Chapter 05 (page 197): 3, 5, 6, 9
Problem 3
We now review k-fold cross-validation.
The k-fold cross validation is implemented by taking the amount of observations, n, and randomly splitting them into k, non-overlapping groups of length of approximately n/k. These groups acts as a validation set, and the remainder acts as a training set. The test error is then estimated by averaging the k resulting MSE estimates.
A disadvantages of the validation set approach relative to k-fold cross-validation is the validation estimate of the test error rate can be highly variable (depends on which observations are included in the training/validation set). Another disadvantage is that only a subset of the observations are used to fit the model, so the validation set error may overestimate the test error rate for the model fit on the entire data set.
LOOCV has less bias. We repeatedly fit the statistical learning method using training data that contains n-1 obs., i.e. almost all the data set is used LOOCV produces a less variable MSE. The validation approach produces different MSE when applied repeatedly due to randomness in the splitting process, while performing LOOCV multiple times will always yield the same results, because we split based on 1 obs. each time LOOCV is computationally intensive (disadvantage). We fit the each model n times.
Problem 5
In Chapter 4, we used logistic regression to predict the probability of default using income and balance on the Default data set. We will now estimate the test error of this logistic regression model using the validation set approach. Do not forget to set a random seed before beginning your analysis.
library(ISLR)
##
## Call:
## glm(formula = default ~ income + balance, family = "binomial",
## data = Default)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.154e+01 4.348e-01 -26.545 < 2e-16 ***
## income 2.081e-05 4.985e-06 4.174 2.99e-05 ***
## balance 5.647e-03 2.274e-04 24.836 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 2920.6 on 9999 degrees of freedom
## Residual deviance: 1579.0 on 9997 degrees of freedom
## AIC: 1585
##
## Number of Fisher Scoring iterations: 8
train <- sample(dim(Default)[1], dim(Default)[1] / 2)
fit.glm <- glm(default ~ income + balance, data = Default, family = "binomial", subset = train)
summary(fit.glm)
##
## Call:
## glm(formula = default ~ income + balance, family = "binomial",
## data = Default, subset = train)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.194e+01 6.178e-01 -19.333 < 2e-16 ***
## income 3.262e-05 7.024e-06 4.644 3.41e-06 ***
## balance 5.689e-03 3.158e-04 18.014 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1523.8 on 4999 degrees of freedom
## Residual deviance: 803.3 on 4997 degrees of freedom
## AIC: 809.3
##
## Number of Fisher Scoring iterations: 8
probs <- predict(fit.glm, newdata = Default[-train, ], type = "response")
pred.glm <- rep("No", length(probs))
pred.glm[probs > 0.5] <- "Yes"
mean(pred.glm != Default[-train, ]$default)
## [1] 0.0254
The validation set approach gave us a 2.74% test error rate.
train <- sample(dim(Default)[1], dim(Default)[1] / 2)
fit.glm <- glm(default ~ income + balance, data = Default, family = "binomial", subset = train)
probs <- predict(fit.glm, newdata = Default[-train, ], type = "response")
pred.glm <- rep("No", length(probs))
pred.glm[probs > 0.5] <- "Yes"
mean(pred.glm != Default[-train, ]$default)
## [1] 0.0274
train <- sample(dim(Default)[1], dim(Default)[1] / 2)
fit.glm <- glm(default ~ income + balance, data = Default, family = "binomial", subset = train)
probs <- predict(fit.glm, newdata = Default[-train, ], type = "response")
pred.glm <- rep("No", length(probs))
pred.glm[probs > 0.5] <- "Yes"
mean(pred.glm != Default[-train, ]$default)
## [1] 0.0244
train <- sample(dim(Default)[1], dim(Default)[1] / 2)
fit.glm <- glm(default ~ income + balance, data = Default, family = "binomial", subset = train)
probs <- predict(fit.glm, newdata = Default[-train, ], type = "response")
pred.glm <- rep("No", length(probs))
pred.glm[probs > 0.5] <- "Yes"
mean(pred.glm != Default[-train, ]$default)
## [1] 0.0244
The three different splits each produce a different resulting error rate which shows that the rate varies by which observations are in the training/validation sets.
train <- sample(dim(Default)[1], dim(Default)[1] / 2)
fit.glm <- glm(default ~ income + balance + student, data = Default, family = "binomial", subset = train)
pred.glm <- rep("No", length(probs))
probs <- predict(fit.glm, newdata = Default[-train, ], type = "response")
pred.glm[probs > 0.5] <- "Yes"
mean(pred.glm != Default[-train, ]$default)
## [1] 0.0278
Including the dummy variable for student leads DID NOT seem to result in a reduction in the test error rate.
