library(tidyverse)
library(plotly)
interactivity <- read_csv ("data/unemployment.csv")
interactivity_clean <- interactivity %>%
filter(year== 2010) %>%
group_by(region, state, na.rm = TRUE) %>%
summarize(total_unemployment = sum(unemployment)*100,1) %>%
ungroup() %>%
mutate(
percent_unemployment = round((total_unemployment / sum(total_unemployment)) * 100, 1)
)Exercise 11 — PMAP 8551, Summer 2025
{r}
static_plot <- ggplot(interactivity_clean, aes(x= percent_unemployment, y=region, color=state)) +
geom_point()+
theme_minimal()+
theme(legend.position = "NONE")+
labs(title = "Regional unemployment in 2010", x= "Unemploymet (%)", y= "Region")
static_plot
{r}
ggplot(interactivity, aes(x= year, y=unemployment, color=region)) +
geom_point()+
geom_smooth()+
theme_minimal()+
theme(legend.position = "NONE")+
labs(title = "Regional unemployment between 2006 and 2016", x= "Unemploymet (%)", y= "Region")
New_Card <- ggplot(interactivity_clean, aes(x=total_unemployment, color= state))+
geom_histogram()+
facet_wrap(vars(region))
ggplotly(New_Card)`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.