Case-scenario 1 This is the fourth season of outfielder Luis Robert
with the Chicago White Socks. If during the first three seasons he hit
11, 13, and 12 home runs, how many does he need on this season for his
overall average to be at least 20?
# Home-runs so far
HR_before <- c(11, 13, 12)
# Average Number of Home-runs per season wanted
wanted_HR <- 20
# Number of seasons
n_seasons <- 4
# Needed Home-runs on season 4
x_4 <- n_seasons*wanted_HR - sum(HR_before)
# Minimum number of Home-runs needed by Robert
x_4
[1] 44
# Robert's performance
Robert_HRs <- c(11, 13, 12,44)
# Find mean
mean(Robert_HRs)
[1] 20
sd(Robert_HRs)
[1] 16.02082
max(Robert_HRs)
[1] 44
min(Robert_HRs)
[1] 11
summary(Robert_HRs)
Min. 1st Qu. Median Mean 3rd Qu. Max.
11.00 11.75 12.50 20.00 20.75 44.00
fivenum(Robert_HRs)#Tukey's five number summary
[1] 11.0 11.5 12.5 28.5 44.0
Question 1 Now, you must complete the
problem below which represents a similar case scenario. You may use the
steps that we executed in Case-scenario 1 as a template for your
solution.
This is the sixth season of outfielder Juan Soto in the majors. If
during the first five seasons he received 79, 108,41,145, and 135 walks,
how many does he need on this season for his overall number of walks per
season to be at least 100?
Soto_Walks_Before <- c(79,108,41,145,135)
# Average Number of Home-runs per season wanted
wanted_BB <- 100
# Number of seasons
n_Soto_seasons <- 6
# Needed Home-runs on season 4
Soto_Walks_6 <- n_Soto_seasons*wanted_BB - sum(Soto_Walks_Before)
# Minimum number of Home-runs needed by Robert
Soto_Walks_6
[1] 92
Case-scenario 2 The average salary of 10
baseball players is 72,000 dollars a week and the average salary of 4
soccer players is 84,000. Find the mean salary of all 14 professional
players.
n_1 <- 10
n_2 <- 4
y_1 <- 72000
y_2 <- 84000
# Mean salary overall
salary_ave <- (n_1*y_1 + n_2*y_2)/(n_1+n_2)
salary_ave
[1] 75428.57
Question 2 The average salary of 7
basketball players is 102,000 dollars a week and the average salary of 9
NFL players is 91,000. Find the mean salary of all 16 professional
players.
n_3<-7
y_3<-10200
n_4<-9
y_4<-91000
salary_ave_2<-(n_3*y_3+n_4*y_4)/(n_3+n_4)
salary_ave_2
[1] 55650
Case-scenario 3 The frequency distribution
below lists the number of active players in the Barclays Premier League
and the time left in their contract.
contract_length <- read.table("allcontracts.csv", header = TRUE, sep = ",")
contract_years <- contract_length$years
# Mean
contracts_mean <- mean(contract_years)
contracts_mean
[1] 3.458918
# Median
contracts_median <- median(contract_years)
contracts_median
[1] 3
# Find number of observations
contracts_n <- length(contract_years)
# Find standard deviation
contracts_sd <- sd(contract_years)
contracts_w1sd <- sum((contract_years - contracts_mean)/contracts_sd < 1)/ contracts_n
# Percentage of observation within one standard deviation of the mean
contracts_w1sd
[1] 0.8416834
contracts_w1sd-0.68
[1] 0.1616834
What percentage of the data lies within two standard deviations of
the mean?
## Within 2 sd
contracts_w2sd <- sum((contract_years - contracts_mean)/ contracts_sd < 2)/contracts_n
contracts_w2sd
[1] 1
100% of the data is within two standard deviations of the mean.
## Difference from empirical
contracts_w2sd - 0.95
[1] 0.05
## Within 3 sd
contracts_w3sd <- sum((contract_years - contracts_mean)/ contracts_sd < 3)/contracts_n
contracts_w3sd
[1] 1
As we already knew 100% of the data is within 2 standard deviation of
the mean so this calculation was not necessary.
