Set Working Directory:
Load necessary packages:
library(readr)
library(dplyr)
library(psych)
library(lme4)
library(lmerTest)
library(effects)
library(glmmTMB)
library(buildmer)
library(DHARMa)
library(performance)
Import dataset:
dat <- read_csv("dataset_complete.csv", show_col_types = FALSE) # load data
dat$Participant <- as.factor(dat$Participant) # make sure "Participant" is a factor
is.factor(dat$Participant) # "TRUE"
## [1] TRUE
dat$Complexity <- as.factor(dat$Complexity) # make sure "Complexity" is a factor
is.factor(dat$Complexity) # "TRUE"
## [1] TRUE
## [1] TRUE
dat$RSPANpartial_WM.C <- dat$RSPANpartial_WM - mean(dat$RSPANpartial_WM) # create a mean-centered variable for RSPANpartial_WM
colSums(is.na(dat)) # make sure there is no missing data
## Participant MasteryGoal_motivation
## 0 0
## AvoidanceGoal_motivation PerformanceGoal_motivation
## 0 0
## SelfEfficacy_motivation TaskValue_motivation
## 0 0
## Attribution_motivation Somatic_Anxiety
## 0 0
## Avoidance_Anxiety Cognitive_Anxiety
## 0 0
## OSPANabsolute_WM OSPANtotal_WM
## 0 0
## OSPANmath_WM RSPANpartial_WM
## 0 0
## RSPANtotal_WM MotEng
## 0 0
## AchievEng StAnx
## 0 0
## CogAnx Genre
## 0 0
## Complexity Task
## 0 0
## Subordination Coordination
## 0 0
## AccuracyGender AccuracyNumber
## 0 0
## AccuracyTense AccuracyAspect
## 0 0
## LexicalDensity LexicalDiversity
## 0 0
## FluencySyllablesperMinute mentaleffort
## 0 0
## difficulty contentplanning
## 0 0
## linguisticchallenges PTD_composite
## 0 0
## RSPANpartial_WM.C
## 0
Descriptive statistics:
## vars n mean sd median trimmed mad min
## Participant* 1 632 79.50 45.65 79.50 79.50 58.56 1.00
## MasteryGoal_motivation 2 632 22.64 5.77 22.00 22.62 5.93 7.00
## AvoidanceGoal_motivation 3 632 40.27 8.40 41.00 40.33 8.90 17.00
## PerformanceGoal_motivation 4 632 23.74 6.65 24.00 23.73 5.93 3.00
## SelfEfficacy_motivation 5 632 39.70 6.43 39.50 39.47 5.93 24.00
## TaskValue_motivation 6 632 27.80 7.95 27.00 27.56 7.41 7.00
## Attribution_motivation 7 632 19.41 3.29 20.00 19.51 2.97 10.00
## Somatic_Anxiety 8 632 22.22 6.64 22.00 22.11 7.41 10.00
## Avoidance_Anxiety 9 632 17.18 3.99 17.00 17.11 4.45 7.00
## Cognitive_Anxiety 10 632 33.90 5.10 35.00 34.09 5.93 19.00
## OSPANabsolute_WM 11 632 38.30 15.58 39.00 38.79 14.08 0.00
## OSPANtotal_WM 12 632 52.32 15.04 55.00 54.16 11.86 1.00
## OSPANmath_WM* 13 632 15.51 10.44 16.00 15.55 14.83 1.00
## RSPANpartial_WM 14 632 15.92 6.29 15.50 15.75 5.19 1.00
## RSPANtotal_WM 15 632 29.03 8.92 29.00 28.86 7.41 7.00
## MotEng 16 632 -0.01 1.00 -0.01 -0.02 0.83 -2.65
## AchievEng 17 632 0.00 1.00 -0.05 -0.02 0.92 -2.98
## StAnx 18 632 0.00 1.00 -0.06 -0.02 1.09 -2.06
## CogAnx 19 632 -0.01 1.00 0.11 0.02 1.02 -3.36
## Genre* 20 632 1.50 0.50 1.50 1.50 0.74 1.00
## Complexity* 21 632 1.50 0.50 1.50 1.50 0.74 1.00
## Task* 22 632 2.50 1.12 2.50 2.50 1.48 1.00
## Subordination 23 632 1.53 1.59 1.00 1.26 1.48 0.00
## Coordination 24 632 2.37 2.04 2.00 2.12 1.48 0.00
## AccuracyGender 25 632 2.20 1.91 2.00 1.97 1.48 0.00
## AccuracyNumber 26 632 0.73 1.01 0.00 0.57 0.00 0.00
## AccuracyTense 27 632 1.56 1.52 1.00 1.37 1.48 0.00
## AccuracyAspect 28 632 0.62 1.59 0.00 0.19 0.00 0.00
## LexicalDensity* 29 632 120.97 68.36 126.00 121.43 87.47 1.00
## LexicalDiversity 30 632 0.75 2.06 0.64 0.64 0.15 0.06
## FluencySyllablesperMinute* 31 632 136.51 85.04 142.00 136.70 114.16 1.00
## mentaleffort 32 632 6.07 1.63 6.00 6.14 1.48 1.00
## difficulty 33 632 5.94 1.73 6.00 6.00 1.48 1.00
## contentplanning 34 632 5.32 1.96 5.00 5.32 2.22 1.00
## linguisticchallenges 35 632 6.48 1.72 7.00 6.56 1.48 1.00
## PTD_composite 36 632 5.95 1.47 6.00 5.99 1.48 1.50
## RSPANpartial_WM.C 37 632 0.00 6.29 -0.42 -0.17 5.19 -14.92
## max range skew kurtosis se
## Participant* 158.00 157.00 0.00 -1.21 1.82
## MasteryGoal_motivation 39.00 32.00 0.11 0.40 0.23
## AvoidanceGoal_motivation 59.00 42.00 -0.12 -0.45 0.33
## PerformanceGoal_motivation 40.00 37.00 -0.06 0.33 0.26
## SelfEfficacy_motivation 58.00 34.00 0.34 0.33 0.26
## TaskValue_motivation 50.00 43.00 0.23 0.18 0.32
## Attribution_motivation 30.00 20.00 -0.19 0.81 0.13
## Somatic_Anxiety 37.00 27.00 0.15 -0.82 0.26
## Avoidance_Anxiety 29.00 22.00 0.20 0.18 0.16
## Cognitive_Anxiety 44.00 25.00 -0.36 -0.60 0.20
## OSPANabsolute_WM 75.00 75.00 -0.28 0.04 0.62
## OSPANtotal_WM 78.00 77.00 -1.13 1.18 0.60
## OSPANmath_WM* 29.00 28.00 -0.16 -1.65 0.42
## RSPANpartial_WM 36.00 35.00 0.36 0.33 0.25
## RSPANtotal_WM 54.00 47.00 0.14 0.30 0.35
## MotEng 3.06 5.71 0.20 0.65 0.04
## AchievEng 2.73 5.70 0.06 0.50 0.04
## StAnx 2.36 4.42 0.22 -0.52 0.04
## CogAnx 2.23 5.59 -0.35 -0.05 0.04
## Genre* 2.00 1.00 0.00 -2.00 0.02
## Complexity* 2.00 1.00 0.00 -2.00 0.02
## Task* 4.00 3.00 0.00 -1.37 0.04
## Subordination 7.00 7.00 1.26 1.12 0.06
## Coordination 10.00 10.00 1.02 0.74 0.08
## AccuracyGender 10.00 10.00 1.08 1.21 0.08
## AccuracyNumber 7.00 7.00 1.50 2.89 0.04
## AccuracyTense 10.00 10.00 1.34 3.56 0.06
## AccuracyAspect 12.00 12.00 3.30 12.93 0.06
## LexicalDensity* 246.00 245.00 -0.10 -1.21 2.72
## LexicalDiversity 37.23 37.17 17.51 306.83 0.08
## FluencySyllablesperMinute* 273.00 272.00 -0.04 -1.41 3.38
## mentaleffort 9.00 8.00 -0.37 -0.10 0.06
## difficulty 9.00 8.00 -0.31 -0.38 0.07
## contentplanning 9.00 8.00 -0.04 -0.76 0.08
## linguisticchallenges 9.00 8.00 -0.44 -0.33 0.07
## PTD_composite 9.00 7.50 -0.24 -0.21 0.06
## RSPANpartial_WM.C 20.08 35.00 0.36 0.33 0.25
CALF measures of interest:
