - sub.trial.number9    -80.281 16.3 7567 -112.286   -48.28
 sub.trial.number3 - sub.trial.number10   -53.357 16.3 7567  -85.362   -21.35
 sub.trial.number3 - sub.trial.number11   -15.834 16.3 7567  -47.839    16.17
 sub.trial.number3 - sub.trial.number12   -36.738 16.3 7567  -68.743    -4.73
 sub.trial.number4 - sub.trial.number5   -110.141 16.3 7567 -142.145   -78.14
 sub.trial.number4 - sub.trial.number6    -72.389 16.3 7567 -104.393   -40.38
 sub.trial.number4 - sub.trial.number7   -118.136 16.3 7567 -150.141   -86.13
 sub.trial.number4 - sub.trial.number8    -86.475 16.3 7567 -118.480   -54.47
 sub.trial.number4 - sub.trial.number9   -110.765 16.3 7567 -142.769   -78.76
 sub.trial.number4 - sub.trial.number10   -83.840 16.3 7567 -115.845   -51.84
 sub.trial.number4 - sub.trial.number11   -46.318 16.3 7567  -78.322   -14.31
 sub.trial.number4 - sub.trial.number12   -67.221 16.3 7567  -99.226   -35.22
 sub.trial.number5 - sub.trial.number6     37.752 16.3 7567    5.747    69.76
 sub.trial.number5 - sub.trial.number7     -7.995 16.3 7567  -40.000    24.01
 sub.trial.number5 - sub.trial.number8     23.665 16.3 7567   -8.340    55.67
 sub.trial.number5 - sub.trial.number9     -0.624 16.3 7567  -32.629    31.38
 sub.trial.number5 - sub.trial.number10    26.300 16.3 7567   -5.705    58.30
 sub.trial.number5 - sub.trial.number11    63.823 16.3 7567   31.818    95.83
 sub.trial.number5 - sub.trial.number12    42.919 16.3 7567   10.915    74.92
 sub.trial.number6 - sub.trial.number7    -45.747 16.3 7567  -77.752   -13.74
 sub.trial.number6 - sub.trial.number8    -14.087 16.3 7567  -46.092    17.92
 sub.trial.number6 - sub.trial.number9    -38.376 16.3 7567  -70.381    -6.37
 sub.trial.number6 - sub.trial.number10   -11.452 16.3 7567  -43.456    20.55
 sub.trial.number6 - sub.trial.number11    26.071 16.3 7567   -5.934    58.08
 sub.trial.number6 - sub.trial.number12     5.168 16.3 7567  -26.837    37.17
 sub.trial.number7 - sub.trial.number8     31.660 16.3 7567   -0.344    63.66
 sub.trial.number7 - sub.trial.number9      7.371 16.3 7567  -24.633    39.38
 sub.trial.number7 - sub.trial.number10    34.295 16.3 7567    2.291    66.30
 sub.trial.number7 - sub.trial.number11    71.818 16.3 7567   39.814   103.82
 sub.trial.number7 - sub.trial.number12    50.915 16.3 7567   18.910    82.92
 sub.trial.number8 - sub.trial.number9    -24.289 16.3 7567  -56.294     7.72
 sub.trial.number8 - sub.trial.number10     2.635 16.3 7567  -29.370    34.64
 sub.trial.number8 - sub.trial.number11    40.158 16.3 7567    8.153    72.16
 sub.trial.number8 - sub.trial.number12    19.254 16.3 7567  -12.750    51.26
 sub.trial.number9 - sub.trial.number10    26.924 16.3 7567   -5.080    58.93
 sub.trial.number9 - sub.trial.number11    64.447 16.3 7567   32.442    96.45
 sub.trial.number9 - sub.trial.number12    43.543 16.3 7567   11.539    75.55
 sub.trial.number10 - sub.trial.number11   37.523 16.3 7567    5.518    69.53
 sub.trial.number10 - sub.trial.number12   16.619 16.3 7567  -15.385    48.62
 sub.trial.number11 - sub.trial.number12  -20.904 16.3 7567  -52.908    11.10
 t.ratio p.value
  17.689  <.0001
  19.510  <.0001
  21.377  <.0001
  14.631  <.0001
  16.944  <.0001
  14.142  <.0001
  16.081  <.0001
  14.593  <.0001
  16.242  <.0001
  18.540  <.0001
  17.260  <.0001
   1.821  0.0687
   3.688  0.0002
  -3.058  0.0022
  -0.746  0.4558
  -3.548  0.0004
  -1.609  0.1078
  -3.096  0.0020
  -1.447  0.1479
   0.851  0.3947
  -0.429  0.6678
   1.867  0.0619
  -4.879  <.0001
  -2.567  0.0103
  -5.369  <.0001
  -3.429  0.0006
  -4.917  <.0001
  -3.268  0.0011
  -0.970  0.3322
  -2.250  0.0245
  -6.746  <.0001
  -4.434  <.0001
  -7.236  <.0001
  -5.297  <.0001
  -6.784  <.0001
  -5.135  <.0001
  -2.837  0.0046
  -4.117  <.0001
   2.312  0.0208
  -0.490  0.6244
   1.449  0.1472
  -0.038  0.9695
   1.611  0.1072
   3.909  0.0001
   2.629  0.0086
  -2.802  0.0051
  -0.863  0.3883
  -2.351  0.0188
  -0.701  0.4831
   1.597  0.1103
   0.317  0.7516
   1.939  0.0525
   0.451  0.6517
   2.101  0.0357
   4.399  <.0001
   3.119  0.0018
  -1.488  0.1369
   0.161  0.8718
   2.460  0.0139
   1.179  0.2383
   1.649  0.0992
   3.947  0.0001
   2.667  0.0077
   2.298  0.0216
   1.018  0.3087
  -1.280  0.2005

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
# -------- Block 3: 18-step sequences --------
df_B3_steps <- df_acc %>% filter(session == 3)

model_B3 <- lmer(feedback.RT ~ sub.trial.number + (1 | subject), data = df_B3_steps)

cat("\n\n=== Block 3: Stepwise RT Model Summary ===\n")


=== Block 3: Stepwise RT Model Summary ===
print(summary(model_B3))
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: feedback.RT ~ sub.trial.number + (1 | subject)
   Data: df_B3_steps

REML criterion at convergence: 148515.2

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.6869 -0.4308 -0.1755  0.1673 29.5780 

Random effects:
 Groups   Name        Variance Std.Dev.
 subject  (Intercept)  41978   204.9   
 Residual             116815   341.8   
Number of obs: 10242, groups:  subject, 18

Fixed effects:
                   Estimate Std. Error       df t value Pr(>|t|)    
(Intercept)          818.91      50.39    19.89  16.251 6.02e-13 ***
sub.trial.number2   -325.33      20.26 10206.97 -16.055  < 2e-16 ***
sub.trial.number3   -352.76      20.26 10206.97 -17.409  < 2e-16 ***
sub.trial.number4   -371.41      20.26 10206.97 -18.329  < 2e-16 ***
sub.trial.number5   -266.14      20.26 10206.97 -13.134  < 2e-16 ***
sub.trial.number6   -287.47      20.26 10206.97 -14.187  < 2e-16 ***
sub.trial.number7   -293.04      20.26 10206.97 -14.462  < 2e-16 ***
sub.trial.number8   -308.28      20.26 10206.97 -15.214  < 2e-16 ***
sub.trial.number9   -259.58      20.26 10206.97 -12.810  < 2e-16 ***
sub.trial.number10  -246.68      20.26 10206.97 -12.174  < 2e-16 ***
sub.trial.number11  -278.51      20.26 10206.97 -13.745  < 2e-16 ***
sub.trial.number12  -339.40      20.26 10206.97 -16.749  < 2e-16 ***
sub.trial.number13   -92.33      20.26 10206.97  -4.556 5.27e-06 ***
sub.trial.number14  -234.44      20.26 10206.97 -11.570  < 2e-16 ***
sub.trial.number15  -284.38      20.26 10206.97 -14.034  < 2e-16 ***
sub.trial.number16  -339.54      20.26 10206.97 -16.756  < 2e-16 ***
sub.trial.number17  -299.99      20.26 10206.97 -14.805  < 2e-16 ***
sub.trial.number18  -285.92      20.26 10206.97 -14.110  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation matrix not shown by default, as p = 18 > 12.
Use print(summary(model_B3), correlation=TRUE)  or
    vcov(summary(model_B3))        if you need it
cat("\n=== Chi-square ANOVA (Block 3) ===\n")

=== Chi-square ANOVA (Block 3) ===
print(Anova(model_B3, type = 2))
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: feedback.RT
                  Chisq Df Pr(>Chisq)    
sub.trial.number 681.83 17  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
emm_B3 <- emmeans(model_B3, ~ sub.trial.number)
cat("\n=== Estimated Marginal Means per Step (Block 3) ===\n")

=== Estimated Marginal Means per Step (Block 3) ===
print(summary(emm_B3))
 sub.trial.number emmean   SE   df lower.CL upper.CL
 1                   819 50.4 19.9      714      924
 2                   494 50.4 19.9      388      599
 3                   466 50.4 19.9      361      571
 4                   447 50.4 19.9      342      553
 5                   553 50.4 19.9      448      658
 6                   531 50.4 19.9      426      637
 7                   526 50.4 19.9      421      631
 8                   511 50.4 19.9      405      616
 9                   559 50.4 19.9      454      664
 10                  572 50.4 19.9      467      677
 11                  540 50.4 19.9      435      646
 12                  480 50.4 19.9      374      585
 13                  727 50.4 19.9      621      832
 14                  584 50.4 19.9      479      690
 15                  535 50.4 19.9      429      640
 16                  479 50.4 19.9      374      585
 17                  519 50.4 19.9      414      624
 18                  533 50.4 19.9      428      638

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
step_comparisons_B3 <- contrast(emm_B3, method = "pairwise", adjust = "none")
cat("\n=== Stepwise Pairwise Comparisons (Block 3) ===\n")

