Case-scenario 1 This is the fourth season of
outfielder Luis Robert with the Chicago White Socks. If during the first
three seasons he hit 11, 13, and 12 home runs, how many does he need on
this season for his overall average to be at least 20?
# Home-runs so far
HR_before <- c(11, 13, 12)
# Average Number of Home-runs per season wanted
wanted_HR <- 20
# Number of seasons
n_seasons <- 4
# Needed Home-runs on season 4
x_4 <- n_seasons*wanted_HR - sum(HR_before)
# Minimum number of Home-runs needed by Robert
x_4
[1] 44
# Robert's performance
Robert_HRs <- c(11, 13, 12,44)
# Find mean
mean(Robert_HRs)
[1] 20
# Find standard deviation
sd(Robert_HRs)
[1] 16.02082
# Find the maximum number of home-runs during the four seasons period
max(Robert_HRs)
[1] 44
# Find the minimum number of home-runs during the four seasons period
min(Robert_HRs)
[1] 11
summary(Robert_HRs)
Min. 1st Qu. Median Mean 3rd Qu. Max.
11.00 11.75 12.50 20.00 20.75 44.00
fivenum(Robert_HRs)
[1] 11.0 11.5 12.5 28.5 44.0
Question 1 Now, you must complete the problem below
which represents a similar case scenario. You may use the steps that we
executed in Case-scenario 1 as a template for your solution.
This is the sixth season of outfielder Juan Soto in the majors. If
during the first five seasons he received 79, 108,41,145, and 135 walks,
how many does he need on this season for his overall number of walks per
season to be at least 100?
# Home-runs so far
Soto_Walks_Before <- c(79, 108, 41,145,135)
# Average Number of Home-runs per season wanted
wanted_BB <- 100
# Number of seasons
n_soto_seasons <- 6
# Needed Home-runs on season 4
Soto_Walks_6 <- n_soto_seasons*wanted_BB - sum(Soto_Walks_Before)
# Minimum number of Home-runs needed by Robert
Soto_Walks_6
[1] 92
Case-scenario 2 The average salary of 10 baseball
players is 72,000 dollars a week and the average salary of 4 soccer
players is 84,000. Find the mean salary of all 14 professional
players.
n_1 <- 10
n_2 <- 4
y_1 <- 72000
y_2 <- 84000
# Mean salary overall
salary_ave <- (n_1*y_1 + n_2*y_2)/(n_1+n_2)
salary_ave
[1] 75428.57
Question 2 The average salary of 7 basketball
players is 102,000 dollars a week and the average salary of 9 NFL
players is 91,000. Find the mean salary of all 16 professional
players.
n_3<-7
y_3<-102000
n_4<-9
y_4<-91000
salary_ave_2<- (n_3*y_3+n_4)/(n_3+n_4)
salary_ave_2
[1] 44625.56
Case-scenario 3 The frequency distribution below
lists the number of active players in the Barclays Premier League and
the time left in their contract.
Years Number of players 6 28 5 72 4 201 3 109 2 56 1 34 Find the
mean,the median and the standard deviation.
What percentage of the data lies within one standard deviation of the
mean?
What percentage of the data lies within two standard deviations of
the mean?
What percent of the data lies within three standard deviations of the
mean?
Draw a histogram to illustrate the data.
contract_length <- read.table("allcontracts.csv", header = TRUE, sep = ",")
contract_years <- contract_length$years
# Mean
contracts_mean <- mean(contract_years)
contracts_mean
[1] 3.458918
# Median
contracts_median <- median(contract_years)
contracts_median
[1] 3
# Find number of observations
contracts_n <- length(contract_years)
# Find standard deviation
contracts_sd <- sd(contract_years)
What percentage of the data lies within one standard deviation of the
mean?100%
contracts_w1sd <- sum((contract_years - contracts_mean)/contracts_sd < 1)/ contracts_n
# Percentage of observation within one standard deviation of the mean
contracts_w1sd
[1] 0.8416834
## Difference from empirical
contracts_w1sd - 0.68
[1] 0.1616834
What percentage of the data lies within two standard deviations of
the mean?