1. Syntactic Complexity
2. Accuracy
3. Lexical Complexity
4. Fluency
RQ1a(i):
RQ1b(i):
First, check to see the distribution of “Subordination.”
## [1] 2 0 1 3 4 6 5 7
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 632 1.53 1.59 1 1.26 1.48 0 7 7 1.26 1.12 0.06
Things to note:
Therefore, I will fit a negative binomial mixed-effects model.
## Family: nbinom2 ( log )
## Formula:
## Subordination ~ 1 + Genre + Complexity + Genre:Complexity + AchievEng +
## StAnx + MotEng + Complexity:MotEng + RSPANpartial_WM.C +
## (1 | Participant)
## Data: dat
##
## AIC BIC logLik -2*log(L) df.resid
## 1887.8 1936.7 -932.9 1865.8 621
##
## Random effects:
##
## Conditional model:
## Groups Name Variance Std.Dev.
## Participant (Intercept) 0.4474 0.6689
## Number of obs: 632, groups: Participant, 158
##
## Dispersion parameter for nbinom2 family (): 6.19e+07
##
## Conditional model:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.449106 0.081934 5.481 4.22e-08 ***
## GenreNAR -0.273932 0.086003 -3.185 0.001447 **
## ComplexitySIMPLE -0.087650 0.081857 -1.071 0.284276
## AchievEng -0.068519 0.066511 -1.030 0.302927
## StAnx -0.130722 0.064607 -2.023 0.043038 *
## MotEng 0.085732 0.073696 1.163 0.244698
## RSPANpartial_WM.C 0.003546 0.010465 0.339 0.734681
## GenreNAR:ComplexitySIMPLE -0.514525 0.136328 -3.774 0.000161 ***
## ComplexitySIMPLE:MotEng -0.071217 0.066402 -1.073 0.283488
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Results:
Visualization
# See the predicted values
allEffects(mod.sub@model,
xlevels = list(StAnx=c(-3,-2,-1,0,1,2,3),
MotEng=c(-3,-2,-1,0,1,2,3)))
## Warning in Effect.glmmTMB(predictors, mod, vcov. = vcov., ...): overriding
## variance function for effects/dev.resids: computed variances may be incorrect
## Warning in Effect.glmmTMB(predictors, mod, vcov. = vcov., ...): overriding
## variance function for effects/dev.resids: computed variances may be incorrect
## Warning in Effect.glmmTMB(predictors, mod, vcov. = vcov., ...): overriding
## variance function for effects/dev.resids: computed variances may be incorrect
## Warning in Effect.glmmTMB(predictors, mod, vcov. = vcov., ...): overriding
## variance function for effects/dev.resids: computed variances may be incorrect
## Warning in Effect.glmmTMB(predictors, mod, vcov. = vcov., ...): overriding
## variance function for effects/dev.resids: computed variances may be incorrect
## model: Subordination ~ 1 + Genre + Complexity + Genre:Complexity + AchievEng +
## StAnx + MotEng + Complexity:MotEng + RSPANpartial_WM.C
##
## AchievEng effect
## AchievEng
## -3 -2 -0.1 1 3
## 1.4116042 1.3181222 1.1572225 1.0732079 0.9357705
##
## StAnx effect
## StAnx
## -3 -2 -1 0 1 2 3
## 1.7014604 1.4929658 1.3100199 1.1494920 1.0086349 0.8850382 0.7765869
##
## RSPANpartial_WM.C effect
## RSPANpartial_WM.C
## -10 -6 3 10 20
## 1.109293 1.125142 1.161634 1.190833 1.233823
##
## Genre*Complexity effect
## Complexity
## Genre COMPLEX SIMPLE
## ARG 1.565711 1.4350944
## NAR 1.190541 0.6523157
##
## Complexity*MotEng effect
## MotEng
## Complexity -3 -2 -1 0 1 2 3
## COMPLEX 1.0563589 1.1509183 1.2539421 1.366188 1.4884816 1.621722 1.766890
## SIMPLE 0.9264158 0.9399605 0.9537033 0.967647 0.9817946 0.996149 1.010713
# Generate plots
allEffects(mod.sub@model,
xlevels = list(StAnx=c(-3,-2,-1,0,1,2,3),
MotEng=c(-3,-2,-1,0,1,2,3))) %>% plot(multiline=TRUE)
## Warning in Effect.glmmTMB(predictors, mod, vcov. = vcov., ...): overriding
## variance function for effects/dev.resids: computed variances may be incorrect
## Warning in Effect.glmmTMB(predictors, mod, vcov. = vcov., ...): overriding
## variance function for effects/dev.resids: computed variances may be incorrect
## Warning in Effect.glmmTMB(predictors, mod, vcov. = vcov., ...): overriding
## variance function for effects/dev.resids: computed variances may be incorrect
## Warning in Effect.glmmTMB(predictors, mod, vcov. = vcov., ...): overriding
## variance function for effects/dev.resids: computed variances may be incorrect
## Warning in Effect.glmmTMB(predictors, mod, vcov. = vcov., ...): overriding
## variance function for effects/dev.resids: computed variances may be incorrect
Interpretation:
RQ1a(i):
Note to Abbie
I’m indicating what is significant or not based on the model, but it’ll be up to you to determine what is a meaningful effect size or not (for example, I’m noting that nothing is strongly predicted to happen more than once or twice).