=== Stepwise Pairwise Comparisons (Block 3) ===
print(summary(step_comparisons_B3, infer = c(TRUE, TRUE)))
 contrast                                estimate   SE    df lower.CL upper.CL
 sub.trial.number1 - sub.trial.number2    325.330 20.3 10207  285.611  365.050
 sub.trial.number1 - sub.trial.number3    352.761 20.3 10207  313.041  392.481
 sub.trial.number1 - sub.trial.number4    371.413 20.3 10207  331.693  411.133
 sub.trial.number1 - sub.trial.number5    266.135 20.3 10207  226.416  305.855
 sub.trial.number1 - sub.trial.number6    287.473 20.3 10207  247.753  327.193
 sub.trial.number1 - sub.trial.number7    293.037 20.3 10207  253.317  332.757
 sub.trial.number1 - sub.trial.number8    308.276 20.3 10207  268.556  347.996
 sub.trial.number1 - sub.trial.number9    259.576 20.3 10207  219.857  299.296
 sub.trial.number1 - sub.trial.number10   246.677 20.3 10207  206.957  286.397
 sub.trial.number1 - sub.trial.number11   278.510 20.3 10207  238.790  318.229
 sub.trial.number1 - sub.trial.number12   339.397 20.3 10207  299.677  379.117
 sub.trial.number1 - sub.trial.number13    92.325 20.3 10207   52.605  132.045
 sub.trial.number1 - sub.trial.number14   234.438 20.3 10207  194.718  274.158
 sub.trial.number1 - sub.trial.number15   284.378 20.3 10207  244.658  324.098
 sub.trial.number1 - sub.trial.number16   339.539 20.3 10207  299.820  379.259
 sub.trial.number1 - sub.trial.number17   299.988 20.3 10207  260.268  339.708
 sub.trial.number1 - sub.trial.number18   285.919 20.3 10207  246.199  325.639
 sub.trial.number2 - sub.trial.number3     27.431 20.3 10207  -12.289   67.150
 sub.trial.number2 - sub.trial.number4     46.083 20.3 10207    6.363   85.802
 sub.trial.number2 - sub.trial.number5    -59.195 20.3 10207  -98.915  -19.475
 sub.trial.number2 - sub.trial.number6    -37.858 20.3 10207  -77.578    1.862
 sub.trial.number2 - sub.trial.number7    -32.294 20.3 10207  -72.013    7.426
 sub.trial.number2 - sub.trial.number8    -17.055 20.3 10207  -56.774   22.665
 sub.trial.number2 - sub.trial.number9    -65.754 20.3 10207 -105.474  -26.034
 sub.trial.number2 - sub.trial.number10   -78.654 20.3 10207 -118.374  -38.934
 sub.trial.number2 - sub.trial.number11   -46.821 20.3 10207  -86.541   -7.101
 sub.trial.number2 - sub.trial.number12    14.067 20.3 10207  -25.653   53.787
 sub.trial.number2 - sub.trial.number13  -233.005 20.3 10207 -272.725 -193.285
 sub.trial.number2 - sub.trial.number14   -90.893 20.3 10207 -130.613  -51.173
 sub.trial.number2 - sub.trial.number15   -40.953 20.3 10207  -80.672   -1.233
 sub.trial.number2 - sub.trial.number16    14.209 20.3 10207  -25.511   53.929
 sub.trial.number2 - sub.trial.number17   -25.343 20.3 10207  -65.063   14.377
 sub.trial.number2 - sub.trial.number18   -39.411 20.3 10207  -79.131    0.309
 sub.trial.number3 - sub.trial.number4     18.652 20.3 10207  -21.068   58.372
 sub.trial.number3 - sub.trial.number5    -86.626 20.3 10207 -126.346  -46.906
 sub.trial.number3 - sub.trial.number6    -65.288 20.3 10207 -105.008  -25.568
 sub.trial.number3 - sub.trial.number7    -59.724 20.3 10207  -99.444  -20.004
 sub.trial.number3 - sub.trial.number8    -44.485 20.3 10207  -84.205   -4.765
 sub.trial.number3 - sub.trial.number9    -93.184 20.3 10207 -132.904  -53.465
 sub.trial.number3 - sub.trial.number10  -106.084 20.3 10207 -145.804  -66.365
 sub.trial.number3 - sub.trial.number11   -74.251 20.3 10207 -113.971  -34.532
 sub.trial.number3 - sub.trial.number12   -13.364 20.3 10207  -53.084   26.356
 sub.trial.number3 - sub.trial.number13  -260.436 20.3 10207 -300.156 -220.716
 sub.trial.number3 - sub.trial.number14  -118.323 20.3 10207 -158.043  -78.603
 sub.trial.number3 - sub.trial.number15   -68.383 20.3 10207 -108.103  -28.663
 sub.trial.number3 - sub.trial.number16   -13.221 20.3 10207  -52.941   26.498
 sub.trial.number3 - sub.trial.number17   -52.773 20.3 10207  -92.493  -13.053
 sub.trial.number3 - sub.trial.number18   -66.842 20.3 10207 -106.562  -27.122
 sub.trial.number4 - sub.trial.number5   -105.278 20.3 10207 -144.998  -65.558
 sub.trial.number4 - sub.trial.number6    -83.940 20.3 10207 -123.660  -44.220
 sub.trial.number4 - sub.trial.number7    -78.376 20.3 10207 -118.096  -38.656
 sub.trial.number4 - sub.trial.number8    -63.137 20.3 10207 -102.857  -23.417
 sub.trial.number4 - sub.trial.number9   -111.837 20.3 10207 -151.556  -72.117
 sub.trial.number4 - sub.trial.number10  -124.736 20.3 10207 -164.456  -85.016
 sub.trial.number4 - sub.trial.number11   -92.903 20.3 10207 -132.623  -53.184
 sub.trial.number4 - sub.trial.number12   -32.016 20.3 10207  -71.736    7.704
 sub.trial.number4 - sub.trial.number13  -279.088 20.3 10207 -318.808 -239.368
 sub.trial.number4 - sub.trial.number14  -136.975 20.3 10207 -176.695  -97.255
 sub.trial.number4 - sub.trial.number15   -87.035 20.3 10207 -126.755  -47.315
 sub.trial.number4 - sub.trial.number16   -31.873 20.3 10207  -71.593    7.846
 sub.trial.number4 - sub.trial.number17   -71.425 20.3 10207 -111.145  -31.705
 sub.trial.number4 - sub.trial.number18   -85.494 20.3 10207 -125.214  -45.774
 sub.trial.number5 - sub.trial.number6     21.337 20.3 10207  -18.382   61.057
 sub.trial.number5 - sub.trial.number7     26.902 20.3 10207  -12.818   66.621
 sub.trial.number5 - sub.trial.number8     42.141 20.3 10207    2.421   81.861
 sub.trial.number5 - sub.trial.number9     -6.559 20.3 10207  -46.279   33.161
 sub.trial.number5 - sub.trial.number10   -19.459 20.3 10207  -59.179   20.261
 sub.trial.number5 - sub.trial.number11    12.374 20.3 10207  -27.346   52.094
 sub.trial.number5 - sub.trial.number12    73.262 20.3 10207   33.542  112.982
 sub.trial.number5 - sub.trial.number13  -173.810 20.3 10207 -213.530 -134.090
 sub.trial.number5 - sub.trial.number14   -31.698 20.3 10207  -71.418    8.022
 sub.trial.number5 - sub.trial.number15    18.242 20.3 10207  -21.477   57.962
 sub.trial.number5 - sub.trial.number16    73.404 20.3 10207   33.684  113.124
 sub.trial.number5 - sub.trial.number17    33.852 20.3 10207   -5.867   73.572
 sub.trial.number5 - sub.trial.number18    19.784 20.3 10207  -19.936   59.504
 sub.trial.number6 - sub.trial.number7      5.564 20.3 10207  -34.156   45.284
 sub.trial.number6 - sub.trial.number8     20.803 20.3 10207  -18.917   60.523
 sub.trial.number6 - sub.trial.number9    -27.896 20.3 10207  -67.616   11.824
 sub.trial.number6 - sub.trial.number10   -40.796 20.3 10207  -80.516   -1.076
 sub.trial.number6 - sub.trial.number11    -8.963 20.3 10207  -48.683   30.757
 sub.trial.number6 - sub.trial.number12    51.924 20.3 10207   12.205   91.644
 sub.trial.number6 - sub.trial.number13  -195.148 20.3 10207 -234.868 -155.428
 sub.trial.number6 - sub.trial.number14   -53.035 20.3 10207  -92.755  -13.315
 sub.trial.number6 - sub.trial.number15    -3.095 20.3 10207  -42.815   36.625
 sub.trial.number6 - sub.trial.number16    52.067 20.3 10207   12.347   91.787
 sub.trial.number6 - sub.trial.number17    12.515 20.3 10207  -27.205   52.235
 sub.trial.number6 - sub.trial.number18    -1.554 20.3 10207  -41.273   38.166
 sub.trial.number7 - sub.trial.number8     15.239 20.3 10207  -24.481   54.959
 sub.trial.number7 - sub.trial.number9    -33.461 20.3 10207  -73.180    6.259
 sub.trial.number7 - sub.trial.number10   -46.360 20.3 10207  -86.080   -6.640
 sub.trial.number7 - sub.trial.number11   -14.527 20.3 10207  -54.247   25.193
 sub.trial.number7 - sub.trial.number12    46.360 20.3 10207    6.640   86.080
 sub.trial.number7 - sub.trial.number13  -200.712 20.3 10207 -240.432 -160.992
 sub.trial.number7 - sub.trial.number14   -58.599 20.3 10207  -98.319  -18.879
 sub.trial.number7 - sub.trial.number15    -8.659 20.3 10207  -48.379   31.061
 sub.trial.number7 - sub.trial.number16    46.503 20.3 10207    6.783   86.222
 sub.trial.number7 - sub.trial.number17     6.951 20.3 10207  -32.769   46.671
 sub.trial.number7 - sub.trial.number18    -7.118 20.3 10207  -46.838   32.602
 sub.trial.number8 - sub.trial.number9    -48.700 20.3 10207  -88.419   -8.980
 sub.trial.number8 - sub.trial.number10   -61.599 20.3 10207 -101.319  -21.879
 sub.trial.number8 - sub.trial.number11   -29.766 20.3 10207  -69.486    9.954
 sub.trial.number8 - sub.trial.number12    31.121 20.3 10207   -8.599   70.841
 sub.trial.number8 - sub.trial.number13  -215.951 20.3 10207 -255.671 -176.231
 sub.trial.number8 - sub.trial.number14   -73.838 20.3 10207 -113.558  -34.118
 sub.trial.number8 - sub.trial.number15   -23.898 20.3 10207  -63.618   15.822
 sub.trial.number8 - sub.trial.number16    31.264 20.3 10207   -8.456   70.984
 sub.trial.number8 - sub.trial.number17    -8.288 20.3 10207  -48.008   31.432
 sub.trial.number8 - sub.trial.number18   -22.357 20.3 10207  -62.077   17.363
 sub.trial.number9 - sub.trial.number10   -12.900 20.3 10207  -52.620   26.820
 sub.trial.number9 - sub.trial.number11    18.933 20.3 10207  -20.787   58.653
 sub.trial.number9 - sub.trial.number12    79.821 20.3 10207   40.101  119.541
 sub.trial.number9 - sub.trial.number13  -167.251 20.3 10207 -206.971 -127.531
 sub.trial.number9 - sub.trial.number14   -25.139 20.3 10207  -64.859   14.581
 sub.trial.number9 - sub.trial.number15    24.801 20.3 10207  -14.918   64.521
 sub.trial.number9 - sub.trial.number16    79.963 20.3 10207   40.243  119.683
 sub.trial.number9 - sub.trial.number17    40.411 20.3 10207    0.691   80.131
 sub.trial.number9 - sub.trial.number18    26.343 20.3 10207  -13.377   66.063
 sub.trial.number10 - sub.trial.number11   31.833 20.3 10207   -7.887   71.553
 sub.trial.number10 - sub.trial.number12   92.721 20.3 10207   53.001  132.440
 sub.trial.number10 - sub.trial.number13 -154.351 20.3 10207 -194.071 -114.632
 sub.trial.number10 - sub.trial.number14  -12.239 20.3 10207  -51.959   27.481
 sub.trial.number10 - sub.trial.number15   37.701 20.3 10207   -2.019   77.421
 sub.trial.number10 - sub.trial.number16   92.863 20.3 10207   53.143  132.583
 sub.trial.number10 - sub.trial.number17   53.311 20.3 10207   13.591   93.031
 sub.trial.number10 - sub.trial.number18   39.242 20.3 10207   -0.477   78.962
 sub.trial.number11 - sub.trial.number12   60.888 20.3 10207   21.168  100.607
 sub.trial.number11 - sub.trial.number13 -186.185 20.3 10207 -225.904 -146.465
 sub.trial.number11 - sub.trial.number14  -44.072 20.3 10207  -83.792   -4.352
 sub.trial.number11 - sub.trial.number15    5.868 20.3 10207  -33.852   45.588
 sub.trial.number11 - sub.trial.number16   61.030 20.3 10207   21.310  100.750
 sub.trial.number11 - sub.trial.number17   21.478 20.3 10207  -18.242   61.198
 sub.trial.number11 - sub.trial.number18    7.410 20.3 10207  -32.310   47.129
 sub.trial.number12 - sub.trial.number13 -247.072 20.3 10207 -286.792 -207.352
 sub.trial.number12 - sub.trial.number14 -104.960 20.3 10207 -144.679  -65.240
 sub.trial.number12 - sub.trial.number15  -55.019 20.3 10207  -94.739  -15.300
 sub.trial.number12 - sub.trial.number16    0.142 20.3 10207  -39.578   39.862
 sub.trial.number12 - sub.trial.number17  -39.410 20.3 10207  -79.129    0.310
 sub.trial.number12 - sub.trial.number18  -53.478 20.3 10207  -93.198  -13.758
 sub.trial.number13 - sub.trial.number14  142.113 20.3 10207  102.393  181.832
 sub.trial.number13 - sub.trial.number15  192.053 20.3 10207  152.333  231.773
 sub.trial.number13 - sub.trial.number16  247.214 20.3 10207  207.494  286.934
 sub.trial.number13 - sub.trial.number17  207.663 20.3 10207  167.943  247.382
 sub.trial.number13 - sub.trial.number18  193.594 20.3 10207  153.874  233.314
 sub.trial.number14 - sub.trial.number15   49.940 20.3 10207   10.220   89.660
 sub.trial.number14 - sub.trial.number16  105.102 20.3 10207   65.382  144.822
 sub.trial.number14 - sub.trial.number17   65.550 20.3 10207   25.830  105.270
 sub.trial.number14 - sub.trial.number18   51.481 20.3 10207   11.762   91.201
 sub.trial.number15 - sub.trial.number16   55.162 20.3 10207   15.442   94.882
 sub.trial.number15 - sub.trial.number17   15.610 20.3 10207  -24.110   55.330
 sub.trial.number15 - sub.trial.number18    1.541 20.3 10207  -38.179   41.261
 sub.trial.number16 - sub.trial.number17  -39.552 20.3 10207  -79.272    0.168
 sub.trial.number16 - sub.trial.number18  -53.620 20.3 10207  -93.340  -13.900
 sub.trial.number17 - sub.trial.number18  -14.069 20.3 10207  -53.788   25.651
 t.ratio p.value
  16.055  <.0001
  17.409  <.0001
  18.329  <.0001
  13.134  <.0001
  14.187  <.0001
  14.462  <.0001
  15.214  <.0001
  12.810  <.0001
  12.174  <.0001
  13.745  <.0001
  16.749  <.0001
   4.556  <.0001
  11.570  <.0001
  14.034  <.0001
  16.756  <.0001
  14.805  <.0001
  14.110  <.0001
   1.354  0.1759
   2.274  0.0230
  -2.921  0.0035
  -1.868  0.0617
  -1.594  0.1110
  -0.842  0.4000
  -3.245  0.0012
  -3.882  0.0001
  -2.311  0.0209
   0.694  0.4876
 -11.499  <.0001
  -4.486  <.0001
  -2.021  0.0433
   0.701  0.4832
  -1.251  0.2111
  -1.945  0.0518
   0.920  0.3573
  -4.275  <.0001
  -3.222  0.0013
  -2.947  0.0032
  -2.195  0.0282
  -4.599  <.0001
  -5.235  <.0001
  -3.664  0.0002
  -0.660  0.5096
 -12.853  <.0001
  -5.839  <.0001
  -3.375  0.0007
  -0.652  0.5141
  -2.604  0.0092
  -3.299  0.0010
  -5.196  <.0001
  -4.142  <.0001
  -3.868  0.0001
  -3.116  0.0018
  -5.519  <.0001
  -6.156  <.0001
  -4.585  <.0001
  -1.580  0.1141
 -13.773  <.0001
  -6.760  <.0001
  -4.295  <.0001
  -1.573  0.1158
  -3.525  0.0004
  -4.219  <.0001
   1.053  0.2924
   1.328  0.1843
   2.080  0.0376
  -0.324  0.7462
  -0.960  0.3369
   0.611  0.5414
   3.616  0.0003
  -8.578  <.0001
  -1.564  0.1178
   0.900  0.3680
   3.623  0.0003
   1.671  0.0948
   0.976  0.3289
   0.275  0.7836
   1.027  0.3046
  -1.377  0.1686
  -2.013  0.0441
  -0.442  0.6583
   2.562  0.0104
  -9.631  <.0001
  -2.617  0.0089
  -0.153  0.8786
   2.570  0.0102
   0.618  0.5368
  -0.077  0.9389
   0.752  0.4520
  -1.651  0.0987
  -2.288  0.0222
  -0.717  0.4734
   2.288  0.0222
  -9.905  <.0001
  -2.892  0.0038
  -0.427  0.6691
   2.295  0.0218
   0.343  0.7316
  -0.351  0.7254
  -2.403  0.0163
  -3.040  0.0024
  -1.469  0.1419
   1.536  0.1246
 -10.657  <.0001
  -3.644  0.0003
  -1.179  0.2383
   1.543  0.1229
  -0.409  0.6825
  -1.103  0.2699
  -0.637  0.5244
   0.934  0.3501
   3.939  0.0001
  -8.254  <.0001
  -1.241  0.2148
   1.224  0.2210
   3.946  0.0001
   1.994  0.0461
   1.300  0.1936
   1.571  0.1162
   4.576  <.0001
  -7.617  <.0001
  -0.604  0.5459
   1.861  0.0628
   4.583  <.0001
   2.631  0.0085
   1.937  0.0528
   3.005  0.0027
  -9.188  <.0001
  -2.175  0.0297
   0.290  0.7721
   3.012  0.0026
   1.060  0.2892
   0.366  0.7146
 -12.193  <.0001
  -5.180  <.0001
  -2.715  0.0066
   0.007  0.9944
  -1.945  0.0518
  -2.639  0.0083
   7.013  <.0001
   9.478  <.0001
  12.200  <.0001
  10.248  <.0001
   9.554  <.0001
   2.465  0.0137
   5.187  <.0001
   3.235  0.0012
   2.541  0.0111
   2.722  0.0065
   0.770  0.4411
   0.076  0.9394
  -1.952  0.0510
  -2.646  0.0082
  -0.694  0.4875