Problem 6
We continue to consider the use of a logistic regression model to predict the probability of default using income and balance on the Default data set. In particular, we will now compute estimates for the standard errors of the income and balance logistic regression coefficients in two different ways: (1) using the bootstrap, and (2) using the standard formula for computing the standard errors in the glm() function. Do not forget to set a random seed before beginning your analysis.
set.seed(1)
attach(Default)
## The following objects are masked from Default (pos = 3):
##
## balance, default, income, student
fit.glm <- glm(default ~ income + balance, data = Default, family = "binomial")
summary(fit.glm)
##
## Call:
## glm(formula = default ~ income + balance, family = "binomial",
## data = Default)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.154e+01 4.348e-01 -26.545 < 2e-16 ***
## income 2.081e-05 4.985e-06 4.174 2.99e-05 ***
## balance 5.647e-03 2.274e-04 24.836 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 2920.6 on 9999 degrees of freedom
## Residual deviance: 1579.0 on 9997 degrees of freedom
## AIC: 1585
##
## Number of Fisher Scoring iterations: 8
The glm() estimates of the standard errors for the coefficients intercept, income and balance are respectively 4.348e-01, 4.985e-06 and 2.274e-04.
boot.fn <- function(data, index) {
fit <- glm(default ~ income + balance, data = data, family = "binomial", subset = index)
return (coef(fit))
}
library(boot)
## Warning: package 'boot' was built under R version 4.3.3
boot(Default, boot.fn, 1000)
##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = Default, statistic = boot.fn, R = 1000)
##
##
## Bootstrap Statistics :
## original bias std. error
## t1* -1.154047e+01 -3.945460e-02 4.344722e-01
## t2* 2.080898e-05 1.680317e-07 4.866284e-06
## t3* 5.647103e-03 1.855765e-05 2.298949e-04
The bootstrap estimates of the standard errors for the coefficients B0, B1 and B2 are respectively 0.4453, 4.834 x 10^(-6) and 2.355 x 10^(-4).
The estimated standard errors obtained by each of the two methods are very similar.
Problem 9
We will now consider the Boston housing data set, from the MASS library.
library(MASS)
attach(Boston)
mu.hat <- mean(medv)
mu.hat
## [1] 22.53281
se.hat <- sd(medv) / sqrt(dim(Boston)[1])
se.hat
## [1] 0.4088611
set.seed(1)
boot.fn <- function(data, index) {
mu <- mean(data[index])
return (mu)
}
boot(medv, boot.fn, 1000)
##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = medv, statistic = boot.fn, R = 1000)
##
##
## Bootstrap Statistics :
## original bias std. error
## t1* 22.53281 0.007650791 0.4106622
The bootstrap estimated standard error of (mu-hat) of 0.4106 is similar to the estimate found in (b) of 0.4088.
t.test(medv)
##
## One Sample t-test
##
## data: medv
## t = 55.111, df = 505, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 21.72953 23.33608
## sample estimates:
## mean of x
## 22.53281
CI.mu.hat <- c(22.53 - 2 * 0.4119, 22.53 + 2 * 0.4119)
CI.mu.hat
## [1] 21.7062 23.3538
The bootstrap confidence interval is very close to the one provided by the t.test() function.
med.hat <- median(medv)
med.hat
## [1] 21.2
boot.fn <- function(data, index) {
mu <- median(data[index])
return (mu)
}
boot(medv, boot.fn, 1000)
##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = medv, statistic = boot.fn, R = 1000)
##
##
## Bootstrap Statistics :
## original bias std. error
## t1* 21.2 -0.0386 0.3770241
We get an estimated median value of 21.2 which is equal to the value obtained in (e), with a standard error of 0.377 which is small compared to median value.
percent.hat <- quantile(medv, c(0.1))
percent.hat
## 10%
## 12.75
boot.fn <- function(data, index) {
mu <- quantile(data[index], c(0.1))
return (mu)
}
boot(medv, boot.fn, 1000)
##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = medv, statistic = boot.fn, R = 1000)
##
##
## Bootstrap Statistics :
## original bias std. error
## t1* 12.75 0.0186 0.4925766
We get an estimated tenth percentile value of 12.75 which is again equal to the value obtained in (g), with a standard error of 0.4925 which is relatively small compared to percentile value.