RQ1b(i):
RQ1a(ii):
RQ1b(ii):
First, check to see the distribution of “Coordination.”
## [1] 1 3 2 6 8 4 7 5 0 10 9
##
## 0 1 2 3 4 5 6 7 8 9 10
## 118 127 140 100 52 47 12 14 20 1 1
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 632 2.37 2.04 2 2.12 1.48 0 10 10 1.02 0.74 0.08
Things to note:
Therefore, I will fit a Poisson mixed-effects model (Note: negative binomial mixed-effects model had convergence issues).
## Family: poisson ( log )
## Formula:
## Coordination ~ 1 + Genre + Complexity + Genre:Complexity + (1 |
## Participant)
## Data: dat
##
## AIC BIC logLik -2*log(L) df.resid
## 2311.4 2333.6 -1150.7 2301.4 627
##
## Random effects:
##
## Conditional model:
## Groups Name Variance Std.Dev.
## Participant (Intercept) 0.4238 0.651
## Number of obs: 632, groups: Participant, 158
##
## Conditional model:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.57888 0.07732 7.487 7.07e-14 ***
## GenreNAR 0.10216 0.07438 1.374 0.170
## ComplexitySIMPLE 0.03989 0.07550 0.528 0.597
## GenreNAR:ComplexitySIMPLE 0.04799 0.10358 0.463 0.643
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Results:
Visualization
## model: Coordination ~ 1 + Genre + Complexity + Genre:Complexity
##
## Genre*Complexity effect
## Complexity
## Genre COMPLEX SIMPLE
## ARG 1.784031 1.856640
## NAR 1.975920 2.157434
Interpretation:
RQ1a(iii):
RQ1b(iii):
First, check to see the distribution of “AccuracyNumber.”
## [1] 0 1 2 5 3 7 4
##
## 0 1 2 3 4 5 7
## 361 127 113 20 9 1 1
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 632 0.73 1.01 0 0.57 0 0 7 7 1.5 2.89 0.04
Things to note:
Therefore, I will fit a zero-inflated negative binomial mixed-effects hurdle model.
## Family: truncated_nbinom2 ( log )
## Formula: AccuracyNumber ~ 1 + Genre + Complexity + Genre:Complexity +
## (1 | Participant)
## Zero inflation: ~1
## Data: dat
##
## AIC BIC logLik -2*log(L) df.resid
## 1463.9 1495.0 -724.9 1449.9 625
##
## Random effects:
##
## Conditional model:
## Groups Name Variance Std.Dev.
## Participant (Intercept) 0.06059 0.2461
## Number of obs: 632, groups: Participant, 158
##
## Dispersion parameter for truncated_nbinom2 family (): 3.16e+07
##
## Conditional model:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.3727 0.1839 -2.026 0.0428 *
## GenreNAR 0.6542 0.2095 3.122 0.0018 **
## ComplexitySIMPLE 0.6197 0.2181 2.841 0.0045 **
## GenreNAR:ComplexitySIMPLE -0.7084 0.2829 -2.504 0.0123 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Zero-inflation model:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.28676 0.08037 3.568 0.00036 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Results:
RQ1a(iii)
RQ1b(iii)
RQ1a(iv):
RQ1b(iv):
First, check to see the distribution of “AccuracyGender.”
## [1] 1 0 3 2 5 4 7 6 10 8 9
##
## 0 1 2 3 4 5 6 7 8 9 10
## 127 134 143 97 52 42 14 12 5 5 1
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 632 2.2 1.91 2 1.97 1.48 0 10 10 1.08 1.21 0.08
Things to note:
Therefore, I will fit a negative binomial mixed-effects model.
## Family: nbinom2 ( log )
## Formula: AccuracyGender ~ 1 + Genre + Complexity + Genre:Complexity +
## CogAnx + (1 | Participant)
## Data: dat
##
## AIC BIC logLik -2*log(L) df.resid
## 2370.0 2401.2 -1178.0 2356.0 625
##
## Random effects:
##
## Conditional model:
## Groups Name Variance Std.Dev.
## Participant (Intercept) 0.0122 0.1104
## Number of obs: 632, groups: Participant, 158
##
## Dispersion parameter for nbinom2 family (): 4.7
##
## Conditional model:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.09068 0.06071 17.966 < 2e-16 ***
## GenreNAR -0.45531 0.09042 -5.036 4.77e-07 ***
## ComplexitySIMPLE -0.19521 0.08608 -2.268 0.0233 *
## CogAnx -0.06905 0.03377 -2.045 0.0409 *
## GenreNAR:ComplexitySIMPLE -0.08789 0.13370 -0.657 0.5109
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Results:
Visualization
## Warning in Effect.glmmTMB(predictors, mod, vcov. = vcov., ...): overriding
## variance function for effects/dev.resids: computed variances may be incorrect
## Warning in Effect.glmmTMB(predictors, mod, vcov. = vcov., ...): overriding
## variance function for effects/dev.resids: computed variances may be incorrect
## model: AccuracyGender ~ 1 + Genre + Complexity + Genre:Complexity +
## CogAnx
##
## CogAnx effect
## CogAnx
## -3 -2 -1 0 1 2 3
## 2.587304 2.414667 2.253550 2.103184 1.962850 1.831880 1.709649
##
## Genre*Complexity effect
## Complexity
## Genre COMPLEX SIMPLE
## ARG 2.977639 2.449588
## NAR 1.888580 1.422937
# Generate plots
allEffects(mod.gen@model,
xlevels = list(CogAnx=c(-3,-2,-1,0,1,2,3))) %>% plot(multiline=TRUE)
## Warning in Effect.glmmTMB(predictors, mod, vcov. = vcov., ...): overriding
## variance function for effects/dev.resids: computed variances may be incorrect
## Warning in Effect.glmmTMB(predictors, mod, vcov. = vcov., ...): overriding
## variance function for effects/dev.resids: computed variances may be incorrect
Interpretation:
RQ1a(iv):
Note to Abbie
I’m indicating what is significant or not based on the model, but it’ll be up to you to determine what is a meaningful effect size or not.