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
# Combine EMMs for all three blocks
emm_B1_df <- as.data.frame(emm_B1) %>% mutate(Block = "Block 1")
emm_B2_df <- as.data.frame(emm_B2) %>% mutate(Block = "Block 2")
emm_B3_df <- as.data.frame(emm_B3) %>% mutate(Block = "Block 3")

emm_all <- bind_rows(emm_B1_df, emm_B2_df, emm_B3_df) %>%
  mutate(
    sub.trial.number = as.numeric(as.character(sub.trial.number)),
    Block = factor(Block, levels = c("Block 1", "Block 2", "Block 3"))
  )

# Plot
ggplot(emm_all, aes(x = sub.trial.number, y = emmean, color = Block, group = Block)) +
  geom_point(size = 2) +
  geom_line(linewidth = 0.9) +
  geom_errorbar(aes(ymin = emmean - SE, ymax = emmean + SE), width = 0.3) +
  labs(
    title = "Reaction Times per step",
    x = "Step Number",
    y = "RT (ms)"
  ) +
  scale_x_continuous(breaks = scales::pretty_breaks()) +
  theme_minimal(base_size = 13) +
  theme(
    panel.grid = element_blank(),
    legend.title = element_blank()
  )

#4.4 concatenation test blocks

# Ensure session is a factor
df_acc$session <- factor(df_acc$session)

# === Add sequence length per trial ===
df_acc <- df_acc %>%
  group_by(subject, session, trial) %>%
  mutate(seq_length = n()) %>%
  ungroup()

# ========== 1. 6-step sequences in Block 4 vs 5 ==========
df_6 <- df_acc %>%
  filter(session %in% c(4, 5), seq_length == 6)

model_6 <- lmer(feedback.RT ~ sub.trial.number * session + (1 | subject), data = df_6)

cat("=== Chi-square ANOVA: 6-step sequences ===\n")
=== Chi-square ANOVA: 6-step sequences ===
print(Anova(model_6, type = 2))
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: feedback.RT
                            Chisq Df Pr(>Chisq)    
sub.trial.number         623.9439  5     <2e-16 ***
session                   89.7160  1     <2e-16 ***
sub.trial.number:session   3.1762  5     0.6728    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
emm_6 <- emmeans(model_6, ~ sub.trial.number | session)
cat("\n=== EMMs per Step: 6-step ===\n")

=== EMMs per Step: 6-step ===
print(summary(emm_6))
session = 4:
 sub.trial.number emmean   SE   df lower.CL upper.CL
 1                   764 43.7 23.9      674      855
 2                   415 43.7 23.9      325      506
 3                   374 43.7 23.9      283      464
 4                   362 43.7 23.9      272      452
 5                   382 43.7 23.9      291      472
 6                   388 43.7 23.9      298      478

session = 5:
 sub.trial.number emmean   SE   df lower.CL upper.CL
 1                   839 44.3 25.3      747      930
 2                   503 44.3 25.3      412      594
 3                   497 44.3 25.3      405      588
 4                   493 44.3 25.3      402      584
 5                   492 44.3 25.3      401      583
 6                   492 44.3 25.3      401      583

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
cat("\n=== Stepwise Pairwise Comparisons (within block): 6-step ===\n")

=== Stepwise Pairwise Comparisons (within block): 6-step ===
step_comparisons_6 <- contrast(emm_6, method = "pairwise", adjust = "none")
print(summary(step_comparisons_6, infer = c(TRUE, TRUE)))
session = 4:
 contrast                              estimate   SE   df lower.CL upper.CL
 sub.trial.number1 - sub.trial.number2  348.940 25.7 2785   298.51    399.4
 sub.trial.number1 - sub.trial.number3  390.669 25.7 2785   340.24    441.1
 sub.trial.number1 - sub.trial.number4  402.183 25.7 2785   351.76    452.6
 sub.trial.number1 - sub.trial.number5  382.510 25.7 2785   332.08    432.9
 sub.trial.number1 - sub.trial.number6  376.163 25.7 2785   325.74    426.6
 sub.trial.number2 - sub.trial.number3   41.729 25.7 2785    -8.70     92.2
 sub.trial.number2 - sub.trial.number4   53.243 25.7 2785     2.82    103.7
 sub.trial.number2 - sub.trial.number5   33.570 25.7 2785   -16.86     84.0
 sub.trial.number2 - sub.trial.number6   27.223 25.7 2785   -23.20     77.6
 sub.trial.number3 - sub.trial.number4   11.514 25.7 2785   -38.91     61.9
 sub.trial.number3 - sub.trial.number5   -8.159 25.7 2785   -58.59     42.3
 sub.trial.number3 - sub.trial.number6  -14.506 25.7 2785   -64.93     35.9
 sub.trial.number4 - sub.trial.number5  -19.673 25.7 2785   -70.10     30.8
 sub.trial.number4 - sub.trial.number6  -26.020 25.7 2785   -76.45     24.4
 sub.trial.number5 - sub.trial.number6   -6.347 25.7 2785   -56.77     44.1
 t.ratio p.value
  13.568  <.0001
  15.191  <.0001
  15.639  <.0001
  14.874  <.0001
  14.627  <.0001
   1.623  0.1048
   2.070  0.0385
   1.305  0.1919
   1.059  0.2899
   0.448  0.6544
  -0.317  0.7511
  -0.564  0.5728
  -0.765  0.4443
  -1.012  0.3117
  -0.247  0.8051

session = 5:
 contrast                              estimate   SE   df lower.CL upper.CL
 sub.trial.number1 - sub.trial.number2  335.693 27.6 2785   281.58    389.8
 sub.trial.number1 - sub.trial.number3  342.060 27.6 2785   287.95    396.2
 sub.trial.number1 - sub.trial.number4  345.762 27.6 2785   291.65    399.9
 sub.trial.number1 - sub.trial.number5  346.459 27.6 2785   292.35    400.6
 sub.trial.number1 - sub.trial.number6  346.725 27.6 2785   292.62    400.8
 sub.trial.number2 - sub.trial.number3    6.367 27.6 2785   -47.74     60.5
 sub.trial.number2 - sub.trial.number4   10.069 27.6 2785   -44.04     64.2
 sub.trial.number2 - sub.trial.number5   10.766 27.6 2785   -43.34     64.9
 sub.trial.number2 - sub.trial.number6   11.032 27.6 2785   -43.08     65.1
 sub.trial.number3 - sub.trial.number4    3.702 27.6 2785   -50.41     57.8
 sub.trial.number3 - sub.trial.number5    4.399 27.6 2785   -49.71     58.5
 sub.trial.number3 - sub.trial.number6    4.665 27.6 2785   -49.44     58.8
 sub.trial.number4 - sub.trial.number5    0.697 27.6 2785   -53.41     54.8
 sub.trial.number4 - sub.trial.number6    0.963 27.6 2785   -53.15     55.1
 sub.trial.number5 - sub.trial.number6    0.266 27.6 2785   -53.84     54.4
 t.ratio p.value
  12.165  <.0001
  12.396  <.0001
  12.530  <.0001
  12.555  <.0001
  12.565  <.0001
   0.231  0.8175
   0.365  0.7152
   0.390  0.6965
   0.400  0.6893
   0.134  0.8933
   0.159  0.8734
   0.169  0.8658
   0.025  0.9798
   0.035  0.9722
   0.010  0.9923

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
emm_6_df <- as.data.frame(emm_6) %>%
  mutate(seq_length = "6", sub.trial.number = as.numeric(as.character(sub.trial.number)))


# ========== 2. 12-step sequences in Block 4 vs 5 ==========
df_12 <- df_acc %>%
  filter(session %in% c(4, 5), seq_length == 12)

model_12 <- lmer(feedback.RT ~ sub.trial.number * session + (1 | subject), data = df_12)

cat("\n\n=== Chi-square ANOVA: 12-step sequences ===\n")


