# Load packages
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.4.3
## Warning: package 'ggplot2' was built under R version 4.4.3
## Warning: package 'tibble' was built under R version 4.4.3
## Warning: package 'tidyr' was built under R version 4.4.3
## Warning: package 'readr' was built under R version 4.4.3
## Warning: package 'purrr' was built under R version 4.4.3
## Warning: package 'dplyr' was built under R version 4.4.3
## Warning: package 'stringr' was built under R version 4.4.3
## Warning: package 'forcats' was built under R version 4.4.3
## Warning: package 'lubridate' was built under R version 4.4.3
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.2     ✔ tibble    3.3.0
## ✔ lubridate 1.9.4     ✔ tidyr     1.3.1
## ✔ purrr     1.0.4     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(caret)
## Warning: package 'caret' was built under R version 4.4.3
## Loading required package: lattice
## Warning: package 'lattice' was built under R version 4.4.3
## 
## Attaching package: 'caret'
## 
## The following object is masked from 'package:purrr':
## 
##     lift
library(GGally)
## Warning: package 'GGally' was built under R version 4.4.3
## Registered S3 method overwritten by 'GGally':
##   method from   
##   +.gg   ggplot2
library(corrplot)
## Warning: package 'corrplot' was built under R version 4.4.3
## corrplot 0.95 loaded
library(DataExplorer)
## Warning: package 'DataExplorer' was built under R version 4.4.3
#Load datasets & read CSV files
pima <- read.csv("C:\\Users\\shann\\Downloads\\diabetes.csv")  #file path for pima (diabetes) database applied
library(readr)

wine <- read.csv("C:/Users/shann/Downloads/winequality-red.csv") #file path for wine dataset uses semicolon separator

readLines("C:/Users/shann/Downloads/winequality-red.csv", n = 2)
## [1] "fixed acidity,volatile acidity,citric acid,residual sugar,chlorides,free sulfur dioxide,total sulfur dioxide,density,pH,sulphates,alcohol,quality"
## [2] "7.4,0.7,0,1.9,0.076,11,34,0.9978,3.51,0.56,9.4,5"
#Data summaries
# Pima Dataset Summary
str(pima)
## 'data.frame':    768 obs. of  9 variables:
##  $ Pregnancies             : int  6 1 8 1 0 5 3 10 2 8 ...
##  $ Glucose                 : int  148 85 183 89 137 116 78 115 197 125 ...
##  $ BloodPressure           : int  72 66 64 66 40 74 50 0 70 96 ...
##  $ SkinThickness           : int  35 29 0 23 35 0 32 0 45 0 ...
##  $ Insulin                 : int  0 0 0 94 168 0 88 0 543 0 ...
##  $ BMI                     : num  33.6 26.6 23.3 28.1 43.1 25.6 31 35.3 30.5 0 ...
##  $ DiabetesPedigreeFunction: num  0.627 0.351 0.672 0.167 2.288 ...
##  $ Age                     : int  50 31 32 21 33 30 26 29 53 54 ...
##  $ Outcome                 : int  1 0 1 0 1 0 1 0 1 1 ...
summary(pima)
##   Pregnancies        Glucose      BloodPressure    SkinThickness  
##  Min.   : 0.000   Min.   :  0.0   Min.   :  0.00   Min.   : 0.00  
##  1st Qu.: 1.000   1st Qu.: 99.0   1st Qu.: 62.00   1st Qu.: 0.00  
##  Median : 3.000   Median :117.0   Median : 72.00   Median :23.00  
##  Mean   : 3.845   Mean   :120.9   Mean   : 69.11   Mean   :20.54  
##  3rd Qu.: 6.000   3rd Qu.:140.2   3rd Qu.: 80.00   3rd Qu.:32.00  
##  Max.   :17.000   Max.   :199.0   Max.   :122.00   Max.   :99.00  
##     Insulin           BMI        DiabetesPedigreeFunction      Age       
##  Min.   :  0.0   Min.   : 0.00   Min.   :0.0780           Min.   :21.00  
##  1st Qu.:  0.0   1st Qu.:27.30   1st Qu.:0.2437           1st Qu.:24.00  
##  Median : 30.5   Median :32.00   Median :0.3725           Median :29.00  
##  Mean   : 79.8   Mean   :31.99   Mean   :0.4719           Mean   :33.24  
##  3rd Qu.:127.2   3rd Qu.:36.60   3rd Qu.:0.6262           3rd Qu.:41.00  
##  Max.   :846.0   Max.   :67.10   Max.   :2.4200           Max.   :81.00  
##     Outcome     
##  Min.   :0.000  
##  1st Qu.:0.000  
##  Median :0.000  
##  Mean   :0.349  
##  3rd Qu.:1.000  
##  Max.   :1.000
dim(pima)
## [1] 768   9
# Wine Dataset Summary
str(wine)
## 'data.frame':    1599 obs. of  12 variables:
##  $ fixed.acidity       : num  7.4 7.8 7.8 11.2 7.4 7.4 7.9 7.3 7.8 7.5 ...
##  $ volatile.acidity    : num  0.7 0.88 0.76 0.28 0.7 0.66 0.6 0.65 0.58 0.5 ...
##  $ citric.acid         : num  0 0 0.04 0.56 0 0 0.06 0 0.02 0.36 ...
##  $ residual.sugar      : num  1.9 2.6 2.3 1.9 1.9 1.8 1.6 1.2 2 6.1 ...
##  $ chlorides           : num  0.076 0.098 0.092 0.075 0.076 0.075 0.069 0.065 0.073 0.071 ...
##  $ free.sulfur.dioxide : num  11 25 15 17 11 13 15 15 9 17 ...
##  $ total.sulfur.dioxide: num  34 67 54 60 34 40 59 21 18 102 ...
##  $ density             : num  0.998 0.997 0.997 0.998 0.998 ...
##  $ pH                  : num  3.51 3.2 3.26 3.16 3.51 3.51 3.3 3.39 3.36 3.35 ...
##  $ sulphates           : num  0.56 0.68 0.65 0.58 0.56 0.56 0.46 0.47 0.57 0.8 ...
##  $ alcohol             : num  9.4 9.8 9.8 9.8 9.4 9.4 9.4 10 9.5 10.5 ...
##  $ quality             : int  5 5 5 6 5 5 5 7 7 5 ...
summary(wine)
##  fixed.acidity   volatile.acidity  citric.acid    residual.sugar  
##  Min.   : 4.60   Min.   :0.1200   Min.   :0.000   Min.   : 0.900  
##  1st Qu.: 7.10   1st Qu.:0.3900   1st Qu.:0.090   1st Qu.: 1.900  
##  Median : 7.90   Median :0.5200   Median :0.260   Median : 2.200  
##  Mean   : 8.32   Mean   :0.5278   Mean   :0.271   Mean   : 2.539  
##  3rd Qu.: 9.20   3rd Qu.:0.6400   3rd Qu.:0.420   3rd Qu.: 2.600  
##  Max.   :15.90   Max.   :1.5800   Max.   :1.000   Max.   :15.500  
##    chlorides       free.sulfur.dioxide total.sulfur.dioxide    density      
##  Min.   :0.01200   Min.   : 1.00       Min.   :  6.00       Min.   :0.9901  
##  1st Qu.:0.07000   1st Qu.: 7.00       1st Qu.: 22.00       1st Qu.:0.9956  
##  Median :0.07900   Median :14.00       Median : 38.00       Median :0.9968  
##  Mean   :0.08747   Mean   :15.87       Mean   : 46.47       Mean   :0.9967  
##  3rd Qu.:0.09000   3rd Qu.:21.00       3rd Qu.: 62.00       3rd Qu.:0.9978  
##  Max.   :0.61100   Max.   :72.00       Max.   :289.00       Max.   :1.0037  
##        pH          sulphates         alcohol         quality     
##  Min.   :2.740   Min.   :0.3300   Min.   : 8.40   Min.   :3.000  
##  1st Qu.:3.210   1st Qu.:0.5500   1st Qu.: 9.50   1st Qu.:5.000  
##  Median :3.310   Median :0.6200   Median :10.20   Median :6.000  
##  Mean   :3.311   Mean   :0.6581   Mean   :10.42   Mean   :5.636  
##  3rd Qu.:3.400   3rd Qu.:0.7300   3rd Qu.:11.10   3rd Qu.:6.000  
##  Max.   :4.010   Max.   :2.0000   Max.   :14.90   Max.   :8.000
dim(wine)
## [1] 1599   12
#Preprocessing
# Check for missing values
colSums(is.na(pima))
##              Pregnancies                  Glucose            BloodPressure 
##                        0                        0                        0 
##            SkinThickness                  Insulin                      BMI 
##                        0                        0                        0 
## DiabetesPedigreeFunction                      Age                  Outcome 
##                        0                        0                        0
colSums(is.na(wine))
##        fixed.acidity     volatile.acidity          citric.acid 
##                    0                    0                    0 
##       residual.sugar            chlorides  free.sulfur.dioxide 
##                    0                    0                    0 
## total.sulfur.dioxide              density                   pH 
##                    0                    0                    0 
##            sulphates              alcohol              quality 
##                    0                    0                    0
# Outlier detection (boxplots)
boxplot(pima[,1:8], main = "Pima: Boxplots of Features", las = 2)   #boxplots for Pima