RQ1b(iv):
RQ1a(v):
RQ1b(v):
First, check to see the distribution of “AccuracyTense.”
## [1] 1 0 3 4 2 5 6 10 7 8 9
##
## 0 1 2 3 4 5 6 7 8 9 10
## 192 146 144 87 45 8 5 1 1 1 2
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 632 1.56 1.52 1 1.37 1.48 0 10 10 1.34 3.56 0.06
Things to note:
Therefore, I will fit a negative binomial mixed-effects model.
## Family: nbinom2 ( log )
## Formula:
## AccuracyTense ~ 1 + Genre + Complexity + Genre:Complexity + AchievEng +
## RSPANpartial_WM.C + Complexity:RSPANpartial_WM.C + (1 | Participant)
## Data: dat
##
## AIC BIC logLik -2*log(L) df.resid
## 2027.4 2067.5 -1004.7 2009.4 623
##
## Random effects:
##
## Conditional model:
## Groups Name Variance Std.Dev.
## Participant (Intercept) 0.1526 0.3906
## Number of obs: 632, groups: Participant, 158
##
## Dispersion parameter for nbinom2 family (): 193
##
## Conditional model:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.067685 0.081874 0.827 0.40841
## GenreNAR 0.515843 0.093746 5.503 3.74e-08 ***
## ComplexitySIMPLE -0.033251 0.105534 -0.315 0.75271
## AchievEng 0.097096 0.044930 2.161 0.03069 *
## RSPANpartial_WM.C 0.007901 0.008749 0.903 0.36651
## GenreNAR:ComplexitySIMPLE 0.059253 0.132571 0.447 0.65491
## ComplexitySIMPLE:RSPANpartial_WM.C -0.027523 0.010188 -2.701 0.00691 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Results:
Visualization
# See the predicted values
allEffects(mod.ten@model,
xlevels = list(AchievEng=c(-3,-2,-1,0,1,2,3),
RSPANpartial_WM.C=c(-20,-15,-10,-5,0,5,10,15,20)))
## Warning in Effect.glmmTMB(predictors, mod, vcov. = vcov., ...): overriding
## variance function for effects/dev.resids: computed variances may be incorrect
## Warning in Effect.glmmTMB(predictors, mod, vcov. = vcov., ...): overriding
## variance function for effects/dev.resids: computed variances may be incorrect
## Warning in Effect.glmmTMB(predictors, mod, vcov. = vcov., ...): overriding
## variance function for effects/dev.resids: computed variances may be incorrect
## model: AccuracyTense ~ 1 + Genre + Complexity + Genre:Complexity + AchievEng +
## RSPANpartial_WM.C + Complexity:RSPANpartial_WM.C
##
## AchievEng effect
## AchievEng
## -3 -2 -1 0 1 2 3
## 1.033039 1.138374 1.254451 1.382363 1.523318 1.678645 1.849811
##
## Genre*Complexity effect
## Complexity
## Genre COMPLEX SIMPLE
## ARG 1.070002 1.035009
## NAR 1.792307 1.839522
##
## Complexity*RSPANpartial_WM.C effect
## RSPANpartial_WM.C
## Complexity -20 -15 -10 -5 0 5 10
## COMPLEX 1.182419 1.230065 1.279632 1.331195 1.384837 1.440640 1.498691
## SIMPLE 2.042942 1.852031 1.678960 1.522062 1.379827 1.250883 1.133989
## RSPANpartial_WM.C
## Complexity 15 20
## COMPLEX 1.559082 1.6219060
## SIMPLE 1.028018 0.9319506
# Generate plots
allEffects(mod.ten@model,
xlevels = list(AchievEng=c(-3,-2,-1,0,1,2,3),
RSPANpartial_WM.C=c(-20,-15,-10,-5,0,5,10,15,20))) %>% plot(multiline=TRUE)
## Warning in Effect.glmmTMB(predictors, mod, vcov. = vcov., ...): overriding
## variance function for effects/dev.resids: computed variances may be incorrect
## Warning in Effect.glmmTMB(predictors, mod, vcov. = vcov., ...): overriding
## variance function for effects/dev.resids: computed variances may be incorrect
## Warning in Effect.glmmTMB(predictors, mod, vcov. = vcov., ...): overriding
## variance function for effects/dev.resids: computed variances may be incorrect
Interpretation:
RQ1a(v):
Note to Abbie
I’m indicating what is significant or not based on the model, but it’ll be up to you to determine what is a meaningful effect size or not.
RQ1b(v):
RQ1a(vi):
RQ1b(vi):
First, check to see the distribution of “AccuracyAspect.”
## [1] 0 1 3 4 2 5 6 8 10 12 9 7 11
##
## 0 1 2 3 4 5 6 7 8 9 10 11 12
## 514 23 24 33 11 12 5 5 1 1 1 1 1
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 632 0.62 1.59 0 0.19 0 0 12 12 3.3 12.93 0.06
Things to note:
Therefore, I will fit a zero-inflated negative binomial mixed-effects mixture model (zero-inflated negative binomial mixed-effects hurdle model had convergence issues).