=== Chi-square ANOVA: 12-step sequences ===
print(Anova(model_12, type = 2))
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: feedback.RT
                          Chisq Df Pr(>Chisq)    
sub.trial.number         424.13 11  < 2.2e-16 ***
session                  162.02  1  < 2.2e-16 ***
sub.trial.number:session  34.28 11  0.0003255 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
emm_12 <- emmeans(model_12, ~ sub.trial.number | session)
cat("\n=== EMMs per Step: 12-step ===\n")

=== EMMs per Step: 12-step ===
print(summary(emm_12))
session = 4:
 sub.trial.number emmean   SE   df lower.CL upper.CL
 1                   739 49.6 27.0      637      840
 2                   435 49.6 27.0      333      537
 3                   395 49.6 27.0      293      497
 4                   397 49.6 27.0      295      499
 5                   438 49.6 27.0      336      540
 6                   472 49.6 27.0      370      574
 7                   584 49.6 27.0      482      686
 8                   405 49.6 27.0      303      507
 9                   492 49.6 27.0      390      593
 10                  452 49.6 27.0      350      554
 11                  422 49.6 27.0      320      523
 12                  405 49.6 27.0      303      506

session = 5:
 sub.trial.number emmean   SE   df lower.CL upper.CL
 1                   970 53.2 35.5      862     1078
 2                   536 53.2 35.5      428      644
 3                   516 53.2 35.5      408      623
 4                   538 53.2 35.5      430      646
 5                   542 53.2 35.5      434      649
 6                   596 53.2 35.5      488      704
 7                   717 53.2 35.5      609      825
 8                   615 53.2 35.5      507      723
 9                   768 53.2 35.5      661      876
 10                  598 53.2 35.5      490      706
 11                  450 53.2 35.5      342      558
 12                  509 53.2 35.5      401      616

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
cat("\n=== Stepwise Pairwise Comparisons (within block): 12-step ===\n")

=== Stepwise Pairwise Comparisons (within block): 12-step ===
step_comparisons_12 <- contrast(emm_12, method = "pairwise", adjust = "none")
print(summary(step_comparisons_12, infer = c(TRUE, TRUE)))
session = 4:
 contrast                                estimate   SE   df lower.CL upper.CL
 sub.trial.number1 - sub.trial.number2    303.513 32.7 4255   239.35  367.675
 sub.trial.number1 - sub.trial.number3    343.759 32.7 4255   279.60  407.921
 sub.trial.number1 - sub.trial.number4    341.710 32.7 4255   277.55  405.872
 sub.trial.number1 - sub.trial.number5    300.915 32.7 4255   236.75  365.077
 sub.trial.number1 - sub.trial.number6    266.804 32.7 4255   202.64  330.965
 sub.trial.number1 - sub.trial.number7    154.647 32.7 4255    90.49  218.809
 sub.trial.number1 - sub.trial.number8    333.433 32.7 4255   269.27  397.595
 sub.trial.number1 - sub.trial.number9    247.138 32.7 4255   182.98  311.300
 sub.trial.number1 - sub.trial.number10   286.696 32.7 4255   222.53  350.858
 sub.trial.number1 - sub.trial.number11   317.045 32.7 4255   252.88  381.206
 sub.trial.number1 - sub.trial.number12   334.058 32.7 4255   269.90  398.220
 sub.trial.number2 - sub.trial.number3     40.245 32.7 4255   -23.92  104.407
 sub.trial.number2 - sub.trial.number4     38.196 32.7 4255   -25.97  102.358
 sub.trial.number2 - sub.trial.number5     -2.598 32.7 4255   -66.76   61.563
 sub.trial.number2 - sub.trial.number6    -36.710 32.7 4255  -100.87   27.452
 sub.trial.number2 - sub.trial.number7   -148.866 32.7 4255  -213.03  -84.704
 sub.trial.number2 - sub.trial.number8     29.920 32.7 4255   -34.24   94.081
 sub.trial.number2 - sub.trial.number9    -56.375 32.7 4255  -120.54    7.787
 sub.trial.number2 - sub.trial.number10   -16.817 32.7 4255   -80.98   47.345
 sub.trial.number2 - sub.trial.number11    13.531 32.7 4255   -50.63   77.693
 sub.trial.number2 - sub.trial.number12    30.545 32.7 4255   -33.62   94.706
 sub.trial.number3 - sub.trial.number4     -2.049 32.7 4255   -66.21   62.113
 sub.trial.number3 - sub.trial.number5    -42.844 32.7 4255  -107.01   21.318
 sub.trial.number3 - sub.trial.number6    -76.955 32.7 4255  -141.12  -12.794
 sub.trial.number3 - sub.trial.number7   -189.112 32.7 4255  -253.27 -124.950
 sub.trial.number3 - sub.trial.number8    -10.326 32.7 4255   -74.49   53.836
 sub.trial.number3 - sub.trial.number9    -96.621 32.7 4255  -160.78  -32.459
 sub.trial.number3 - sub.trial.number10   -57.062 32.7 4255  -121.22    7.099
 sub.trial.number3 - sub.trial.number11   -26.714 32.7 4255   -90.88   37.447
 sub.trial.number3 - sub.trial.number12    -9.701 32.7 4255   -73.86   54.461
 sub.trial.number4 - sub.trial.number5    -40.795 32.7 4255  -104.96   23.367
 sub.trial.number4 - sub.trial.number6    -74.906 32.7 4255  -139.07  -10.745
 sub.trial.number4 - sub.trial.number7   -187.062 32.7 4255  -251.22 -122.901
 sub.trial.number4 - sub.trial.number8     -8.277 32.7 4255   -72.44   55.885
 sub.trial.number4 - sub.trial.number9    -94.571 32.7 4255  -158.73  -30.410
 sub.trial.number4 - sub.trial.number10   -55.013 32.7 4255  -119.18    9.148
 sub.trial.number4 - sub.trial.number11   -24.665 32.7 4255   -88.83   39.496
 sub.trial.number4 - sub.trial.number12    -7.652 32.7 4255   -71.81   56.510
 sub.trial.number5 - sub.trial.number6    -34.112 32.7 4255   -98.27   30.050
 sub.trial.number5 - sub.trial.number7   -146.268 32.7 4255  -210.43  -82.106
 sub.trial.number5 - sub.trial.number8     32.518 32.7 4255   -31.64   96.680
 sub.trial.number5 - sub.trial.number9    -53.777 32.7 4255  -117.94   10.385
 sub.trial.number5 - sub.trial.number10   -14.219 32.7 4255   -78.38   49.943
 sub.trial.number5 - sub.trial.number11    16.130 32.7 4255   -48.03   80.291
 sub.trial.number5 - sub.trial.number12    33.143 32.7 4255   -31.02   97.305
 sub.trial.number6 - sub.trial.number7   -112.156 32.7 4255  -176.32  -47.995
 sub.trial.number6 - sub.trial.number8     66.629 32.7 4255     2.47  130.791
 sub.trial.number6 - sub.trial.number9    -19.665 32.7 4255   -83.83   44.496
 sub.trial.number6 - sub.trial.number10    19.893 32.7 4255   -44.27   84.055
 sub.trial.number6 - sub.trial.number11    50.241 32.7 4255   -13.92  114.403
 sub.trial.number6 - sub.trial.number12    67.254 32.7 4255     3.09  131.416
 sub.trial.number7 - sub.trial.number8    178.786 32.7 4255   114.62  242.947
 sub.trial.number7 - sub.trial.number9     92.491 32.7 4255    28.33  156.653
 sub.trial.number7 - sub.trial.number10   132.049 32.7 4255    67.89  196.211
 sub.trial.number7 - sub.trial.number11   162.397 32.7 4255    98.24  226.559
 sub.trial.number7 - sub.trial.number12   179.411 32.7 4255   115.25  243.572
 sub.trial.number8 - sub.trial.number9    -86.295 32.7 4255  -150.46  -22.133
 sub.trial.number8 - sub.trial.number10   -46.737 32.7 4255  -110.90   17.425
 sub.trial.number8 - sub.trial.number11   -16.388 32.7 4255   -80.55   47.773
 sub.trial.number8 - sub.trial.number12     0.625 32.7 4255   -63.54   64.787
 sub.trial.number9 - sub.trial.number10    39.558 32.7 4255   -24.60  103.720
 sub.trial.number9 - sub.trial.number11    69.906 32.7 4255     5.74  134.068
 sub.trial.number9 - sub.trial.number12    86.920 32.7 4255    22.76  151.081
 sub.trial.number10 - sub.trial.number11   30.348 32.7 4255   -33.81   94.510
 sub.trial.number10 - sub.trial.number12   47.362 32.7 4255   -16.80  111.523
 sub.trial.number11 - sub.trial.number12   17.013 32.7 4255   -47.15   81.175
 t.ratio p.value
   9.274  <.0001
  10.504  <.0001
  10.441  <.0001
   9.195  <.0001
   8.152  <.0001
   4.725  <.0001
  10.188  <.0001
   7.552  <.0001
   8.760  <.0001
   9.688  <.0001
  10.207  <.0001
   1.230  0.2189
   1.167  0.2432
  -0.079  0.9367
  -1.122  0.2621
  -4.549  <.0001
   0.914  0.3607
  -1.723  0.0850
  -0.514  0.6074
   0.413  0.6793
   0.933  0.3507
  -0.063  0.9501
  -1.309  0.1906
  -2.351  0.0187
  -5.778  <.0001
  -0.316  0.7524
  -2.952  0.0032
  -1.744  0.0813
  -0.816  0.4144
  -0.296  0.7669
  -1.247  0.2126
  -2.289  0.0221
  -5.716  <.0001
  -0.253  0.8004
  -2.890  0.0039
  -1.681  0.0928
  -0.754  0.4511
  -0.234  0.8151
  -1.042  0.2973
  -4.469  <.0001
   0.994  0.3205
  -1.643  0.1004
  -0.434  0.6640
   0.493  0.6221
   1.013  0.3113
  -3.427  0.0006
   2.036  0.0418
  -0.601  0.5479
   0.608  0.5433
   1.535  0.1248
   2.055  0.0399
   5.463  <.0001
   2.826  0.0047
   4.035  0.0001
   4.962  <.0001
   5.482  <.0001
  -2.637  0.0084
  -1.428  0.1533
  -0.501  0.6166
   0.019  0.9848
   1.209  0.2268
   2.136  0.0327
   2.656  0.0079
   0.927  0.3538
   1.447  0.1479
   0.520  0.6032