## Within 2 sd
contracts_w2sd <- sum((contract_years - contracts_mean)/ contracts_sd < 2)/contracts_n
contracts_w2sd
[1] 1
## Difference from empirical
contracts_w2sd - 0.95
[1] 0.05
What percent of the data lies within three standard deviations of the
mean? As we already knew 100% of the data is within two stand deviations
of the mean so this calculation was not necessary.
## Within 3 sd
contracts_w3sd <- sum((contract_years - contracts_mean)/ contracts_sd < 3)/contracts_n
contracts_w3sd
[1] 1
## Difference from empirical
contracts_w3sd - 0.9973
[1] 0.0027
# Create histogram
hist(contract_years,xlab = "Years Left in Contract",col = "green",border = "red", xlim = c(0,8), ylim = c(0,225),
breaks = 5)

# Create histogram
hist(contract_years,xlab = "Years Left in Contract",col = "green",border = "red", xlim = c(0,8), ylim = c(0,225),
breaks = 5)
LS0tCnRpdGxlOiAiSW50cm9kdWN0aW9uIHRvIFIgZm9yIFNwb3J0cyBBbmFseXRpY3MsIFBhcnQgMiIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKKipDYXNlLXNjZW5hcmlvIDEqKgpUaGlzIGlzIHRoZSBmb3VydGggc2Vhc29uIG9mIG91dGZpZWxkZXIgTHVpcyBSb2JlcnQgd2l0aCB0aGUgQ2hpY2FnbyBXaGl0ZSBTb2Nrcy4gSWYgZHVyaW5nIHRoZSBmaXJzdCB0aHJlZSBzZWFzb25zIGhlIGhpdCAxMSwgMTMsIGFuZCAxMiBob21lIHJ1bnMsIGhvdyBtYW55IGRvZXMgaGUgbmVlZCBvbiB0aGlzIHNlYXNvbiBmb3IgaGlzIG92ZXJhbGwgYXZlcmFnZSB0byBiZSBhdCBsZWFzdCAyMD8gCgpgYGB7cn0KIyBIb21lLXJ1bnMgc28gZmFyCkhSX2JlZm9yZSA8LSBjKDExLCAxMywgMTIpCiMgQXZlcmFnZSBOdW1iZXIgb2YgSG9tZS1ydW5zIHBlciBzZWFzb24gd2FudGVkCndhbnRlZF9IUiA8LSAyMAojIE51bWJlciBvZiBzZWFzb25zCm5fc2Vhc29ucyA8LSA0CiMgTmVlZGVkIEhvbWUtcnVucyBvbiBzZWFzb24gNAp4XzQgPC0gbl9zZWFzb25zKndhbnRlZF9IUiAtIHN1bShIUl9iZWZvcmUpCiMgTWluaW11bSBudW1iZXIgb2YgSG9tZS1ydW5zIG5lZWRlZCBieSBSb2JlcnQKeF80CmBgYAoKYGBge3J9CiMgUm9iZXJ0J3MgcGVyZm9ybWFuY2UKUm9iZXJ0X0hScyA8LSBjKDExLCAxMywgMTIsNDQpCiMgRmluZCBtZWFuCm1lYW4oUm9iZXJ0X0hScykKYGBgCgpgYGB7cn0KIyBGaW5kIHN0YW5kYXJkIGRldmlhdGlvbgpzZChSb2JlcnRfSFJzKQoKIyBGaW5kIHRoZSBtYXhpbXVtIG51bWJlciBvZiBob21lLXJ1bnMgZHVyaW5nIHRoZSBmb3VyIHNlYXNvbnMgcGVyaW9kCm1heChSb2JlcnRfSFJzKQoKIyBGaW5kIHRoZSBtaW5pbXVtIG51bWJlciBvZiBob21lLXJ1bnMgZHVyaW5nIHRoZSBmb3VyIHNlYXNvbnMgcGVyaW9kCm1pbihSb2JlcnRfSFJzKQoKc3VtbWFyeShSb2JlcnRfSFJzKQoKZml2ZW51bShSb2JlcnRfSFJzKQpgYGAKKipRdWVzdGlvbiAxKioKTm93LCB5b3UgbXVzdCBjb21wbGV0ZSB0aGUgcHJvYmxlbSBiZWxvdyB3aGljaCByZXByZXNlbnRzIGEgc2ltaWxhciBjYXNlIHNjZW5hcmlvLiBZb3UgbWF5IHVzZSB0aGUgc3RlcHMgdGhhdCB3ZSBleGVjdXRlZCBpbiBDYXNlLXNjZW5hcmlvIDEgYXMgYSB0ZW1wbGF0ZSBmb3IgeW91ciBzb2x1dGlvbi4KClRoaXMgaXMgdGhlIHNpeHRoIHNlYXNvbiBvZiBvdXRmaWVsZGVyIEp1YW4gU290byBpbiB0aGUgbWFqb3JzLiBJZiBkdXJpbmcgdGhlIGZpcnN0IGZpdmUgc2Vhc29ucyBoZSByZWNlaXZlZCA3OSwgMTA4LDQxLDE0NSwgYW5kIDEzNSB3YWxrcywgaG93IG1hbnkgZG9lcyBoZSBuZWVkIG9uIHRoaXMgc2Vhc29uIGZvciBoaXMgb3ZlcmFsbCBudW1iZXIgb2Ygd2Fsa3MgcGVyIHNlYXNvbiB0byBiZSBhdCBsZWFzdCAxMDA/CmBgYHtyfQojIEhvbWUtcnVucyBzbyBmYXIKU290b19XYWxrc19CZWZvcmUgPC0gYyg3OSwgMTA4LCA0MSwxNDUsMTM1KQojIEF2ZXJhZ2UgTnVtYmVyIG9mIEhvbWUtcnVucyBwZXIgc2Vhc29uIHdhbnRlZAp3YW50ZWRfQkIgPC0gMTAwCiMgTnVtYmVyIG9mIHNlYXNvbnMKbl9zb3RvX3NlYXNvbnMgPC0gNgojIE5lZWRlZCBIb21lLXJ1bnMgb24gc2Vhc29uIDQKU290b19XYWxrc182IDwtIG5fc290b19zZWFzb25zKndhbnRlZF9CQiAtIHN1bShTb3RvX1dhbGtzX0JlZm9yZSkKIyBNaW5pbXVtIG51bWJlciBvZiBIb21lLXJ1bnMgbmVlZGVkIGJ5IFJvYmVydApTb3RvX1dhbGtzXzYKYGBgCgoKCioqQ2FzZS1zY2VuYXJpbyAyKioKVGhlIGF2ZXJhZ2Ugc2FsYXJ5IG9mIDEwIGJhc2ViYWxsIHBsYXllcnMgaXMgNzIsMDAwIGRvbGxhcnMgYSB3ZWVrIGFuZCB0aGUgYXZlcmFnZSBzYWxhcnkgb2YgNCBzb2NjZXIgcGxheWVycyBpcyA4NCwwMDAuIEZpbmQgdGhlIG1lYW4gc2FsYXJ5IG9mIGFsbCAxNCBwcm9mZXNzaW9uYWwgcGxheWVycy4KYGBge3J9Cm5fMSA8LSAxMApuXzIgPC0gNAp5XzEgPC0gNzIwMDAKeV8yIDwtIDg0MDAwCiMgTWVhbiBzYWxhcnkgb3ZlcmFsbApzYWxhcnlfYXZlIDwtICAobl8xKnlfMSArIG5fMip5XzIpLyhuXzErbl8yKQpzYWxhcnlfYXZlCmBgYAoKCioqUXVlc3Rpb24gMioqClRoZSBhdmVyYWdlIHNhbGFyeSBvZiA3IGJhc2tldGJhbGwgcGxheWVycyBpcyAxMDIsMDAwIGRvbGxhcnMgYSB3ZWVrIGFuZCB0aGUgYXZlcmFnZSBzYWxhcnkgb2YgOSBORkwgcGxheWVycyBpcyA5MSwwMDAuIEZpbmQgdGhlIG1lYW4gc2FsYXJ5IG9mIGFsbCAxNiBwcm9mZXNzaW9uYWwgcGxheWVycy4KYGBge3J9Cm5fMzwtNwp5XzM8LTEwMjAwMApuXzQ8LTkKeV80PC05MTAwMApzYWxhcnlfYXZlXzI8LSAobl8zKnlfMytuXzQpLyhuXzMrbl80KQpzYWxhcnlfYXZlXzIKYGBgCgoKKipDYXNlLXNjZW5hcmlvIDMqKgpUaGUgZnJlcXVlbmN5IGRpc3RyaWJ1dGlvbiBiZWxvdyBsaXN0cyB0aGUgbnVtYmVyIG9mIGFjdGl2ZSBwbGF5ZXJzIGluIHRoZSBCYXJjbGF5cyBQcmVtaWVyIExlYWd1ZSBhbmQgdGhlIHRpbWUgbGVmdCBpbiB0aGVpciBjb250cmFjdC4KClllYXJzCU51bWJlciBvZiBwbGF5ZXJzCjYJMjgKNQk3Mgo0CTIwMQozCTEwOQoyCTU2CjEJMzQKRmluZCB0aGUgbWVhbix0aGUgbWVkaWFuIGFuZCB0aGUgc3RhbmRhcmQgZGV2aWF0aW9uLgoKV2hhdCBwZXJjZW50YWdlIG9mIHRoZSBkYXRhIGxpZXMgd2l0aGluIG9uZSBzdGFuZGFyZCBkZXZpYXRpb24gb2YgdGhlIG1lYW4/CgpXaGF0IHBlcmNlbnRhZ2Ugb2YgdGhlIGRhdGEgbGllcyB3aXRoaW4gdHdvIHN0YW5kYXJkIGRldmlhdGlvbnMgb2YgdGhlIG1lYW4/CgpXaGF0IHBlcmNlbnQgb2YgdGhlIGRhdGEgbGllcyB3aXRoaW4gdGhyZWUgc3RhbmRhcmQgZGV2aWF0aW9ucyBvZiB0aGUgbWVhbj8KCkRyYXcgYSBoaXN0b2dyYW0gdG8gaWxsdXN0cmF0ZSB0aGUgZGF0YS4KYGBge3J9CmNvbnRyYWN0X2xlbmd0aCA8LSByZWFkLnRhYmxlKCJhbGxjb250cmFjdHMuY3N2IiwgaGVhZGVyID0gVFJVRSwgc2VwID0gIiwiKQpjb250cmFjdF95ZWFycyA8LSBjb250cmFjdF9sZW5ndGgkeWVhcnMKYGBgCgoKYGBge3J9CiMgTWVhbiAKY29udHJhY3RzX21lYW4gIDwtIG1lYW4oY29udHJhY3RfeWVhcnMpCmNvbnRyYWN0c19tZWFuCgojIE1lZGlhbgpjb250cmFjdHNfbWVkaWFuIDwtIG1lZGlhbihjb250cmFjdF95ZWFycykKY29udHJhY3RzX21lZGlhbgoKIyBGaW5kIG51bWJlciBvZiBvYnNlcnZhdGlvbnMKY29udHJhY3RzX24gPC0gbGVuZ3RoKGNvbnRyYWN0X3llYXJzKQojIEZpbmQgc3RhbmRhcmQgZGV2aWF0aW9uCmNvbnRyYWN0c19zZCA8LSBzZChjb250cmFjdF95ZWFycykKCmBgYAoKV2hhdCBwZXJjZW50YWdlIG9mIHRoZSBkYXRhIGxpZXMgd2l0aGluIG9uZSBzdGFuZGFyZCBkZXZpYXRpb24gb2YgdGhlIG1lYW4/MTAwJQpgYGB7cn0KY29udHJhY3RzX3cxc2QgPC0gc3VtKChjb250cmFjdF95ZWFycyAtIGNvbnRyYWN0c19tZWFuKS9jb250cmFjdHNfc2QgPCAxKS8gY29udHJhY3RzX24KIyBQZXJjZW50YWdlIG9mIG9ic2VydmF0aW9uIHdpdGhpbiBvbmUgc3RhbmRhcmQgZGV2aWF0aW9uIG9mIHRoZSBtZWFuCmNvbnRyYWN0c193MXNkCgojIyBEaWZmZXJlbmNlIGZyb20gZW1waXJpY2FsIApjb250cmFjdHNfdzFzZCAtIDAuNjgKYGBgCgpXaGF0IHBlcmNlbnRhZ2Ugb2YgdGhlIGRhdGEgbGllcyB3aXRoaW4gdHdvIHN0YW5kYXJkIGRldmlhdGlvbnMgb2YgdGhlIG1lYW4/IApgYGB7cn0KIyMgV2l0aGluIDIgc2QKY29udHJhY3RzX3cyc2QgPC0gc3VtKChjb250cmFjdF95ZWFycyAtIGNvbnRyYWN0c19tZWFuKS8gY29udHJhY3RzX3NkIDwgMikvY29udHJhY3RzX24KY29udHJhY3RzX3cyc2QKCiMjIERpZmZlcmVuY2UgZnJvbSBlbXBpcmljYWwgCmNvbnRyYWN0c193MnNkIC0gMC45NQpgYGAKCldoYXQgcGVyY2VudCBvZiB0aGUgZGF0YSBsaWVzIHdpdGhpbiB0aHJlZSBzdGFuZGFyZCBkZXZpYXRpb25zIG9mIHRoZSBtZWFuPyBBcyB3ZSBhbHJlYWR5IGtuZXcgMTAwJSBvZiB0aGUgZGF0YSBpcyB3aXRoaW4gdHdvIHN0YW5kIGRldmlhdGlvbnMgb2YgdGhlIG1lYW4gc28gdGhpcyBjYWxjdWxhdGlvbiB3YXMgbm90IG5lY2Vzc2FyeS4KYGBge3J9CiMjIFdpdGhpbiAzIHNkIApjb250cmFjdHNfdzNzZCA8LSBzdW0oKGNvbnRyYWN0X3llYXJzIC0gY29udHJhY3RzX21lYW4pLyBjb250cmFjdHNfc2QgPCAzKS9jb250cmFjdHNfbgpjb250cmFjdHNfdzNzZAoKIyMgRGlmZmVyZW5jZSBmcm9tIGVtcGlyaWNhbCAKY29udHJhY3RzX3czc2QgLSAwLjk5NzMKCiMgQ3JlYXRlIGhpc3RvZ3JhbQpoaXN0KGNvbnRyYWN0X3llYXJzLHhsYWIgPSAiWWVhcnMgTGVmdCBpbiBDb250cmFjdCIsY29sID0gImdyZWVuIixib3JkZXIgPSAicmVkIiwgeGxpbSA9IGMoMCw4KSwgeWxpbSA9IGMoMCwyMjUpLAogICBicmVha3MgPSA1KQpgYGAKCgpgYGB7cn0KIyBDcmVhdGUgaGlzdG9ncmFtCmhpc3QoY29udHJhY3RfeWVhcnMseGxhYiA9ICJZZWFycyBMZWZ0IGluIENvbnRyYWN0Iixjb2wgPSAiZ3JlZW4iLGJvcmRlciA9ICJyZWQiLCB4bGltID0gYygwLDgpLCB5bGltID0gYygwLDIyNSksCiAgIGJyZWFrcyA9IDUpCmBgYAoKYGBge3J9CgpgYGAKCmBgYHtyfQoKYGBgCgpgYGB7cn0KCmBgYAoKYGBge3J9CgpgYGAKCmBgYHtyfQoKYGBgCgo=