## Family: nbinom1 ( log )
## Formula: AccuracyAspect ~ 1 + Genre + Complexity + Genre:Complexity +
## RSPANpartial_WM.C + Genre:RSPANpartial_WM.C + (1 | Participant)
## Zero inflation: ~1
## Data: dat
##
## AIC BIC logLik -2*log(L) df.resid
## 799.6 839.6 -390.8 781.6 623
##
## Random effects:
##
## Conditional model:
## Groups Name Variance Std.Dev.
## Participant (Intercept) 2.019e-09 4.493e-05
## Number of obs: 632, groups: Participant, 158
##
## Dispersion parameter for nbinom1 family (): 1.48
##
## Conditional model:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.05385 0.57949 -5.270 1.36e-07 ***
## GenreNAR 4.11667 0.58330 7.058 1.69e-12 ***
## ComplexitySIMPLE -1.19375 0.84761 -1.408 0.15902
## RSPANpartial_WM.C -0.18230 0.07393 -2.466 0.01367 *
## GenreNAR:ComplexitySIMPLE -2.61401 0.96036 -2.722 0.00649 **
## GenreNAR:RSPANpartial_WM.C 0.17608 0.07463 2.359 0.01831 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Zero-inflation model:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.3982 0.4328 -3.23 0.00124 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Results:
Visualization
# See the predicted values
allEffects(mod.asp@model,
xlevels = list(RSPANpartial_WM.C=c(-20,-15,-10,-5,0,5,10,15,20)))
## Warning in Effect.glmmTMB(predictors, mod, vcov. = vcov., ...): overriding
## variance function for effects/dev.resids: computed variances may be incorrect
## Warning in Effect.glmmTMB(predictors, mod, vcov. = vcov., ...): overriding
## variance function for effects/dev.resids: computed variances may be incorrect
## model: AccuracyAspect ~ 1 + Genre + Complexity + Genre:Complexity +
## RSPANpartial_WM.C + Genre:RSPANpartial_WM.C
##
## Genre*Complexity effect
## Complexity
## Genre COMPLEX SIMPLE
## ARG 0.04717695 0.01429853
## NAR 2.89451174 0.06425178
##
## Genre*RSPANpartial_WM.C effect
## RSPANpartial_WM.C
## Genre -20 -15 -10 -5 0 5
## ARG 0.9953107 0.4000338 0.1607810 0.06462085 0.02597232 0.01043875
## NAR 0.4884043 0.4734424 0.4589389 0.44487966 0.43125113 0.41804010
## RSPANpartial_WM.C
## Genre 10 15 20
## ARG 0.004195528 0.00168626 0.0006777393
## NAR 0.405233775 0.39281976 0.3807860474
# Generate plots
allEffects(mod.asp@model,
xlevels = list(RSPANpartial_WM.C=c(-20,-15,-10,-5,0,5,10,15,20))) %>% plot(multiline=TRUE)
## Warning in Effect.glmmTMB(predictors, mod, vcov. = vcov., ...): overriding
## variance function for effects/dev.resids: computed variances may be incorrect
## Warning in Effect.glmmTMB(predictors, mod, vcov. = vcov., ...): overriding
## variance function for effects/dev.resids: computed variances may be incorrect
Interpretation:
RQ1a(vi):
RQ1b(vi):
RQ1a(vii):
RQ1b(vii):
First, check to see the distribution of “LexicalDensity.”
unique(dat$LexicalDensity) # Participant 141 has "%" in the cell ... I will remove for this analysis.
## [1] "0.28129999999999999" "0.42859999999999998" "0.31709999999999999"
## [4] "0.47499999999999998" "0.3448" "0.25690000000000002"
## [7] "0.28789999999999999" "0.39219999999999999" "0.5585"
## [10] "0.52629999999999999" "0.58460000000000001" "0.64"
## [13] "0.71430000000000005" "0.66669999999999996" "0.7"
## [16] "0.6" "0.6522" "0.73109999999999997"
## [19] "0.67290000000000005" "0.84550000000000003" "0.43590000000000001"
## [22] "0.55000000000000004" "0.47370000000000001" "0.60709999999999997"
## [25] "0.63639999999999997" "0.60609999999999997" "0.6552"
## [28] "0.55559999999999998" "0.73909999999999998" "0.50819999999999999"
## [31] "0.52" "0.51470000000000005" "0.5"
## [34] "0.64710000000000001" "0.375" "0.4375"
## [37] "0.46150000000000002" "0.59" "0.62"
## [40] "0.61" "0.28570000000000001" "0.38300000000000001"
## [43] "0.32140000000000002" "0.44190000000000002" "0.57279999999999998"
## [46] "0.59460000000000002" "0.54730000000000001" "0.51910000000000001"
## [49] "0.53849999999999998" "0.60699999999999998" "0.34620000000000001"
## [52] "0.56979999999999997" "0.48780000000000001" "0.55320000000000003"
## [55] "0.35899999999999999" "0.36170000000000002" "0.51280000000000003"
## [58] "0.33329999999999999" "0.25" "0.35"
## [61] "0.35289999999999999" "0.56100000000000005" "0.59260000000000002"
## [64] "0.45350000000000001" "0.47470000000000001" "0.44969999999999999"
## [67] "0.46289999999999998" "0.57140000000000002" "0.59379999999999999"
## [70] "0.4783" "0.44440000000000002" "0.44740000000000002"
## [73] "0.64859999999999995" "0.59240000000000004" "0.61539999999999995"
## [76] "0.56189999999999996" "0.54210000000000003" "0.55210000000000004"
## [79] "0.27160000000000001" "0.22770000000000001" "0.27850000000000003"
## [82] "0.40739999999999998" "0.50849999999999995" "0.47170000000000001"
## [85] "0.56520000000000004" "0.54239999999999999" "0.6512"
## [88] "0.61899999999999999" "0.3226" "0.42"
## [91] "0.4" "0.71150000000000002" "0.69"
## [94] "0.51129999999999998" "0.65310000000000001" "0.63200000000000001"
## [97] "0.71299999999999997" "0.51849999999999996" "0.4178"
## [100] "0.70669999999999999" "0.48699999999999999" "0.50449999999999995"
## [103] "0.45" "0.37209999999999999" "0.26669999999999999"
## [106] "0.42499999999999999" "0.37309999999999999" "0.42549999999999999"