session = 5:
 contrast                                estimate   SE   df lower.CL upper.CL
 sub.trial.number1 - sub.trial.number2    433.813 42.3 4255   350.86  516.769
 sub.trial.number1 - sub.trial.number3    454.306 42.3 4255   371.35  537.262
 sub.trial.number1 - sub.trial.number4    432.090 42.3 4255   349.13  515.045
 sub.trial.number1 - sub.trial.number5    428.366 42.3 4255   345.41  511.322
 sub.trial.number1 - sub.trial.number6    373.672 42.3 4255   290.72  456.628
 sub.trial.number1 - sub.trial.number7    252.813 42.3 4255   169.86  335.769
 sub.trial.number1 - sub.trial.number8    355.052 42.3 4255   272.10  438.008
 sub.trial.number1 - sub.trial.number9    201.515 42.3 4255   118.56  284.471
 sub.trial.number1 - sub.trial.number10   371.978 42.3 4255   289.02  454.934
 sub.trial.number1 - sub.trial.number11   519.828 42.3 4255   436.87  602.784
 sub.trial.number1 - sub.trial.number12   461.276 42.3 4255   378.32  544.232
 sub.trial.number2 - sub.trial.number3     20.492 42.3 4255   -62.46  103.448
 sub.trial.number2 - sub.trial.number4     -1.724 42.3 4255   -84.68   81.232
 sub.trial.number2 - sub.trial.number5     -5.448 42.3 4255   -88.40   77.508
 sub.trial.number2 - sub.trial.number6    -60.142 42.3 4255  -143.10   22.814
 sub.trial.number2 - sub.trial.number7   -181.000 42.3 4255  -263.96  -98.044
 sub.trial.number2 - sub.trial.number8    -78.761 42.3 4255  -161.72    4.195
 sub.trial.number2 - sub.trial.number9   -232.298 42.3 4255  -315.25 -149.343
 sub.trial.number2 - sub.trial.number10   -61.836 42.3 4255  -144.79   21.120
 sub.trial.number2 - sub.trial.number11    86.015 42.3 4255     3.06  168.971
 sub.trial.number2 - sub.trial.number12    27.463 42.3 4255   -55.49  110.419
 sub.trial.number3 - sub.trial.number4    -22.216 42.3 4255  -105.17   60.739
 sub.trial.number3 - sub.trial.number5    -25.940 42.3 4255  -108.90   57.016
 sub.trial.number3 - sub.trial.number6    -80.634 42.3 4255  -163.59    2.322
 sub.trial.number3 - sub.trial.number7   -201.493 42.3 4255  -284.45 -118.537
 sub.trial.number3 - sub.trial.number8    -99.254 42.3 4255  -182.21  -16.298
 sub.trial.number3 - sub.trial.number9   -252.791 42.3 4255  -335.75 -169.835
 sub.trial.number3 - sub.trial.number10   -82.328 42.3 4255  -165.28    0.628
 sub.trial.number3 - sub.trial.number11    65.522 42.3 4255   -17.43  148.478
 sub.trial.number3 - sub.trial.number12     6.970 42.3 4255   -75.99   89.926
 sub.trial.number4 - sub.trial.number5     -3.724 42.3 4255   -86.68   79.232
 sub.trial.number4 - sub.trial.number6    -58.418 42.3 4255  -141.37   24.538
 sub.trial.number4 - sub.trial.number7   -179.276 42.3 4255  -262.23  -96.320
 sub.trial.number4 - sub.trial.number8    -77.037 42.3 4255  -159.99    5.919
 sub.trial.number4 - sub.trial.number9   -230.575 42.3 4255  -313.53 -147.619
 sub.trial.number4 - sub.trial.number10   -60.112 42.3 4255  -143.07   22.844
 sub.trial.number4 - sub.trial.number11    87.739 42.3 4255     4.78  170.695
 sub.trial.number4 - sub.trial.number12    29.187 42.3 4255   -53.77  112.142
 sub.trial.number5 - sub.trial.number6    -54.694 42.3 4255  -137.65   28.262
 sub.trial.number5 - sub.trial.number7   -175.552 42.3 4255  -258.51  -92.596
 sub.trial.number5 - sub.trial.number8    -73.313 42.3 4255  -156.27    9.643
 sub.trial.number5 - sub.trial.number9   -226.851 42.3 4255  -309.81 -143.895
 sub.trial.number5 - sub.trial.number10   -56.388 42.3 4255  -139.34   26.568
 sub.trial.number5 - sub.trial.number11    91.463 42.3 4255     8.51  174.419
 sub.trial.number5 - sub.trial.number12    32.910 42.3 4255   -50.05  115.866
 sub.trial.number6 - sub.trial.number7   -120.858 42.3 4255  -203.81  -37.902
 sub.trial.number6 - sub.trial.number8    -18.619 42.3 4255  -101.58   64.337
 sub.trial.number6 - sub.trial.number9   -172.157 42.3 4255  -255.11  -89.201
 sub.trial.number6 - sub.trial.number10    -1.694 42.3 4255   -84.65   81.262
 sub.trial.number6 - sub.trial.number11   146.157 42.3 4255    63.20  229.113
 sub.trial.number6 - sub.trial.number12    87.605 42.3 4255     4.65  170.560
 sub.trial.number7 - sub.trial.number8    102.239 42.3 4255    19.28  185.195
 sub.trial.number7 - sub.trial.number9    -51.298 42.3 4255  -134.25   31.657
 sub.trial.number7 - sub.trial.number10   119.164 42.3 4255    36.21  202.120
 sub.trial.number7 - sub.trial.number11   267.015 42.3 4255   184.06  349.971
 sub.trial.number7 - sub.trial.number12   208.463 42.3 4255   125.51  291.419
 sub.trial.number8 - sub.trial.number9   -153.537 42.3 4255  -236.49  -70.581
 sub.trial.number8 - sub.trial.number10    16.925 42.3 4255   -66.03   99.881
 sub.trial.number8 - sub.trial.number11   164.776 42.3 4255    81.82  247.732
 sub.trial.number8 - sub.trial.number12   106.224 42.3 4255    23.27  189.180
 sub.trial.number9 - sub.trial.number10   170.463 42.3 4255    87.51  253.419
 sub.trial.number9 - sub.trial.number11   318.313 42.3 4255   235.36  401.269
 sub.trial.number9 - sub.trial.number12   259.761 42.3 4255   176.81  342.717
 sub.trial.number10 - sub.trial.number11  147.851 42.3 4255    64.89  230.807
 sub.trial.number10 - sub.trial.number12   89.299 42.3 4255     6.34  172.255
 sub.trial.number11 - sub.trial.number12  -58.552 42.3 4255  -141.51   24.404
 t.ratio p.value
  10.252  <.0001
  10.737  <.0001
  10.212  <.0001
  10.124  <.0001
   8.831  <.0001
   5.975  <.0001
   8.391  <.0001
   4.762  <.0001
   8.791  <.0001
  12.285  <.0001
  10.901  <.0001
   0.484  0.6282
  -0.041  0.9675
  -0.129  0.8976
  -1.421  0.1553
  -4.278  <.0001
  -1.861  0.0628
  -5.490  <.0001
  -1.461  0.1440
   2.033  0.0421
   0.649  0.5164
  -0.525  0.5996
  -0.613  0.5399
  -1.906  0.0568
  -4.762  <.0001
  -2.346  0.0190
  -5.974  <.0001
  -1.946  0.0518
   1.549  0.1216
   0.165  0.8692
  -0.088  0.9299
  -1.381  0.1675
  -4.237  <.0001
  -1.821  0.0687
  -5.449  <.0001
  -1.421  0.1555
   2.074  0.0382
   0.690  0.4904
  -1.293  0.1962
  -4.149  <.0001
  -1.733  0.0832
  -5.361  <.0001
  -1.333  0.1827
   2.162  0.0307
   0.778  0.4367
  -2.856  0.0043
  -0.440  0.6599
  -4.069  <.0001
  -0.040  0.9681
   3.454  0.0006
   2.070  0.0385
   2.416  0.0157
  -1.212  0.2254
   2.816  0.0049
   6.310  <.0001
   4.927  <.0001
  -3.629  0.0003
   0.400  0.6892
   3.894  0.0001
   2.510  0.0121
   4.029  0.0001
   7.523  <.0001
   6.139  <.0001
   3.494  0.0005
   2.110  0.0349
  -1.384  0.1665

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
emm_12_df <- as.data.frame(emm_12) %>%
  mutate(seq_length = "12", sub.trial.number = as.numeric(as.character(sub.trial.number)))


# ========== 3. 18-step sequences in Block 4 vs 5 ==========
df_18 <- df_acc %>%
  filter(session %in% c(4, 5), seq_length == 18)

model_18 <- lmer(feedback.RT ~ sub.trial.number * session + (1 | subject), data = df_18)

cat("\n\n=== Chi-square ANOVA: 18-step sequences ===\n")


=== Chi-square ANOVA: 18-step sequences ===
print(Anova(model_18, type = 2))
Analysis of Deviance Table (Type II Wald chisquare tests)

Response: feedback.RT
                           Chisq Df Pr(>Chisq)    
sub.trial.number         385.211 17  < 2.2e-16 ***
session                   86.629  1  < 2.2e-16 ***
sub.trial.number:session  54.881 17  7.161e-06 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
emm_18 <- emmeans(model_18, ~ sub.trial.number | session)
cat("\n=== EMMs per Step: 18-step ===\n")

=== EMMs per Step: 18-step ===
print(summary(emm_18))
session = 4:
 sub.trial.number emmean   SE   df lower.CL upper.CL
 1                   814 50.3 35.3      712      916
 2                   449 50.3 35.3      347      551
 3                   402 50.3 35.3      300      504
 4                   394 50.3 35.3      292      496
 5                   442 50.3 35.3      340      544
 6                   459 50.3 35.3      357      561
 7                   502 50.3 35.3      400      604
 8                   449 50.3 35.3      347      551
 9                   489 50.3 35.3      387      591
 10                  485 50.3 35.3      383      587
 11                  455 50.3 35.3      353      557
 12                  419 50.3 35.3      317      521
 13                  579 50.3 35.3      477      681
 14                  552 50.3 35.3      450      654
 15                  420 50.3 35.3      318      522
 16                  399 50.3 35.3      297      501
 17                  390 50.3 35.3      288      492
 18                  460 50.3 35.3      358      562

session = 5:
 sub.trial.number emmean   SE   df lower.CL upper.CL
 1                   850 54.8 49.9      740      960
 2                   494 54.8 49.9      384      604
 3                   509 54.8 49.9      398      619
 4                   540 54.8 49.9      430      650
 5                   557 54.8 49.9      447      667
 6                   560 54.8 49.9      449      670
 7                   627 54.8 49.9      516      737
 8                   515 54.8 49.9      404      625
 9                   747 54.8 49.9      637      858
 10                  714 54.8 49.9      603      824
 11                  474 54.8 49.9      364      584
 12                  490 54.8 49.9      380      600
 13                  872 54.8 49.9      762      982
 14                  625 54.8 49.9      515      735
 15                  436 54.8 49.9      326      546
 16                  473 54.8 49.9      363      583
 17                  519 54.8 49.9      409      629
 18                  473 54.8 49.9      363      584

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
cat("\n=== Stepwise Pairwise Comparisons (within block): 18-step ===\n")

