RunsReg = lm(RS ~ OBP + SLG + BA, data=moneyball)
summary(RunsReg)

Call:
lm(formula = RS ~ OBP + SLG + BA, data = moneyball)

Residuals:
    Min      1Q  Median      3Q     Max 
-70.941 -17.247  -0.621  16.754  90.998 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  -788.46      19.70 -40.029  < 2e-16 ***
OBP          2917.42     110.47  26.410  < 2e-16 ***
SLG          1637.93      45.99  35.612  < 2e-16 ***
BA           -368.97     130.58  -2.826  0.00482 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 24.69 on 898 degrees of freedom
Multiple R-squared:  0.9302,    Adjusted R-squared:   0.93 
F-statistic:  3989 on 3 and 898 DF,  p-value: < 2.2e-16

In Class Activity 8

runs_scored=-804.63+2737.77*(0.361)+1584.91*(0.409)
runs_scored
[1] 831.9332
# Regression model to predict runs allowed
RunsAllowedReg = lm(RA ~ OOBP + OSLG, data=moneyball)
summary(RunsAllowedReg)

Call:
lm(formula = RA ~ OOBP + OSLG, data = moneyball)

Residuals:
    Min      1Q  Median      3Q     Max 
-82.397 -15.178  -0.129  17.679  60.955 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  -837.38      60.26 -13.897  < 2e-16 ***
OOBP         2913.60     291.97   9.979 4.46e-16 ***
OSLG         1514.29     175.43   8.632 2.55e-13 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 25.67 on 87 degrees of freedom
  (812 observations deleted due to missingness)
Multiple R-squared:  0.9073,    Adjusted R-squared:  0.9052 
F-statistic: 425.8 on 2 and 87 DF,  p-value: < 2.2e-16

We expect the team to score between 831 and 832 runs.

runs_allowed=-837.38+2913.60*(0.267)+1514.29*(0.392)
runs_allowed
[1] 534.1529
runs_allowed=-837.38+2913.60*(0.267)+1514.29*(0.392)
runs_allowed

We expect the team to allow between 534 and 535 runs.

LS0tDQp0aXRsZTogIk1vZHVsZSAzIEluLUNsYXNzIEFjdGl2aXR5IDgiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpgYGB7cn0NCnBsb3QoY2FycykNCmBgYA0KDQoqSW4gQ2xhc3MgQWN0aXZpdHkgOCoNCg0KYGBge3J9DQpSdW5zUmVnID0gbG0oUlMgfiBPQlAgKyBTTEcgKyBCQSwgZGF0YT1tb25leWJhbGwpDQpzdW1tYXJ5KFJ1bnNSZWcpDQpgYGANCg0KDQpgYGB7cn0NCnJ1bnNfc2NvcmVkPS04MDQuNjMrMjczNy43NyooMC4zNjEpKzE1ODQuOTEqKDAuNDA5KQ0KcnVuc19zY29yZWQNCmBgYA0KDQpXZSBleHBlY3QgdGhlIHRlYW0gdG8gc2NvcmUgYmV0d2VlbiA4MzEgYW5kIDgzMiBydW5zLg0KDQpgYGB7cn0NCiMgUmVncmVzc2lvbiBtb2RlbCB0byBwcmVkaWN0IHJ1bnMgYWxsb3dlZA0KUnVuc0FsbG93ZWRSZWcgPSBsbShSQSB+IE9PQlAgKyBPU0xHLCBkYXRhPW1vbmV5YmFsbCkNCnN1bW1hcnkoUnVuc0FsbG93ZWRSZWcpDQpgYGANCg0KYGBge3J9DQpydW5zX2FsbG93ZWQ9LTgzNy4zOCsyOTEzLjYwKigwLjI2NykrMTUxNC4yOSooMC4zOTIpDQpydW5zX2FsbG93ZWQNCmBgYA0KDQoNCldlIGV4cGVjdCB0aGUgdGVhbSB0byBhbGxvdyBiZXR3ZWVuIDUzNCBhbmQgNTM1IHJ1bnMu