# Read in data
firstbase = read.csv("firstbasestats.csv")
str(firstbase)
summary(firstbase)
# Linear Regression (one variable)
model1 = lm(Payroll.Salary2023 ~ RBI, data=firstbase)
#RBI is out independent variable(feature,explanatory variable)
#Payroll.Salary is our dependent variable (target, response variable)
summary(model1)

Since the absolute value of t is greater than2, the RBI independent variable is significant at 5% significance level. You may use p value as well, in this case<=0.05.

Either|t|>=2 or pr=<0.05 the corresponding feature is significant at a 5% significance level.

For each additional RBI a 1stBase player get $ 157088 more.

RBI explains 36.57% of the model

SSE = sum(model1$residuals^2)
SSE
# Linear Regression (two variables)
model2 = lm(Payroll.Salary2023 ~ AVG + RBI, data=firstbase)
summary(model2)


AVG is not significant at a 5% significance level
RBI is significance at 5% significance level
Adjusted R Squared went up !

The model is significant at 1% level
# Sum of Squared Errors
SSE = sum(model2$residuals^2)
Error: object 'model2' not found
# Linear Regression (all variables)
model3 = lm(Payroll.Salary2023 ~ HR + RBI + AVG + OBP+ OPS, data=firstbase)
summary(model3)
LS0tDQp0aXRsZTogIkFjdGl2aXR5ICM2OiBJbnRybyB0byBMaW5lYXIgUmVncmVzc2lvbjogRmlyc3QgQmFzZSBIaXR0aW5nIFN0YXRzIGFuZCBTYWxhcnkgUHJlZGljdGlvbnMiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpgYGB7cn0NCiMgUmVhZCBpbiBkYXRhDQpmaXJzdGJhc2UgPSByZWFkLmNzdigiZmlyc3RiYXNlc3RhdHMuY3N2IikNCnN0cihmaXJzdGJhc2UpDQpgYGANCg0KDQpgYGB7cn0NCnN1bW1hcnkoZmlyc3RiYXNlKQ0KYGBgDQoNCg0KYGBge3J9DQojIExpbmVhciBSZWdyZXNzaW9uIChvbmUgdmFyaWFibGUpDQptb2RlbDEgPSBsbShQYXlyb2xsLlNhbGFyeTIwMjMgfiBSQkksIGRhdGE9Zmlyc3RiYXNlKQ0KI1JCSSBpcyBvdXQgaW5kZXBlbmRlbnQgdmFyaWFibGUoZmVhdHVyZSxleHBsYW5hdG9yeSB2YXJpYWJsZSkNCiNQYXlyb2xsLlNhbGFyeSBpcyBvdXIgZGVwZW5kZW50IHZhcmlhYmxlICh0YXJnZXQsIHJlc3BvbnNlIHZhcmlhYmxlKQ0Kc3VtbWFyeShtb2RlbDEpDQpgYGANCg0KU2luY2UgdGhlIGFic29sdXRlIHZhbHVlIG9mIHQgaXMgZ3JlYXRlciB0aGFuMiwgdGhlIFJCSSBpbmRlcGVuZGVudCB2YXJpYWJsZSBpcyBzaWduaWZpY2FudCBhdCA1JSBzaWduaWZpY2FuY2UgbGV2ZWwuIFlvdSBtYXkgdXNlIHAgdmFsdWUgYXMgd2VsbCwgaW4gdGhpcyBjYXNlPD0wLjA1Lg0KDQpFaXRoZXJ8dHw+PTIgb3IgcHI9PDAuMDUgdGhlIGNvcnJlc3BvbmRpbmcgZmVhdHVyZSBpcyBzaWduaWZpY2FudCBhdCBhIDUlIHNpZ25pZmljYW5jZSBsZXZlbC4NCg0KRm9yIGVhY2ggYWRkaXRpb25hbCBSQkkgYSAxc3RCYXNlIHBsYXllciBnZXQgJCAxNTcwODggbW9yZS4NCg0KUkJJIGV4cGxhaW5zIDM2LjU3JSBvZiB0aGUgbW9kZWwNCg0KYGBge3J9DQpTU0UgPSBzdW0obW9kZWwxJHJlc2lkdWFsc14yKQ0KU1NFDQpgYGANCg0KYGBge3J9DQojIExpbmVhciBSZWdyZXNzaW9uICh0d28gdmFyaWFibGVzKQ0KbW9kZWwyID0gbG0oUGF5cm9sbC5TYWxhcnkyMDIzIH4gQVZHICsgUkJJLCBkYXRhPWZpcnN0YmFzZSkNCnN1bW1hcnkobW9kZWwyKQ0KDQoNCkFWRyBpcyBub3Qgc2lnbmlmaWNhbnQgYXQgYSA1JSBzaWduaWZpY2FuY2UgbGV2ZWwNClJCSSBpcyBzaWduaWZpY2FuY2UgYXQgNSUgc2lnbmlmaWNhbmNlIGxldmVsDQpBZGp1c3RlZCBSIFNxdWFyZWQgd2VudCB1cCAhDQoNClRoZSBtb2RlbCBpcyBzaWduaWZpY2FudCBhdCAxJSBsZXZlbA0KYGBgDQoNCmBgYHtyfQ0KIyBTdW0gb2YgU3F1YXJlZCBFcnJvcnMNClNTRSA9IHN1bShtb2RlbDIkcmVzaWR1YWxzXjIpDQpTU0UNCmBgYA0KYGBge3J9DQojIExpbmVhciBSZWdyZXNzaW9uIChhbGwgdmFyaWFibGVzKQ0KbW9kZWwzID0gbG0oUGF5cm9sbC5TYWxhcnkyMDIzIH4gSFIgKyBSQkkgKyBBVkcgKyBPQlArIE9QUywgZGF0YT1maXJzdGJhc2UpDQpzdW1tYXJ5KG1vZGVsMykNCmBgYA0KDQo=