=== Stepwise Pairwise Comparisons (within block): 18-step ===
step_comparisons_18 <- contrast(emm_18, method = "pairwise", adjust = "none")
print(summary(step_comparisons_18, infer = c(TRUE, TRUE)))
session = 4:
 contrast                                estimate   SE   df lower.CL upper.CL
 sub.trial.number1 - sub.trial.number2    365.528 40.0 5167   287.10   443.95
 sub.trial.number1 - sub.trial.number3    412.410 40.0 5167   333.98   490.84
 sub.trial.number1 - sub.trial.number4    420.022 40.0 5167   341.60   498.45
 sub.trial.number1 - sub.trial.number5    371.730 40.0 5167   293.30   450.16
 sub.trial.number1 - sub.trial.number6    354.888 40.0 5167   276.46   433.31
 sub.trial.number1 - sub.trial.number7    311.910 40.0 5167   233.48   390.34
 sub.trial.number1 - sub.trial.number8    365.180 40.0 5167   286.75   443.61
 sub.trial.number1 - sub.trial.number9    325.522 40.0 5167   247.10   403.95
 sub.trial.number1 - sub.trial.number10   329.511 40.0 5167   251.08   407.94
 sub.trial.number1 - sub.trial.number11   359.242 40.0 5167   280.82   437.67
 sub.trial.number1 - sub.trial.number12   394.910 40.0 5167   316.48   473.34
 sub.trial.number1 - sub.trial.number13   235.354 40.0 5167   156.93   313.78
 sub.trial.number1 - sub.trial.number14   261.719 40.0 5167   183.29   340.15
 sub.trial.number1 - sub.trial.number15   393.916 40.0 5167   315.49   472.34
 sub.trial.number1 - sub.trial.number16   415.433 40.0 5167   337.01   493.86
 sub.trial.number1 - sub.trial.number17   424.135 40.0 5167   345.71   502.56
 sub.trial.number1 - sub.trial.number18   354.539 40.0 5167   276.11   432.97
 sub.trial.number2 - sub.trial.number3     46.882 40.0 5167   -31.54   125.31
 sub.trial.number2 - sub.trial.number4     54.494 40.0 5167   -23.93   132.92
 sub.trial.number2 - sub.trial.number5      6.202 40.0 5167   -72.22    84.63
 sub.trial.number2 - sub.trial.number6    -10.640 40.0 5167   -89.07    67.79
 sub.trial.number2 - sub.trial.number7    -53.618 40.0 5167  -132.04    24.81
 sub.trial.number2 - sub.trial.number8     -0.348 40.0 5167   -78.77    78.08
 sub.trial.number2 - sub.trial.number9    -40.006 40.0 5167  -118.43    38.42
 sub.trial.number2 - sub.trial.number10   -36.017 40.0 5167  -114.44    42.41
 sub.trial.number2 - sub.trial.number11    -6.287 40.0 5167   -84.71    72.14
 sub.trial.number2 - sub.trial.number12    29.382 40.0 5167   -49.04   107.81
 sub.trial.number2 - sub.trial.number13  -130.174 40.0 5167  -208.60   -51.75
 sub.trial.number2 - sub.trial.number14  -103.809 40.0 5167  -182.24   -25.38
 sub.trial.number2 - sub.trial.number15    28.388 40.0 5167   -50.04   106.81
 sub.trial.number2 - sub.trial.number16    49.904 40.0 5167   -28.52   128.33
 sub.trial.number2 - sub.trial.number17    58.607 40.0 5167   -19.82   137.03
 sub.trial.number2 - sub.trial.number18   -10.989 40.0 5167   -89.42    67.44
 sub.trial.number3 - sub.trial.number4      7.612 40.0 5167   -70.81    86.04
 sub.trial.number3 - sub.trial.number5    -40.680 40.0 5167  -119.11    37.75
 sub.trial.number3 - sub.trial.number6    -57.523 40.0 5167  -135.95    20.90
 sub.trial.number3 - sub.trial.number7   -100.500 40.0 5167  -178.93   -22.07
 sub.trial.number3 - sub.trial.number8    -47.230 40.0 5167  -125.66    31.20
 sub.trial.number3 - sub.trial.number9    -86.888 40.0 5167  -165.31    -8.46
 sub.trial.number3 - sub.trial.number10   -82.899 40.0 5167  -161.33    -4.47
 sub.trial.number3 - sub.trial.number11   -53.169 40.0 5167  -131.59    25.26
 sub.trial.number3 - sub.trial.number12   -17.500 40.0 5167   -95.93    60.93
 sub.trial.number3 - sub.trial.number13  -177.056 40.0 5167  -255.48   -98.63
 sub.trial.number3 - sub.trial.number14  -150.691 40.0 5167  -229.12   -72.26
 sub.trial.number3 - sub.trial.number15   -18.494 40.0 5167   -96.92    59.93
 sub.trial.number3 - sub.trial.number16     3.022 40.0 5167   -75.40    81.45
 sub.trial.number3 - sub.trial.number17    11.725 40.0 5167   -66.70    90.15
 sub.trial.number3 - sub.trial.number18   -57.871 40.0 5167  -136.30    20.56
 sub.trial.number4 - sub.trial.number5    -48.292 40.0 5167  -126.72    30.13
 sub.trial.number4 - sub.trial.number6    -65.135 40.0 5167  -143.56    13.29
 sub.trial.number4 - sub.trial.number7   -108.112 40.0 5167  -186.54   -29.69
 sub.trial.number4 - sub.trial.number8    -54.843 40.0 5167  -133.27    23.58
 sub.trial.number4 - sub.trial.number9    -94.500 40.0 5167  -172.93   -16.07
 sub.trial.number4 - sub.trial.number10   -90.511 40.0 5167  -168.94   -12.08
 sub.trial.number4 - sub.trial.number11   -60.781 40.0 5167  -139.21    17.65
 sub.trial.number4 - sub.trial.number12   -25.112 40.0 5167  -103.54    53.31
 sub.trial.number4 - sub.trial.number13  -184.668 40.0 5167  -263.09  -106.24
 sub.trial.number4 - sub.trial.number14  -158.303 40.0 5167  -236.73   -79.88
 sub.trial.number4 - sub.trial.number15   -26.107 40.0 5167  -104.53    52.32
 sub.trial.number4 - sub.trial.number16    -4.590 40.0 5167   -83.02    73.84
 sub.trial.number4 - sub.trial.number17     4.112 40.0 5167   -74.31    82.54
 sub.trial.number4 - sub.trial.number18   -65.483 40.0 5167  -143.91    12.94
 sub.trial.number5 - sub.trial.number6    -16.843 40.0 5167   -95.27    61.58
 sub.trial.number5 - sub.trial.number7    -59.820 40.0 5167  -138.25    18.61
 sub.trial.number5 - sub.trial.number8     -6.551 40.0 5167   -84.98    71.88
 sub.trial.number5 - sub.trial.number9    -46.208 40.0 5167  -124.63    32.22
 sub.trial.number5 - sub.trial.number10   -42.219 40.0 5167  -120.65    36.21
 sub.trial.number5 - sub.trial.number11   -12.489 40.0 5167   -90.92    65.94
 sub.trial.number5 - sub.trial.number12    23.180 40.0 5167   -55.25   101.61
 sub.trial.number5 - sub.trial.number13  -136.376 40.0 5167  -214.80   -57.95
 sub.trial.number5 - sub.trial.number14  -110.011 40.0 5167  -188.44   -31.58
 sub.trial.number5 - sub.trial.number15    22.185 40.0 5167   -56.24   100.61
 sub.trial.number5 - sub.trial.number16    43.702 40.0 5167   -34.72   122.13
 sub.trial.number5 - sub.trial.number17    52.404 40.0 5167   -26.02   130.83
 sub.trial.number5 - sub.trial.number18   -17.191 40.0 5167   -95.62    61.24
 sub.trial.number6 - sub.trial.number7    -42.977 40.0 5167  -121.40    35.45
 sub.trial.number6 - sub.trial.number8     10.292 40.0 5167   -68.13    88.72
 sub.trial.number6 - sub.trial.number9    -29.365 40.0 5167  -107.79    49.06
 sub.trial.number6 - sub.trial.number10   -25.376 40.0 5167  -103.80    53.05
 sub.trial.number6 - sub.trial.number11     4.354 40.0 5167   -74.07    82.78
 sub.trial.number6 - sub.trial.number12    40.023 40.0 5167   -38.40   118.45
 sub.trial.number6 - sub.trial.number13  -119.534 40.0 5167  -197.96   -41.11
 sub.trial.number6 - sub.trial.number14   -93.168 40.0 5167  -171.59   -14.74
 sub.trial.number6 - sub.trial.number15    39.028 40.0 5167   -39.40   117.45
 sub.trial.number6 - sub.trial.number16    60.545 40.0 5167   -17.88   138.97
 sub.trial.number6 - sub.trial.number17    69.247 40.0 5167    -9.18   147.67
 sub.trial.number6 - sub.trial.number18    -0.348 40.0 5167   -78.77    78.08
 sub.trial.number7 - sub.trial.number8     53.270 40.0 5167   -25.16   131.70
 sub.trial.number7 - sub.trial.number9     13.612 40.0 5167   -64.81    92.04
 sub.trial.number7 - sub.trial.number10    17.601 40.0 5167   -60.83    96.03
 sub.trial.number7 - sub.trial.number11    47.331 40.0 5167   -31.09   125.76
 sub.trial.number7 - sub.trial.number12    83.000 40.0 5167     4.57   161.43
 sub.trial.number7 - sub.trial.number13   -76.556 40.0 5167  -154.98     1.87
 sub.trial.number7 - sub.trial.number14   -50.191 40.0 5167  -128.62    28.24
 sub.trial.number7 - sub.trial.number15    82.006 40.0 5167     3.58   160.43
 sub.trial.number7 - sub.trial.number16   103.522 40.0 5167    25.10   181.95
 sub.trial.number7 - sub.trial.number17   112.225 40.0 5167    33.80   190.65
 sub.trial.number7 - sub.trial.number18    42.629 40.0 5167   -35.80   121.06
 sub.trial.number8 - sub.trial.number9    -39.657 40.0 5167  -118.08    38.77
 sub.trial.number8 - sub.trial.number10   -35.669 40.0 5167  -114.09    42.76
 sub.trial.number8 - sub.trial.number11    -5.938 40.0 5167   -84.36    72.49
 sub.trial.number8 - sub.trial.number12    29.730 40.0 5167   -48.70   108.16
 sub.trial.number8 - sub.trial.number13  -129.826 40.0 5167  -208.25   -51.40
 sub.trial.number8 - sub.trial.number14  -103.461 40.0 5167  -181.89   -25.03
 sub.trial.number8 - sub.trial.number15    28.736 40.0 5167   -49.69   107.16
 sub.trial.number8 - sub.trial.number16    50.253 40.0 5167   -28.17   128.68
 sub.trial.number8 - sub.trial.number17    58.955 40.0 5167   -19.47   137.38
 sub.trial.number8 - sub.trial.number18   -10.640 40.0 5167   -89.07    67.79
 sub.trial.number9 - sub.trial.number10     3.989 40.0 5167   -74.44    82.42
 sub.trial.number9 - sub.trial.number11    33.719 40.0 5167   -44.71   112.15
 sub.trial.number9 - sub.trial.number12    69.388 40.0 5167    -9.04   147.81
 sub.trial.number9 - sub.trial.number13   -90.168 40.0 5167  -168.59   -11.74
 sub.trial.number9 - sub.trial.number14   -63.803 40.0 5167  -142.23    14.62
 sub.trial.number9 - sub.trial.number15    68.393 40.0 5167   -10.03   146.82
 sub.trial.number9 - sub.trial.number16    89.910 40.0 5167    11.48   168.34
 sub.trial.number9 - sub.trial.number17    98.612 40.0 5167    20.19   177.04
 sub.trial.number9 - sub.trial.number18    29.017 40.0 5167   -49.41   107.44
 sub.trial.number10 - sub.trial.number11   29.730 40.0 5167   -48.70   108.16
 sub.trial.number10 - sub.trial.number12   65.399 40.0 5167   -13.03   143.83
 sub.trial.number10 - sub.trial.number13  -94.157 40.0 5167  -172.58   -15.73
 sub.trial.number10 - sub.trial.number14  -67.792 40.0 5167  -146.22    10.63
 sub.trial.number10 - sub.trial.number15   64.404 40.0 5167   -14.02   142.83
 sub.trial.number10 - sub.trial.number16   85.921 40.0 5167     7.50   164.35
 sub.trial.number10 - sub.trial.number17   94.624 40.0 5167    16.20   173.05
 sub.trial.number10 - sub.trial.number18   25.028 40.0 5167   -53.40   103.45
 sub.trial.number11 - sub.trial.number12   35.669 40.0 5167   -42.76   114.09
 sub.trial.number11 - sub.trial.number13 -123.888 40.0 5167  -202.31   -45.46
 sub.trial.number11 - sub.trial.number14  -97.522 40.0 5167  -175.95   -19.10
 sub.trial.number11 - sub.trial.number15   34.674 40.0 5167   -43.75   113.10
 sub.trial.number11 - sub.trial.number16   56.191 40.0 5167   -22.24   134.62
 sub.trial.number11 - sub.trial.number17   64.893 40.0 5167   -13.53   143.32
 sub.trial.number11 - sub.trial.number18   -4.702 40.0 5167   -83.13    73.72
 sub.trial.number12 - sub.trial.number13 -159.556 40.0 5167  -237.98   -81.13
 sub.trial.number12 - sub.trial.number14 -133.191 40.0 5167  -211.62   -54.76
 sub.trial.number12 - sub.trial.number15   -0.994 40.0 5167   -79.42    77.43
 sub.trial.number12 - sub.trial.number16   20.523 40.0 5167   -57.90    98.95
 sub.trial.number12 - sub.trial.number17   29.225 40.0 5167   -49.20   107.65
 sub.trial.number12 - sub.trial.number18  -40.371 40.0 5167  -118.80    38.06
 sub.trial.number13 - sub.trial.number14   26.365 40.0 5167   -52.06   104.79
 sub.trial.number13 - sub.trial.number15  158.562 40.0 5167    80.14   236.99
 sub.trial.number13 - sub.trial.number16  180.079 40.0 5167   101.65   258.50
 sub.trial.number13 - sub.trial.number17  188.781 40.0 5167   110.35   267.21
 sub.trial.number13 - sub.trial.number18  119.185 40.0 5167    40.76   197.61
 sub.trial.number14 - sub.trial.number15  132.197 40.0 5167    53.77   210.62
 sub.trial.number14 - sub.trial.number16  153.714 40.0 5167    75.29   232.14
 sub.trial.number14 - sub.trial.number17  162.416 40.0 5167    83.99   240.84
 sub.trial.number14 - sub.trial.number18   92.820 40.0 5167    14.39   171.25
 sub.trial.number15 - sub.trial.number16   21.517 40.0 5167   -56.91    99.94
 sub.trial.number15 - sub.trial.number17   30.219 40.0 5167   -48.21   108.65
 sub.trial.number15 - sub.trial.number18  -39.376 40.0 5167  -117.80    39.05
 sub.trial.number16 - sub.trial.number17    8.702 40.0 5167   -69.72    87.13
 sub.trial.number16 - sub.trial.number18  -60.893 40.0 5167  -139.32    17.53
 sub.trial.number17 - sub.trial.number18  -69.596 40.0 5167  -148.02     8.83
 t.ratio p.value
   9.137  <.0001
  10.309  <.0001
  10.499  <.0001
   9.292  <.0001
   8.871  <.0001
   7.797  <.0001
   9.128  <.0001
   8.137  <.0001
   8.237  <.0001
   8.980  <.0001
   9.872  <.0001
   5.883  <.0001
   6.542  <.0001
   9.847  <.0001
  10.385  <.0001
  10.602  <.0001
   8.862  <.0001
   1.172  0.2413
   1.362  0.1732
   0.155  0.8768
  -0.266  0.7903
  -1.340  0.1802
  -0.009  0.9931
  -1.000  0.3173
  -0.900  0.3680
  -0.157  0.8751
   0.734  0.4627
  -3.254  0.0011
  -2.595  0.0095
   0.710  0.4780
   1.247  0.2123
   1.465  0.1430
  -0.275  0.7836
   0.190  0.8491
  -1.017  0.3093
  -1.438  0.1505
  -2.512  0.0120
  -1.181  0.2378
  -2.172  0.0299
  -2.072  0.0383
  -1.329  0.1839
  -0.437  0.6618
  -4.426  <.0001
  -3.767  0.0002
  -0.462  0.6439
   0.076  0.9398
   0.293  0.7695
  -1.447  0.1481
  -1.207  0.2274
  -1.628  0.1035
  -2.702  0.0069
  -1.371  0.1705
  -2.362  0.0182
  -2.263  0.0237
  -1.519  0.1287
  -0.628  0.5302
  -4.616  <.0001
  -3.957  0.0001
  -0.653  0.5140
  -0.115  0.9087
   0.103  0.9181
  -1.637  0.1017
  -0.421  0.6738
  -1.495  0.1349
  -0.164  0.8699
  -1.155  0.2481
  -1.055  0.2913
  -0.312  0.7549
   0.579  0.5623
  -3.409  0.0007
  -2.750  0.0060
   0.555  0.5792
   1.092  0.2747
   1.310  0.1903
  -0.430  0.6674
  -1.074  0.2827
   0.257  0.7970
  -0.734  0.4630
  -0.634  0.5259
   0.109  0.9133
   1.000  0.3171
  -2.988  0.0028
  -2.329  0.0199
   0.976  0.3293
   1.513  0.1302
   1.731  0.0835
  -0.009  0.9931
   1.332  0.1831
   0.340  0.7337
   0.440  0.6600
   1.183  0.2368
   2.075  0.0381
  -1.914  0.0557
  -1.255  0.2097
   2.050  0.0404
   2.588  0.0097
   2.805  0.0050
   1.066  0.2867
  -0.991  0.3216
  -0.892  0.3726
  -0.148  0.8820
   0.743  0.4574
  -3.245  0.0012
  -2.586  0.0097
   0.718  0.4726
   1.256  0.2091
   1.474  0.1406
  -0.266  0.7903
   0.100  0.9206
   0.843  0.3993
   1.734  0.0829
  -2.254  0.0242
  -1.595  0.1108
   1.710  0.0874
   2.247  0.0247
   2.465  0.0137
   0.725  0.4683
   0.743  0.4574
   1.635  0.1022
  -2.354  0.0186
  -1.695  0.0902
   1.610  0.1075
   2.148  0.0318
   2.365  0.0181
   0.626  0.5316
   0.892  0.3726
  -3.097  0.0020
  -2.438  0.0148
   0.867  0.3861
   1.405  0.1602
   1.622  0.1048
  -0.118  0.9064
  -3.988  0.0001
  -3.329  0.0009
  -0.025  0.9802
   0.513  0.6080
   0.731  0.4651
  -1.009  0.3130
   0.659  0.5099
   3.964  0.0001
   4.501  <.0001
   4.719  <.0001
   2.979  0.0029
   3.305  0.0010
   3.842  0.0001
   4.060  <.0001
   2.320  0.0204
   0.538  0.5907
   0.755  0.4501
  -0.984  0.3250
   0.218  0.8278
  -1.522  0.1280
  -1.740  0.0820