## [109] "0.37780000000000002" "0.58620000000000005" "0.625"
## [112] "0.22439999999999999" "0.5161" "0.3846"
## [115] "0.44" "0.54549999999999998" "0.41670000000000001"
## [118] "0.51719999999999999" "0.36840000000000001" "0.36"
## [121] "0.5333" "0.45829999999999999" "0.63"
## [124] "0.65" "0.73960000000000004" "0.60199999999999998"
## [127] "0.70069999999999999" "0.65380000000000005" "0.69230000000000003"
## [130] "0.71699999999999997" "0.77780000000000005" "0.75"
## [133] "0.42109999999999997" "0.45710000000000001" "0.62860000000000005"
## [136] "0.62919999999999998" "0.56000000000000005" "0.49"
## [139] "0.57999999999999996" "0.63829999999999998" "0.67"
## [142] "0.66" "0.67649999999999999" "0.61699999999999999"
## [145] "0.60529999999999995" "0.60980000000000001" "0.56920000000000004"
## [148] "0.70450000000000002" "0.61729999999999996" "0.48649999999999999"
## [151] "0.48" "0.3019" "0.25929999999999997"
## [154] "0.44119999999999998" "0.32790000000000002" "0.53129999999999999"
## [157] "0.5625" "0.34210000000000002" "0.55879999999999996"
## [160] "0.34338000000000002" "0.3548" "0.29549999999999998"
## [163] "0.3095" "0.6573" "0.72919999999999996"
## [166] "0.69389999999999996" "0.2581" "0.2571"
## [169] "0.3478" "0.61109999999999998" "0.72"
## [172] "0.3256" "0.52939999999999998" "0.3947"
## [175] "0.38240000000000002" "0.36670000000000003" "0.34379999999999999"
## [178] "0.35420000000000001" "0.41860000000000003" "0.83299999999999996"
## [181] "0.63009999999999999" "0.71050000000000002" "0.4667"
## [184] "0.52380000000000004" "0.47220000000000001" "0.32079999999999997"
## [187] "0.78569999999999995" "0.5111" "0.44829999999999998"
## [190] "0.58819999999999995" "0.40029999999999999" "0.61160000000000003"
## [193] "0.72729999999999995" "0.6875" "0.6714"
## [196] "0.68689999999999996" "0.59040000000000004" "0.27589999999999998"
## [199] "0.39290000000000003" "0.30769999999999997" "0.63270000000000004"
## [202] "0.67569999999999997" "0.69769999999999999" "0.63890000000000002"
## [205] "0.63160000000000005" "0.69569999999999999" "0.68420000000000003"
## [208] "0.56759999999999999" "0.64439999999999997" "0.59299999999999997"
## [211] "0.49280000000000002" "0.45610000000000001" "0.59570000000000001"
## [214] "0.4516" "0.42420000000000002" "0.78949999999999998"
## [217] "0.67349999999999999" "0.72340000000000004" "0.43330000000000002"
## [220] "0.2545" "0.37930000000000003" "0.46510000000000001"
## [223] "0.68630000000000002" "0.68" "0.70730000000000004"
## [226] "0.81479999999999997" "0.69830000000000003" "0.83160000000000001"
## [229] "0.39579999999999999" "0.3962" "0.62070000000000003"
## [232] "0.27779999999999999" "56`%" "0.37140000000000001"
## [235] "0.67859999999999998" "0.65849999999999997" "0.6774"
## [238] "0.62370000000000003" "0.66269999999999996" "0.66069999999999995"
## [241] "0.72640000000000005" "0.43240000000000001" "0.2424"
## [244] "0.64839999999999998" "0.56999999999999995" "0.30499999999999999"
dat_density <- dat %>%
filter(Participant != "141")
dat_density$LexicalDensity <- as.numeric(dat_density$LexicalDensity) # The values are stored as characters, change to numeric
is.numeric(dat_density$LexicalDensity)
## [1] TRUE
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 628 0.52 0.14 0.55 0.52 0.16 0.22 0.85 0.62 -0.29 -0.97 0.01
Things to note:
Therefore, I will fit a linear mixed-effects model.
## Linear mixed model fit by maximum likelihood (p-values based on Wald z-scores)
## [lmerMod]
## Formula: LexicalDensity ~ 1 + Genre + Complexity + Genre:Complexity +
## (1 | Participant)
## Data: dat_density
##
## AIC BIC logLik deviance df.resid
## -1119.3 -1092.7 565.7 -1131.3 622
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.0965 -0.5662 0.0441 0.4970 3.5040
##
## Random effects:
## Groups Name Variance Std.Dev.
## Participant (Intercept) 0.013834 0.1176
## Residual 0.005241 0.0724
## Number of obs: 628, groups: Participant, 157
##
## Fixed effects:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.524925 0.011023 47.623 <2e-16 ***
## GenreNAR 0.012968 0.008171 1.587 0.112
## ComplexitySIMPLE -0.017729 0.008171 -2.170 0.030 *
## GenreNAR:ComplexitySIMPLE -0.012870 0.011556 -1.114 0.265
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) GnrNAR CSIMPL
## GenreNAR -0.371
## CmplxSIMPLE -0.371 0.500
## GNAR:CSIMPL 0.262 -0.707 -0.707
Note:
Results:
Visualization
## model: LexicalDensity ~ 1 + Genre + Complexity + Genre:Complexity
##
## Genre*Complexity effect
## Complexity
## Genre COMPLEX SIMPLE
## ARG 0.5249255 0.5071968
## NAR 0.5378936 0.5072954
Interpretation:
RQ1a(vii):
Note to Abbie
I’m indicating what is significant or not based on the model, but it’ll be up to you to determine what is a meaningful effect size or not.
RQ1b(vii):
RQ1a(vii):
RQ1b(vii):
First, check to see the distribution of “LexicalDiversity.”
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 632 0.75 2.06 0.64 0.64 0.15 0.06 37.23 37.17 17.51 306.83 0.08
unique(dat$LexicalDiversity) # Participants 157 and 158 have an extreme value (37.2300) ... remove for this analysis.