boxplot(wine[,1:11], main = "Wine: Boxplots of Features", las = 2)   #boxplots for Wine

# Normalize numeric features
pima_norm <- pima
pima_norm[,1:8] <- scale(pima[,1:8])

wine_norm <- wine
wine_norm[,1:11] <- scale(wine[,1:11])

# Partition data
#  Split Pima data
set.seed(123)
trainIndex <- createDataPartition(pima_norm$Outcome, p = 0.7, list = FALSE)
pima_train <- pima_norm[trainIndex, ]
pima_test <- pima_norm[-trainIndex, ]

# Split Wine data
wine$quality_bin <- ifelse(wine$quality >= 7, "Good", "Bad")
wine$quality_bin <- factor(wine$quality_bin)

set.seed(123)
wineIndex <- createDataPartition(wine$quality_bin, p = 0.7, list = FALSE)
wine_train <- wine_norm[wineIndex, ]
wine_test <- wine_norm[-wineIndex, ]

#Data visualization
# Correlation matrix for Pima
corrplot(cor(pima_norm[,1:8]), method = "color", tl.cex = 0.8)

# Correlation matrix for Wine
corrplot(cor(wine_norm[,1:11]), method = "color", tl.cex = 0.8)

# Pairplots
#  Pima Pairplot
ggpairs(pima_norm, columns = 1:8, aes(color = as.factor(Outcome)))

#  Wine Pairplot
ggpairs(wine_norm, columns = 1:11, aes(color = wine$quality_bin))

# Distribution plots
plot_density(pima_norm)

plot_density(wine_norm)

# Pima: Glucose vs Outcome
ggplot(pima, aes(x = as.factor(Outcome), y = Glucose)) +
  geom_boxplot(fill = "lightblue") +
  labs(title = "Glucose vs Outcome", x = "Diabetes", y = "Glucose Level")

# Wine: Alcohol vs Quality Bin
ggplot(wine, aes(x = quality_bin, y = alcohol, fill = quality_bin)) +
  geom_boxplot() +
  labs(title = "Alcohol Content by Wine Quality")