session = 5:
 contrast                                estimate   SE   df lower.CL upper.CL
 sub.trial.number1 - sub.trial.number2    355.848 50.4 5167   256.98   454.72
 sub.trial.number1 - sub.trial.number3    341.438 50.4 5167   242.57   440.31
 sub.trial.number1 - sub.trial.number4    310.366 50.4 5167   211.50   409.24
 sub.trial.number1 - sub.trial.number5    292.821 50.4 5167   193.95   391.69
 sub.trial.number1 - sub.trial.number6    290.509 50.4 5167   191.64   389.38
 sub.trial.number1 - sub.trial.number7    223.491 50.4 5167   124.62   322.36
 sub.trial.number1 - sub.trial.number8    335.482 50.4 5167   236.61   434.35
 sub.trial.number1 - sub.trial.number9    102.696 50.4 5167     3.83   201.57
 sub.trial.number1 - sub.trial.number10   136.536 50.4 5167    37.67   235.41
 sub.trial.number1 - sub.trial.number11   376.054 50.4 5167   277.18   474.92
 sub.trial.number1 - sub.trial.number12   360.339 50.4 5167   261.47   459.21
 sub.trial.number1 - sub.trial.number13   -21.875 50.4 5167  -120.74    76.99
 sub.trial.number1 - sub.trial.number14   225.152 50.4 5167   126.28   324.02
 sub.trial.number1 - sub.trial.number15   413.830 50.4 5167   314.96   512.70
 sub.trial.number1 - sub.trial.number16   376.973 50.4 5167   278.10   475.84
 sub.trial.number1 - sub.trial.number17   331.062 50.4 5167   232.19   429.93
 sub.trial.number1 - sub.trial.number18   376.580 50.4 5167   277.71   475.45
 sub.trial.number2 - sub.trial.number3    -14.411 50.4 5167  -113.28    84.46
 sub.trial.number2 - sub.trial.number4    -45.482 50.4 5167  -144.35    53.39
 sub.trial.number2 - sub.trial.number5    -63.027 50.4 5167  -161.90    35.84
 sub.trial.number2 - sub.trial.number6    -65.339 50.4 5167  -164.21    33.53
 sub.trial.number2 - sub.trial.number7   -132.357 50.4 5167  -231.23   -33.49
 sub.trial.number2 - sub.trial.number8    -20.366 50.4 5167  -119.24    78.50
 sub.trial.number2 - sub.trial.number9   -253.152 50.4 5167  -352.02  -154.28
 sub.trial.number2 - sub.trial.number10  -219.312 50.4 5167  -318.18  -120.44
 sub.trial.number2 - sub.trial.number11    20.205 50.4 5167   -78.66   119.07
 sub.trial.number2 - sub.trial.number12     4.491 50.4 5167   -94.38   103.36
 sub.trial.number2 - sub.trial.number13  -377.723 50.4 5167  -476.59  -278.85
 sub.trial.number2 - sub.trial.number14  -130.696 50.4 5167  -229.57   -31.83
 sub.trial.number2 - sub.trial.number15    57.982 50.4 5167   -40.89   156.85
 sub.trial.number2 - sub.trial.number16    21.125 50.4 5167   -77.74   119.99
 sub.trial.number2 - sub.trial.number17   -24.786 50.4 5167  -123.66    74.08
 sub.trial.number2 - sub.trial.number18    20.732 50.4 5167   -78.14   119.60
 sub.trial.number3 - sub.trial.number4    -31.071 50.4 5167  -129.94    67.80
 sub.trial.number3 - sub.trial.number5    -48.616 50.4 5167  -147.49    50.25
 sub.trial.number3 - sub.trial.number6    -50.929 50.4 5167  -149.80    47.94
 sub.trial.number3 - sub.trial.number7   -117.946 50.4 5167  -216.82   -19.08
 sub.trial.number3 - sub.trial.number8     -5.955 50.4 5167  -104.82    92.91
 sub.trial.number3 - sub.trial.number9   -238.741 50.4 5167  -337.61  -139.87
 sub.trial.number3 - sub.trial.number10  -204.902 50.4 5167  -303.77  -106.03
 sub.trial.number3 - sub.trial.number11    34.616 50.4 5167   -64.25   133.49
 sub.trial.number3 - sub.trial.number12    18.902 50.4 5167   -79.97   117.77
 sub.trial.number3 - sub.trial.number13  -363.312 50.4 5167  -462.18  -264.44
 sub.trial.number3 - sub.trial.number14  -116.286 50.4 5167  -215.16   -17.42
 sub.trial.number3 - sub.trial.number15    72.393 50.4 5167   -26.48   171.26
 sub.trial.number3 - sub.trial.number16    35.536 50.4 5167   -63.33   134.41
 sub.trial.number3 - sub.trial.number17   -10.375 50.4 5167  -109.24    88.49
 sub.trial.number3 - sub.trial.number18    35.143 50.4 5167   -63.73   134.01
 sub.trial.number4 - sub.trial.number5    -17.545 50.4 5167  -116.41    81.32
 sub.trial.number4 - sub.trial.number6    -19.857 50.4 5167  -118.73    79.01
 sub.trial.number4 - sub.trial.number7    -86.875 50.4 5167  -185.74    11.99
 sub.trial.number4 - sub.trial.number8     25.116 50.4 5167   -73.75   123.99
 sub.trial.number4 - sub.trial.number9   -207.670 50.4 5167  -306.54  -108.80
 sub.trial.number4 - sub.trial.number10  -173.830 50.4 5167  -272.70   -74.96
 sub.trial.number4 - sub.trial.number11    65.688 50.4 5167   -33.18   164.56
 sub.trial.number4 - sub.trial.number12    49.973 50.4 5167   -48.90   148.84
 sub.trial.number4 - sub.trial.number13  -332.241 50.4 5167  -431.11  -233.37
 sub.trial.number4 - sub.trial.number14   -85.214 50.4 5167  -184.08    13.66
 sub.trial.number4 - sub.trial.number15   103.464 50.4 5167     4.59   202.33
 sub.trial.number4 - sub.trial.number16    66.607 50.4 5167   -32.26   165.48
 sub.trial.number4 - sub.trial.number17    20.696 50.4 5167   -78.17   119.57
 sub.trial.number4 - sub.trial.number18    66.214 50.4 5167   -32.66   165.08
 sub.trial.number5 - sub.trial.number6     -2.312 50.4 5167  -101.18    96.56
 sub.trial.number5 - sub.trial.number7    -69.330 50.4 5167  -168.20    29.54
 sub.trial.number5 - sub.trial.number8     42.661 50.4 5167   -56.21   141.53
 sub.trial.number5 - sub.trial.number9   -190.125 50.4 5167  -288.99   -91.26
 sub.trial.number5 - sub.trial.number10  -156.286 50.4 5167  -255.16   -57.42
 sub.trial.number5 - sub.trial.number11    83.232 50.4 5167   -15.64   182.10
 sub.trial.number5 - sub.trial.number12    67.518 50.4 5167   -31.35   166.39
 sub.trial.number5 - sub.trial.number13  -314.696 50.4 5167  -413.57  -215.83
 sub.trial.number5 - sub.trial.number14   -67.670 50.4 5167  -166.54    31.20
 sub.trial.number5 - sub.trial.number15   121.009 50.4 5167    22.14   219.88
 sub.trial.number5 - sub.trial.number16    84.152 50.4 5167   -14.72   183.02
 sub.trial.number5 - sub.trial.number17    38.241 50.4 5167   -60.63   137.11
 sub.trial.number5 - sub.trial.number18    83.759 50.4 5167   -15.11   182.63
 sub.trial.number6 - sub.trial.number7    -67.018 50.4 5167  -165.89    31.85
 sub.trial.number6 - sub.trial.number8     44.973 50.4 5167   -53.90   143.84
 sub.trial.number6 - sub.trial.number9   -187.812 50.4 5167  -286.68   -88.94
 sub.trial.number6 - sub.trial.number10  -153.973 50.4 5167  -252.84   -55.10
 sub.trial.number6 - sub.trial.number11    85.545 50.4 5167   -13.32   184.41
 sub.trial.number6 - sub.trial.number12    69.830 50.4 5167   -29.04   168.70
 sub.trial.number6 - sub.trial.number13  -312.384 50.4 5167  -411.25  -213.51
 sub.trial.number6 - sub.trial.number14   -65.357 50.4 5167  -164.23    33.51
 sub.trial.number6 - sub.trial.number15   123.321 50.4 5167    24.45   222.19
 sub.trial.number6 - sub.trial.number16    86.464 50.4 5167   -12.41   185.33
 sub.trial.number6 - sub.trial.number17    40.554 50.4 5167   -58.32   139.42
 sub.trial.number6 - sub.trial.number18    86.071 50.4 5167   -12.80   184.94
 sub.trial.number7 - sub.trial.number8    111.991 50.4 5167    13.12   210.86
 sub.trial.number7 - sub.trial.number9   -120.795 50.4 5167  -219.66   -21.93
 sub.trial.number7 - sub.trial.number10   -86.955 50.4 5167  -185.82    11.91
 sub.trial.number7 - sub.trial.number11   152.562 50.4 5167    53.69   251.43
 sub.trial.number7 - sub.trial.number12   136.848 50.4 5167    37.98   235.72
 sub.trial.number7 - sub.trial.number13  -245.366 50.4 5167  -344.24  -146.50
 sub.trial.number7 - sub.trial.number14     1.661 50.4 5167   -97.21   100.53
 sub.trial.number7 - sub.trial.number15   190.339 50.4 5167    91.47   289.21
 sub.trial.number7 - sub.trial.number16   153.482 50.4 5167    54.61   252.35
 sub.trial.number7 - sub.trial.number17   107.571 50.4 5167     8.70   206.44
 sub.trial.number7 - sub.trial.number18   153.089 50.4 5167    54.22   251.96
 sub.trial.number8 - sub.trial.number9   -232.786 50.4 5167  -331.66  -133.92