## [1] 0.5938 0.8095 0.5610 0.9000 0.4500 0.4900 0.4242 0.6078 0.3900
## [10] 0.4700 0.6494 0.6797 0.6923 0.7400 0.8571 0.9167 0.4957 0.6134
## [19] 0.5701 0.6182 0.4872 0.4103 0.5263 0.6429 0.6970 0.7333 0.7879
## [28] 0.6500 0.6207 0.6296 0.7391 0.4426 0.4800 0.4559 0.4231 0.8235
## [37] 0.2810 0.6875 0.9231 0.6900 0.6800 0.7100 0.7000 0.4400 0.6809
## [46] 0.5000 0.8140 0.4660 0.5405 0.4737 0.7692 0.7140 0.5556 0.4615
## [55] 0.6977 0.6585 0.6170 0.6316 0.3617 0.5897 0.6667 0.8500 0.7059
## [64] 0.8049 0.8000 0.7407 0.8519 0.6047 0.5886 0.6190 0.5943 0.5873
## [73] 0.6406 0.8261 0.8333 0.6053 0.6061 0.6486 0.6417 0.5091 0.4381
## [82] 0.6636 0.6250 0.5172 0.3761 0.2469 0.2079 0.2532 0.3529 0.5741
## [91] 0.6102 0.6226 0.6304 0.7627 0.6111 0.7619 0.8700 0.4839 0.7083
## [100] 0.5882 0.5100 0.7500 0.7600 0.4962 0.6224 0.5600 0.6731 0.6364
## [109] 0.7877 0.8533 0.7739 0.7928 0.6000 0.8182 0.8667 0.4250 0.3731
## [118] 0.4681 0.5102 0.6897 0.6222 0.7097 0.7308 0.4000 0.7300 0.6333
## [127] 0.8367 0.6087 0.7200 0.5500 0.5816 0.5839 0.7576 0.8462 0.7143
## [136] 0.6857 0.6538 0.5714 0.7547 0.8889 0.8750 0.6579 0.6571 0.8330
## [145] 0.7857 0.6067 0.5900 0.5278 0.8056 0.6892 0.7674 0.7667 0.7053
## [154] 0.7241 0.9091 0.7660 0.8185 0.5231 0.6591 0.4595 0.5309 0.5946
## [163] 0.9032 0.8400 0.9048 0.5660 0.4815 0.5385 0.5410 0.4490 0.7813
## [172] 0.7900 0.7105 0.6471 0.6563 0.5806 0.7045 0.6842 0.7381 0.4196
## [181] 0.7917 0.6774 0.6944 0.8900 0.6512 0.8250 0.7353 0.4688 0.6042
## [190] 0.8372 0.6905 0.6400 0.4658 0.5300 0.5640 0.5116 0.4468 0.8600
## [199] 0.9400 0.4038 0.7222 0.5094 0.4889 0.0986 0.5526 0.6164 0.6600
## [208] 0.6984 0.3429 0.3243 0.7647 0.5571 0.5812 0.7349 0.7544 0.7632
## [217] 0.6786 0.7234 0.7551 0.7368 0.6860 0.6377 0.7281 0.6383 0.4082
## [226] 0.5390 0.5143 0.7250 0.6458 0.5814 0.7561 0.7531 0.7895 0.5849
## [235] 0.8460 0.3700 0.6349 0.6118 0.7714 0.6154 0.7273 0.7317 0.7419
## [244] 0.5161 0.5904 0.5446 0.5283 0.5192 0.4697 0.0604 0.4018 37.2300
dat_diversity <- dat %>%
filter(Participant != "157") %>%
filter(Participant != "158")
hist(dat_diversity$LexicalDiversity)
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 624 0.63 0.14 0.64 0.64 0.15 0.06 0.94 0.88 -0.31 0.12 0.01
Things to note:
Therefore, I will fit a linear mixed-effects model.
## Linear mixed model fit by maximum likelihood (p-values based on Wald z-scores)
## [lmerMod]
## Formula: LexicalDiversity ~ 1 + Genre + Complexity + Genre:Complexity +
## (1 | Participant)
## Data: dat_diversity
##
## AIC BIC logLik deviance df.resid
## -890.2 -863.6 451.1 -902.2 618
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.2812 -0.4824 0.0283 0.4847 3.4035
##
## Random effects:
## Groups Name Variance Std.Dev.
## Participant (Intercept) 0.011668 0.10802
## Residual 0.008678 0.09316
## Number of obs: 624, groups: Participant, 156
##
## Fixed effects:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.62803 0.01142 54.992 <2e-16 ***
## GenreNAR 0.03443 0.01055 3.264 0.0011 **
## ComplexitySIMPLE -0.01341 0.01055 -1.271 0.2036
## GenreNAR:ComplexitySIMPLE -0.01646 0.01492 -1.103 0.2699
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) GnrNAR CSIMPL
## GenreNAR -0.462
## CmplxSIMPLE -0.462 0.500
## GNAR:CSIMPL 0.327 -0.707 -0.707
Note:
Results:
Visualization
## model: LexicalDiversity ~ 1 + Genre + Complexity + Genre:Complexity
##
## Genre*Complexity effect
## Complexity
## Genre COMPLEX SIMPLE
## ARG 0.6280340 0.6146231
## NAR 0.6624673 0.6325974
Interpretation:
RQ1a(vii):
Note to Abbie
I’m indicating what is significant or not based on the model, but it’ll be up to you to determine what is a meaningful effect size or not.
RQ1b(vii):
RQ1a(ix):
RQ1b(ix):
First, check to see the distribution of “FluencySyllablesperMinute.”
unique(dat$FluencySyllablesperMinute) # Participant 72 has "7.3." (with a period after 3) ... remove this participant for the analysis.
## [1] "4.45" "9.14" "7.75"
## [4] "9" "10.33" "15"
## [7] "10" "14" "12"
## [10] "16" "11" "17"
## [13] "7.17" "13.2" "9.33"
## [16] "9.5" "14.64" "11.22"
## [19] "3.38" "3.67" "3.29"
## [22] "3.5" "32.39" "36"
## [25] "31.71" "43.2" "9.2899999999999991"
## [28] "6.86" "12.8" "1.97"
## [31] "10.57" "18.75" "3.64"
## [34] "6.25" "9.6" "10.86"
## [37] "9.8000000000000007" "13.67" "5.8"
## [40] "3.4" "5.33" "8.3000000000000007"
## [43] "8.98" "13.55" "10.42"
## [46] "13" "5.92" "5.54"
## [49] "8.1300000000000008" "6.75" "8.1999999999999993"
## [52] "10.36" "6.71" "6"
## [55] "4.0999999999999996" "9.0500000000000007" "19.440000000000001"
## [58] "11.64" "7.29" "9.7100000000000009"
## [61] "10.31" "6.63" "10.14"
## [64] "6.4" "5.4" "12.67"
## [67] "10.5" "11.7" "10.8"
## [70] "11.4" "8.57" "8.85"
## [73] "4.8" "4.58" "8.25"
## [76] "8.6300000000000008" "8.33" "3.17"
## [79] "5.88" "11.25" "18.89"
## [82] "19.64" "15.42" "9.75"
## [85] "14.82" "15.7" "11.8"
## [88] "12.6" "9.7799999999999994" "11.13"
## [91] "14.83" "13.5" "7.73"
## [94] "7.1" "10.6" "2.64"
## [97] "4.42" "2.8" "5"
## [100] "4.9400000000000004" "9.89" "5.07"
## [103] "7.36" "10.38" "17.329999999999998"