Histogram
# Create histogram
hist(contract_years,xlab = "Years Left in Contract",col = "green",border = "red", xlim = c(0,8), ylim = c(0,225),
breaks = 5)

# Create histogram
hist(contract_years,xlab = "Years Left in Contract",col = "blue",border = "black", xlim = c(0,7), ylim = c(0,200),
breaks = 6)

plot(contract_years)

LS0tCnRpdGxlOiAiUiBOb3RlYm9vayIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQogCkNhc2Utc2NlbmFyaW8gMQpUaGlzIGlzIHRoZSBmb3VydGggc2Vhc29uIG9mIG91dGZpZWxkZXIgTHVpcyBSb2JlcnQgd2l0aCB0aGUgQ2hpY2FnbyBXaGl0ZSBTb2Nrcy4gSWYgZHVyaW5nIHRoZSBmaXJzdCB0aHJlZSBzZWFzb25zIGhlIGhpdCAxMSwgMTMsIGFuZCAxMiBob21lIHJ1bnMsIGhvdyBtYW55IGRvZXMgaGUgbmVlZCBvbiB0aGlzIHNlYXNvbiBmb3IgaGlzIG92ZXJhbGwgYXZlcmFnZSB0byBiZSBhdCBsZWFzdCAyMD8KCmBgYHtyfQojIEhvbWUtcnVucyBzbyBmYXIKSFJfYmVmb3JlIDwtIGMoMTEsIDEzLCAxMikKIyBBdmVyYWdlIE51bWJlciBvZiBIb21lLXJ1bnMgcGVyIHNlYXNvbiB3YW50ZWQKd2FudGVkX0hSIDwtIDIwCiMgTnVtYmVyIG9mIHNlYXNvbnMKbl9zZWFzb25zIDwtIDQKIyBOZWVkZWQgSG9tZS1ydW5zIG9uIHNlYXNvbiA0CnhfNCA8LSBuX3NlYXNvbnMqd2FudGVkX0hSIC0gc3VtKEhSX2JlZm9yZSkKIyBNaW5pbXVtIG51bWJlciBvZiBIb21lLXJ1bnMgbmVlZGVkIGJ5IFJvYmVydAp4XzQKYGBgCgoKCgpgYGB7cn0KIyBSb2JlcnQncyBwZXJmb3JtYW5jZQpSb2JlcnRfSFJzIDwtIGMoMTEsIDEzLCAxMiw0NCkKIyBGaW5kIG1lYW4KbWVhbihSb2JlcnRfSFJzKQpgYGAKCgoKYGBge3J9CnNkKFJvYmVydF9IUnMpCm1heChSb2JlcnRfSFJzKQptaW4oUm9iZXJ0X0hScykKc3VtbWFyeShSb2JlcnRfSFJzKQpgYGAKCgpgYGB7cn0KZml2ZW51bShSb2JlcnRfSFJzKSNUdWtleSdzIGZpdmUgbnVtYmVyIHN1bW1hcnkKYGBgCgoqKipRdWVzdGlvbiAxKioqCk5vdywgeW91IG11c3QgY29tcGxldGUgdGhlIHByb2JsZW0gYmVsb3cgd2hpY2ggcmVwcmVzZW50cyBhIHNpbWlsYXIgY2FzZSBzY2VuYXJpby4gWW91IG1heSB1c2UgdGhlIHN0ZXBzIHRoYXQgd2UgZXhlY3V0ZWQgaW4gQ2FzZS1zY2VuYXJpbyAxIGFzIGEgdGVtcGxhdGUgZm9yIHlvdXIgc29sdXRpb24uCgpUaGlzIGlzIHRoZSBzaXh0aCBzZWFzb24gb2Ygb3V0ZmllbGRlciBKdWFuIFNvdG8gaW4gdGhlIG1ham9ycy4gSWYgZHVyaW5nIHRoZSBmaXJzdCBmaXZlIHNlYXNvbnMgaGUgcmVjZWl2ZWQgNzksIDEwOCw0MSwxNDUsIGFuZCAxMzUgd2Fsa3MsIGhvdyBtYW55IGRvZXMgaGUgbmVlZCBvbiB0aGlzIHNlYXNvbiBmb3IgaGlzIG92ZXJhbGwgbnVtYmVyIG9mIHdhbGtzIHBlciBzZWFzb24gdG8gYmUgYXQgbGVhc3QgMTAwPwoKYGBge3J9ClNvdG9fV2Fsa3NfQmVmb3JlIDwtIGMoNzksMTA4LDQxLDE0NSwxMzUpCiMgQXZlcmFnZSBOdW1iZXIgb2YgSG9tZS1ydW5zIHBlciBzZWFzb24gd2FudGVkCndhbnRlZF9CQiA8LSAxMDAKIyBOdW1iZXIgb2Ygc2Vhc29ucwpuX1NvdG9fc2Vhc29ucyA8LSA2CiMgTmVlZGVkIEhvbWUtcnVucyBvbiBzZWFzb24gNApTb3RvX1dhbGtzXzYgPC0gbl9Tb3RvX3NlYXNvbnMqd2FudGVkX0JCIC0gc3VtKFNvdG9fV2Fsa3NfQmVmb3JlKQojIE1pbmltdW0gbnVtYmVyIG9mIEhvbWUtcnVucyBuZWVkZWQgYnkgUm9iZXJ0ClNvdG9fV2Fsa3NfNgpgYGAKCgoKCgoqKipDYXNlLXNjZW5hcmlvIDIqKioKVGhlIGF2ZXJhZ2Ugc2FsYXJ5IG9mIDEwIGJhc2ViYWxsIHBsYXllcnMgaXMgNzIsMDAwIGRvbGxhcnMgYSB3ZWVrIGFuZCB0aGUgYXZlcmFnZSBzYWxhcnkgb2YgNCBzb2NjZXIgcGxheWVycyBpcyA4NCwwMDAuIEZpbmQgdGhlIG1lYW4gc2FsYXJ5IG9mIGFsbCAxNCBwcm9mZXNzaW9uYWwgcGxheWVycy4KCmBgYHtyfQpuXzEgPC0gMTAKbl8yIDwtIDQKeV8xIDwtIDcyMDAwCnlfMiA8LSA4NDAwMAojIE1lYW4gc2FsYXJ5IG92ZXJhbGwKc2FsYXJ5X2F2ZSA8LSAobl8xKnlfMSArIG5fMip5XzIpLyhuXzErbl8yKQpzYWxhcnlfYXZlCmBgYAoKCioqKlF1ZXN0aW9uIDIqKioKVGhlIGF2ZXJhZ2Ugc2FsYXJ5IG9mIDcgYmFza2V0YmFsbCBwbGF5ZXJzIGlzIDEwMiwwMDAgZG9sbGFycyBhIHdlZWsgYW5kIHRoZSBhdmVyYWdlIHNhbGFyeSBvZiA5IE5GTCBwbGF5ZXJzIGlzIDkxLDAwMC4gRmluZCB0aGUgbWVhbiBzYWxhcnkgb2YgYWxsIDE2IHByb2Zlc3Npb25hbCBwbGF5ZXJzLgoKYGBge3J9Cm5fMzwtNwp5XzM8LTEwMjAwCm5fNDwtOQp5XzQ8LTkxMDAwCnNhbGFyeV9hdmVfMjwtKG5fMyp5XzMrbl80KnlfNCkvKG5fMytuXzQpCnNhbGFyeV9hdmVfMgpgYGAKCgoKKioqQ2FzZS1zY2VuYXJpbyAzKioqClRoZSBmcmVxdWVuY3kgZGlzdHJpYnV0aW9uIGJlbG93IGxpc3RzIHRoZSBudW1iZXIgb2YgYWN0aXZlIHBsYXllcnMgaW4gdGhlIEJhcmNsYXlzIFByZW1pZXIgTGVhZ3VlIGFuZCB0aGUgdGltZSBsZWZ0IGluIHRoZWlyIGNvbnRyYWN0LgoKCmBgYHtyfQpjb250cmFjdF9sZW5ndGggPC0gcmVhZC50YWJsZSgiYWxsY29udHJhY3RzLmNzdiIsIGhlYWRlciA9IFRSVUUsIHNlcCA9ICIsIikKY29udHJhY3RfeWVhcnMgPC0gY29udHJhY3RfbGVuZ3RoJHllYXJzCmBgYAoKCgpgYGB7cn0KIyBNZWFuIApjb250cmFjdHNfbWVhbiAgPC0gbWVhbihjb250cmFjdF95ZWFycykKY29udHJhY3RzX21lYW4KYGBgCgoKYGBge3J9CiMgTWVkaWFuCmNvbnRyYWN0c19tZWRpYW4gPC0gbWVkaWFuKGNvbnRyYWN0X3llYXJzKQpjb250cmFjdHNfbWVkaWFuCmBgYAoKCmBgYHtyfQojIEZpbmQgbnVtYmVyIG9mIG9ic2VydmF0aW9ucwpjb250cmFjdHNfbiA8LSBsZW5ndGgoY29udHJhY3RfeWVhcnMpCiMgRmluZCBzdGFuZGFyZCBkZXZpYXRpb24KY29udHJhY3RzX3NkIDwtIHNkKGNvbnRyYWN0X3llYXJzKQpgYGAKCgoKCmBgYHtyfQpjb250cmFjdHNfdzFzZCA8LSBzdW0oKGNvbnRyYWN0X3llYXJzIC0gY29udHJhY3RzX21lYW4pL2NvbnRyYWN0c19zZCA8IDEpLyBjb250cmFjdHNfbgojIFBlcmNlbnRhZ2Ugb2Ygb2JzZXJ2YXRpb24gd2l0aGluIG9uZSBzdGFuZGFyZCBkZXZpYXRpb24gb2YgdGhlIG1lYW4KY29udHJhY3RzX3cxc2QKYGBgCgoKYGBge3J9CiMjIERpZmZlcmVuY2UgZnJvbSBlbXBpcmljYWwKY29udHJhY3RzX3cxc2QtMC42OApgYGAKCgpXaGF0IHBlcmNlbnRhZ2Ugb2YgdGhlIGRhdGEgbGllcyB3aXRoaW4gdHdvIHN0YW5kYXJkIGRldmlhdGlvbnMgb2YgdGhlIG1lYW4/CgpgYGB7cn0KIyMgV2l0aGluIDIgc2QKY29udHJhY3RzX3cyc2QgPC0gc3VtKChjb250cmFjdF95ZWFycyAtIGNvbnRyYWN0c19tZWFuKS8gY29udHJhY3RzX3NkIDwgMikvY29udHJhY3RzX24KY29udHJhY3RzX3cyc2QKYGBgCgoxMDAlIG9mIHRoZSBkYXRhIGlzIHdpdGhpbiB0d28gc3RhbmRhcmQgZGV2aWF0aW9ucyBvZiB0aGUgbWVhbi4KCmBgYHtyfQojIyBEaWZmZXJlbmNlIGZyb20gZW1waXJpY2FsIApjb250cmFjdHNfdzJzZCAtIDAuOTUKYGBgCgoKCmBgYHtyfQojIyBXaXRoaW4gMyBzZCAKY29udHJhY3RzX3czc2QgPC0gc3VtKChjb250cmFjdF95ZWFycyAtIGNvbnRyYWN0c19tZWFuKS8gY29udHJhY3RzX3NkIDwgMykvY29udHJhY3RzX24KY29udHJhY3RzX3czc2QKYGBgCgpBcyB3ZSBhbHJlYWR5IGtuZXcgMTAwJSBvZiB0aGUgZGF0YSBpcyB3aXRoaW4gMiBzdGFuZGFyZCBkZXZpYXRpb24gb2YgdGhlIG1lYW4gc28gdGhpcyBjYWxjdWxhdGlvbiB3YXMgbm90IG5lY2Vzc2FyeS4KCioqKkhpc3RvZ3JhbSoqKgoKYGBge3J9CiMgQ3JlYXRlIGhpc3RvZ3JhbQpoaXN0KGNvbnRyYWN0X3llYXJzLHhsYWIgPSAiWWVhcnMgTGVmdCBpbiBDb250cmFjdCIsY29sID0gImdyZWVuIixib3JkZXIgPSAicmVkIiwgeGxpbSA9IGMoMCw4KSwgeWxpbSA9IGMoMCwyMjUpLAogICBicmVha3MgPSA1KQpgYGAKCgoKYGBge3J9CiMgQ3JlYXRlIGhpc3RvZ3JhbQpoaXN0KGNvbnRyYWN0X3llYXJzLHhsYWIgPSAiWWVhcnMgTGVmdCBpbiBDb250cmFjdCIsY29sID0gImJsdWUiLGJvcmRlciA9ICJibGFjayIsIHhsaW0gPSBjKDAsNyksIHlsaW0gPSBjKDAsMjAwKSwKICAgYnJlYWtzID0gNikKYGBgCgoKYGBge3J9CnBsb3QoY29udHJhY3RfeWVhcnMpCmBgYAoK