 sub.trial.number8 - sub.trial.number10  -198.946 50.4 5167  -297.82  -100.08
 sub.trial.number8 - sub.trial.number11    40.571 50.4 5167   -58.30   139.44
 sub.trial.number8 - sub.trial.number12    24.857 50.4 5167   -74.01   123.73
 sub.trial.number8 - sub.trial.number13  -357.357 50.4 5167  -456.23  -258.49
 sub.trial.number8 - sub.trial.number14  -110.330 50.4 5167  -209.20   -11.46
 sub.trial.number8 - sub.trial.number15    78.348 50.4 5167   -20.52   177.22
 sub.trial.number8 - sub.trial.number16    41.491 50.4 5167   -57.38   140.36
 sub.trial.number8 - sub.trial.number17    -4.420 50.4 5167  -103.29    94.45
 sub.trial.number8 - sub.trial.number18    41.098 50.4 5167   -57.77   139.97
 sub.trial.number9 - sub.trial.number10    33.839 50.4 5167   -65.03   132.71
 sub.trial.number9 - sub.trial.number11   273.357 50.4 5167   174.49   372.23
 sub.trial.number9 - sub.trial.number12   257.643 50.4 5167   158.77   356.51
 sub.trial.number9 - sub.trial.number13  -124.571 50.4 5167  -223.44   -25.70
 sub.trial.number9 - sub.trial.number14   122.455 50.4 5167    23.59   221.32
 sub.trial.number9 - sub.trial.number15   311.134 50.4 5167   212.26   410.00
 sub.trial.number9 - sub.trial.number16   274.277 50.4 5167   175.41   373.15
 sub.trial.number9 - sub.trial.number17   228.366 50.4 5167   129.50   327.24
 sub.trial.number9 - sub.trial.number18   273.884 50.4 5167   175.01   372.75
 sub.trial.number10 - sub.trial.number11  239.518 50.4 5167   140.65   338.39
 sub.trial.number10 - sub.trial.number12  223.804 50.4 5167   124.93   322.67
 sub.trial.number10 - sub.trial.number13 -158.411 50.4 5167  -257.28   -59.54
 sub.trial.number10 - sub.trial.number14   88.616 50.4 5167   -10.25   187.49
 sub.trial.number10 - sub.trial.number15  277.295 50.4 5167   178.43   376.16
 sub.trial.number10 - sub.trial.number16  240.438 50.4 5167   141.57   339.31
 sub.trial.number10 - sub.trial.number17  194.527 50.4 5167    95.66   293.40
 sub.trial.number10 - sub.trial.number18  240.045 50.4 5167   141.18   338.91
 sub.trial.number11 - sub.trial.number12  -15.714 50.4 5167  -114.58    83.16
 sub.trial.number11 - sub.trial.number13 -397.929 50.4 5167  -496.80  -299.06
 sub.trial.number11 - sub.trial.number14 -150.902 50.4 5167  -249.77   -52.03
 sub.trial.number11 - sub.trial.number15   37.777 50.4 5167   -61.09   136.65
 sub.trial.number11 - sub.trial.number16    0.920 50.4 5167   -97.95    99.79
 sub.trial.number11 - sub.trial.number17  -44.991 50.4 5167  -143.86    53.88
 sub.trial.number11 - sub.trial.number18    0.527 50.4 5167   -98.34    99.40
 sub.trial.number12 - sub.trial.number13 -382.214 50.4 5167  -481.08  -283.34
 sub.trial.number12 - sub.trial.number14 -135.188 50.4 5167  -234.06   -36.32
 sub.trial.number12 - sub.trial.number15   53.491 50.4 5167   -45.38   152.36
 sub.trial.number12 - sub.trial.number16   16.634 50.4 5167   -82.24   115.50
 sub.trial.number12 - sub.trial.number17  -29.277 50.4 5167  -128.15    69.59
 sub.trial.number12 - sub.trial.number18   16.241 50.4 5167   -82.63   115.11
 sub.trial.number13 - sub.trial.number14  247.027 50.4 5167   148.16   345.90
 sub.trial.number13 - sub.trial.number15  435.705 50.4 5167   336.84   534.57
 sub.trial.number13 - sub.trial.number16  398.848 50.4 5167   299.98   497.72
 sub.trial.number13 - sub.trial.number17  352.938 50.4 5167   254.07   451.81
 sub.trial.number13 - sub.trial.number18  398.455 50.4 5167   299.59   497.32
 sub.trial.number14 - sub.trial.number15  188.679 50.4 5167    89.81   287.55
 sub.trial.number14 - sub.trial.number16  151.821 50.4 5167    52.95   250.69
 sub.trial.number14 - sub.trial.number17  105.911 50.4 5167     7.04   204.78
 sub.trial.number14 - sub.trial.number18  151.429 50.4 5167    52.56   250.30
 sub.trial.number15 - sub.trial.number16  -36.857 50.4 5167  -135.73    62.01
 sub.trial.number15 - sub.trial.number17  -82.768 50.4 5167  -181.64    16.10
 sub.trial.number15 - sub.trial.number18  -37.250 50.4 5167  -136.12    61.62
 sub.trial.number16 - sub.trial.number17  -45.911 50.4 5167  -144.78    52.96
 sub.trial.number16 - sub.trial.number18   -0.393 50.4 5167   -99.26    98.48
 sub.trial.number17 - sub.trial.number18   45.518 50.4 5167   -53.35   144.39
 t.ratio p.value
   7.056  <.0001
   6.770  <.0001
   6.154  <.0001
   5.806  <.0001
   5.760  <.0001
   4.431  <.0001
   6.652  <.0001
   2.036  0.0418
   2.707  0.0068
   7.457  <.0001
   7.145  <.0001
  -0.434  0.6645
   4.464  <.0001
   8.206  <.0001
   7.475  <.0001
   6.564  <.0001
   7.467  <.0001
  -0.286  0.7751
  -0.902  0.3672
  -1.250  0.2115
  -1.296  0.1952
  -2.624  0.0087
  -0.404  0.6864
  -5.020  <.0001
  -4.349  <.0001
   0.401  0.6887
   0.089  0.9290
  -7.490  <.0001
  -2.591  0.0096
   1.150  0.2503
   0.419  0.6753
  -0.491  0.6231
   0.411  0.6810
  -0.616  0.5379
  -0.964  0.3351
  -1.010  0.3126
  -2.339  0.0194
  -0.118  0.9060
  -4.734  <.0001
  -4.063  <.0001
   0.686  0.4925
   0.375  0.7078
  -7.204  <.0001
  -2.306  0.0212
   1.435  0.1512
   0.705  0.4811
  -0.206  0.8370
   0.697  0.4859
  -0.348  0.7279
  -0.394  0.6938
  -1.723  0.0850
   0.498  0.6185
  -4.118  <.0001
  -3.447  0.0006
   1.302  0.1928
   0.991  0.3218
  -6.588  <.0001
  -1.690  0.0912
   2.052  0.0403
   1.321  0.1867
   0.410  0.6815
   1.313  0.1893
  -0.046  0.9634
  -1.375  0.1693
   0.846  0.3977
  -3.770  0.0002
  -3.099  0.0020
   1.650  0.0989
   1.339  0.1807
  -6.240  <.0001
  -1.342  0.1797
   2.399  0.0165
   1.669  0.0953
   0.758  0.4483
   1.661  0.0968
  -1.329  0.1840
   0.892  0.3726
  -3.724  0.0002
  -3.053  0.0023
   1.696  0.0899
   1.385  0.1662
  -6.194  <.0001
  -1.296  0.1951
   2.445  0.0145
   1.714  0.0865
   0.804  0.4214
   1.707  0.0879
   2.221  0.0264
  -2.395  0.0166
  -1.724  0.0847
   3.025  0.0025
   2.713  0.0067
  -4.865  <.0001
   0.033  0.9737
   3.774  0.0002
   3.043  0.0024
   2.133  0.0330
   3.036  0.0024
  -4.616  <.0001
  -3.945  0.0001
   0.804  0.4212
   0.493  0.6221
  -7.086  <.0001
  -2.188  0.0287
   1.554  0.1204
   0.823  0.4107
  -0.088  0.9302
   0.815  0.4152
   0.671  0.5023
   5.420  <.0001
   5.109  <.0001
  -2.470  0.0135
   2.428  0.0152
   6.169  <.0001
   5.438  <.0001
   4.528  <.0001
   5.431  <.0001
   4.749  <.0001
   4.438  <.0001
  -3.141  0.0017
   1.757  0.0790
   5.498  <.0001
   4.767  <.0001
   3.857  0.0001
   4.760  <.0001
  -0.312  0.7554
  -7.890  <.0001
  -2.992  0.0028
   0.749  0.4539
   0.018  0.9855
  -0.892  0.3724
   0.010  0.9917
  -7.579  <.0001
  -2.681  0.0074
   1.061  0.2889
   0.330  0.7415
  -0.581  0.5616
   0.322  0.7474
   4.898  <.0001
   8.639  <.0001
   7.909  <.0001
   6.998  <.0001
   7.901  <.0001
   3.741  0.0002
   3.010  0.0026
   2.100  0.0358
   3.003  0.0027
  -0.731  0.4649
  -1.641  0.1008
  -0.739  0.4602
  -0.910  0.3627
  -0.008  0.9938
   0.903  0.3668

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 
emm_18_df <- as.data.frame(emm_18) %>%
  mutate(seq_length = "18", sub.trial.number = as.numeric(as.character(sub.trial.number)))
emm_all <- bind_rows(emm_6_df, emm_12_df, emm_18_df) %>%
  mutate(session = factor(session, labels = c("Block 4", "Block 5")))

plot_seq <- function(data, seq_len) {
  ggplot(data %>% filter(seq_length == seq_len),
         aes(x = sub.trial.number, y = emmean, color = session, group = session)) +
    geom_point(size = 2) +
    geom_line(linewidth = 0.9) +
    geom_errorbar(aes(ymin = emmean - SE, ymax = emmean + SE), width = 0.2) +
    scale_x_continuous(breaks = function(x) seq(floor(min(x)), ceiling(max(x)), by = 1)) +
    labs(
      title = paste0("RT – ", seq_len, "-step Sequences"),
      x = "Step Number",
      y = "Estimated RT (ms)"
    ) +
    theme_minimal(base_size = 13) +
    theme(panel.grid = element_blank(),
          legend.title = element_blank())
}


plot_seq(emm_all, "6")

plot_seq(emm_all, "12")

plot_seq(emm_all, "18")