## [106] "15.5" "13.6" "14.67"
## [109] "7.63" "14.9" "15.4"
## [112] "18.329999999999998" "14.85" "2.83"
## [115] "5.9" "6.29" "3"
## [118] "1.86" "4" "2.11"
## [121] "6.22" "16.43" "7.71"
## [124] "5.5" "7.38" "5.25"
## [127] "8.8000000000000007" "4.7" "2.59"
## [130] "3.86" "6.38" "8.5"
## [133] "6.83" "2.93" "7.31"
## [136] "13.36" "10.83" "12.4"
## [139] "7" "8" "16.100000000000001"
## [142] "10.73" "14.13" "7.86"
## [145] "6.6" "8.8800000000000008" "11.17"
## [148] "3.27" "4.93" "3.63"
## [151] "7.2" "5.6" "2.86"
## [154] "5.75" "13.15" "23.22"
## [157] "15.79" "14.46" "4.3099999999999996"
## [160] "14.5" "6.78" "7.3"
## [163] "4.9000000000000004" "7.3." "9.1999999999999993"
## [166] "12.63" "12.43" "18.2"
## [169] "10.96" "10.85" "7.8"
## [172] "5.56" "6.49" "6.5"
## [175] "3.92" "4.88" "5.73"
## [178] "11.88" "7.13" "4.6399999999999997"
## [181] "3.1" "10.43" "11.3"
## [184] "15.55" "11.86" "9.43"
## [187] "12.5" "8.14" "27"
## [190] "5.29" "5.57" "6.92"
## [193] "6.67" "8.3800000000000008" "5.0999999999999996"
## [196] "6.64" "5.86" "7.33"
## [199] "1.9" "2" "1.2"
## [202] "8.9" "5.38" "18.38"
## [205] "16.8" "10.1" "4.71"
## [208] "2.89" "4.43" "9.4"
## [211] "11.71" "3.55" "4.5"
## [214] "7.88" "19.29" "12.25"
## [217] "4.13" "7.79" "16.5"
## [220] "15.56" "13.7" "7.9"
## [223] "9.44" "12.3" "12.9"
## [226] "17.43" "10.09" "9.25"
## [229] "4.4000000000000004" "7.14" "8.4"
## [232] "5.82" "15.2" "16.170000000000002"
## [235] "13.44" "14.17" "7.56"
## [238] "10.17" "11.57" "21.46"
## [241] "22.25" "8.67" "12.29"
## [244] "22.5" "7.67" "4.75"
## [247] "9.85" "16.600000000000001" "14.21"
## [250] "4.87" "7.5" "4.2"
## [253] "4.57" "6.98" "1.08"
## [256] "2.5" "3.6" "8.7100000000000009"
## [259] "11.2" "15.17" "5.17"
## [262] "4.55" "5.67" "9.4499999999999993"
## [265] "14.89" "14.77" "9.86"
## [268] "7.6" "21.33" "4.5999999999999996"
## [271] "8.56" "10.89" "30.5"
dat_fluency <- dat %>%
filter(Participant != "72")
dat_fluency$FluencySyllablesperMinute <- as.numeric(dat_fluency$FluencySyllablesperMinute) # Store values as numeric
is.numeric(dat_fluency$FluencySyllablesperMinute) # Should be true
## [1] TRUE
Things to note:
Therefore, I will fit a linear mixed-effects model.
## Linear mixed model fit by maximum likelihood (p-values based on Wald z-scores)
## [lmerMod]
## Formula:
## FluencySyllablesperMinute ~ 1 + Genre + Complexity + Genre:Complexity +
## (1 | Participant)
## Data: dat_fluency
##
## AIC BIC logLik deviance df.resid
## 3406.0 3432.7 -1697.0 3394.0 622
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.1361 -0.5645 -0.0842 0.5227 5.9639
##
## Random effects:
## Groups Name Variance Std.Dev.
## Participant (Intercept) 13.639 3.693
## Residual 7.729 2.780
## Number of obs: 628, groups: Participant, 157
##
## Fixed effects:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.4454 0.3689 25.603 < 2e-16 ***
## GenreNAR 0.3648 0.3138 1.163 0.245024
## ComplexitySIMPLE -1.0564 0.3138 -3.367 0.000761 ***
## GenreNAR:ComplexitySIMPLE 1.8588 0.4438 4.189 2.8e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) GnrNAR CSIMPL
## GenreNAR -0.425
## CmplxSIMPLE -0.425 0.500
## GNAR:CSIMPL 0.301 -0.707 -0.707
Note:
Results:
Visualization
## model: FluencySyllablesperMinute ~ 1 + Genre + Complexity + Genre:Complexity
##
## Genre*Complexity effect
## Complexity
## Genre COMPLEX SIMPLE
## ARG 9.445414 8.389045
## NAR 9.810191 10.612611
Interpretation:
RQ1a(ix):
RQ1b(ix):
## Linear mixed model fit by maximum likelihood (p-values based on Wald z-scores)
## [lmerMod]
## Formula: PTD_composite ~ 1 + Genre + Complexity + Genre:Complexity + CogAnx +
## Complexity:CogAnx + (1 | Participant)
## Data: dat
##
## AIC BIC logLik deviance df.resid
## 2073.3 2108.9 -1028.6 2057.3 624
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.7445 -0.5777 0.0543 0.6690 3.3456
##
## Random effects:
## Groups Name Variance Std.Dev.
## Participant (Intercept) 0.9366 0.9678
## Residual 1.0354 1.0175
## Number of obs: 632, groups: Participant, 158
##
## Fixed effects:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.50120 0.11172 49.241 < 2e-16 ***
## GenreNAR 1.16297 0.11448 10.159 < 2e-16 ***
## ComplexitySIMPLE 0.29239 0.11448 2.554 0.0106 *
## CogAnx -0.05840 0.09598 -0.608 0.5429
## GenreNAR:ComplexitySIMPLE -1.11076 0.16190 -6.861 6.86e-12 ***
## ComplexitySIMPLE:CogAnx 0.19342 0.08099 2.388 0.0169 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) GnrNAR CmSIMPLE CogAnx GNAR:C
## GenreNAR -0.512
## CmplxSIMPLE -0.512 0.500
## CogAnx 0.006 0.000 -0.002
## GNAR:CSIMPL 0.362 -0.707 -0.707 0.000
## CmSIMPLE:CA -0.002 0.000 0.005 -0.422 0.000
Note:
Results:
Visualization
## model: PTD_composite ~ 1 + Genre + Complexity + Genre:Complexity + CogAnx +
## Complexity:CogAnx
##
## Genre*Complexity effect
## Complexity
## Genre COMPLEX SIMPLE
## ARG 5.501582 5.792722
## NAR 6.664557 5.844937
##
## Complexity*CogAnx effect
## CogAnx
## Complexity -3 -2 -1 0 1 2 3
## COMPLEX 6.257898 6.199496 6.141093 6.082691 6.024289 5.965886 5.907484
## SIMPLE 5.414661 5.549675 5.684690 5.819704 5.954718 6.089733 6.224747
Interpretation:
RQ2a:
RQ2b: