Analysis with only the five PERMA constructs

From Julie Butler and Peggy Kerns PERMA & EPOCH

Items

  1. In general, to what extent do you lead a purposeful and meaningful life? (only in 239 of the questions)
  2. How much of the time do you feel you are making progress towards accomplishing your goals? (only in 239 of the questions)
  3. How often do you become absorbed in what you are doing? (only in 239 of the questions)
  4. In general, how would you say your health is? (only in 239 of the questions)
  5. In general, how often do you feel joyful?
  6. To what extent do you receive help and support from others when you need it?
  7. In general, how often do you feel anxious
  8. How often do you achieve the important goals you have set for yourself?
  9. In general, to what extent do you feel that what you do in your life is valuable and worthwhile?
  10. In general, how often do you feel positive?
  11. In general, to what extent do you feel excited and interested in things?
  12. How lonely do you feel in your daily life?
  13. How satisfied are you with your current physical health? (only in 239 of the questions)
  14. In general, how often do you feel angry?
  15. To what extent have you been feeling loved?
  16. How often are you able to handle your responsibilities?
  17. To what extent do you generally feel you have a sense of direction in your life?
  18. Compared to others of your same age and sex, how is your health? (only in 239 of the questions)
  19. How satisfied are you with your personal relationships?
  20. In general, how often do you feel sad?
  21. How often do you lose track of time while doing something you enjoy?
  22. In general, to what extent do you feel contented?
  23. Taking all things together, how happy would you say you are?
library(lavaan)
## This is lavaan 0.5-19
## lavaan is BETA software! Please report any bugs.
require(semPlot)
## Loading required package: semPlot
library(dplyr)
## 
## Attaching package: 'dplyr'
## 
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## 
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(GPArotation)
library(psych)

Loadthedata

data <- read.csv("~/Git/stats/Perma_Study/PERMAfinal.csv")

Create Dataset with Coplete Cases

data1 <- na.omit(data)

Create the model with 9 factors as the instrument was designed

five.model= 'Acomplishment =~ PERMA_A1_1 + PERMA_A2_1 + PERMA_A3_1    
              Engagement =~ PERMA_E1_1 + PERMA_E2_1 + PERMA_E3_1   
              Positive Emotion =~ PERMA_P1_1 + PERMA_P2 + PERMA_P3_1 
              Relationship =~ PERMA_R1_1 + PERMA_R2_1 + PERMA_R3_1   
              Meaning =~ PERMA_M1_1 + PERMA_M2_1 + PERMA_M3_1'

Run the model with all data

five.fit=cfa(five.model, data=data, missing="fiml")
## Warning in lav_data_full(data = data, group = group, group.label = group.label, : lavaan WARNING: some cases are empty and will be removed:
##   14 15 16 20 25 26 27 28 29 32 33 34 35 37 39 41 42 44 51 55 56 59 60 66 70 73 74 75 76 77 78 80 81 83 84 87 88 90 91 92 93 96 98 99 101 104 106 107 108 111 112 114 116 118 119 121 124 126 127 128 130 131 132 133 134 138 142 144 147 149 150 151 153 156 159 160 169 170 171 172 174 175 178 179 184 185 186 188 190 191 193 195 196 202 204 208 213 214 215 216 219 220 221 224 226 229 231 234 237 238 240 243 244 248 252 254 255 256 258 259 261 264 265 266 268 269 270 271 272 273 274 275 276 277 278 279 280 281 283 284 285 288 289 290 293 294 301 302 303 304 305 306 307 308 309 310 311 312 314 320 321 322 323 324 325 326 327 328 329 331 332 333 334 335 336 338 340 348 349 350 351 352 356 357 358 359 360 361 363 364 366 367 368 369 371 372 374 376 377 378 379 380 382 385 386 389 390 394 395 397 399 443 444 445 446 447 448 449 450 452 453 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 485 486 488 489 490 491 492 493 494 495 496 497 498 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
## Found more than one class "Model" in cache; using the first, from namespace 'lavaan'
## Warning in lav_object_post_check(lavobject): lavaan WARNING:
## covariance matrix of latent variables is not positive definite; use
## inspect(fit,"cov.lv") to investigate.

Run the model with complete cases

five.fit1=cfa(five.model, data=data1, missing = "fiml")

Create pictures with all data

semPaths(five.fit, whatLabels = "std", layout = "tree")
## Warning in lav_object_post_check(lavobject): lavaan WARNING:
## covariance matrix of latent variables is not positive definite; use
## inspect(fit,"cov.lv") to investigate.

Create pictures with all complet cases

semPaths(five.fit1, whatLabels = "std", layout = "tree")

Summarie with all data

summary(five.fit, standardized = TRUE, rsquare=TRUE)
## lavaan (0.5-19) converged normally after  96 iterations
## 
##                                                   Used       Total
##   Number of observations                           476         753
## 
##   Number of missing patterns                         2
## 
##   Estimator                                         ML
##   Minimum Function Test Statistic              241.641
##   Degrees of freedom                                80
##   P-value (Chi-square)                           0.000
## Warning in lav_object_post_check(lavobject): lavaan WARNING:
## covariance matrix of latent variables is not positive definite; use
## inspect(fit,"cov.lv") to investigate.
## 
## Parameter Estimates:
## 
##   Information                                 Observed
##   Standard Errors                             Standard
## 
## Latent Variables:
##                      Estimate  Std.Err  Z-value  P(>|z|)   Std.lv  Std.all
##   Acomplishment =~                                                        
##     PERMA_A1_1          1.000                               1.914    0.801
##     PERMA_A2_1          0.855    0.054   15.831    0.000    1.637    0.696
##     PERMA_A3_1          0.788    0.053   14.770    0.000    1.508    0.663
##   Engagement =~                                                           
##     PERMA_E1_1          1.000                               1.528    0.683
##     PERMA_E2_1          1.165    0.080   14.506    0.000    1.779    0.795
##     PERMA_E3_1          0.839    0.082   10.286    0.000    1.281    0.517
##   PositiveEmotion =~                                                      
##     PERMA_P1_1          1.000                               1.901    0.823
##     PERMA_P2            1.086    0.050   21.871    0.000    2.065    0.853
##     PERMA_P3_1          0.799    0.052   15.337    0.000    1.519    0.673
##   Relationship =~                                                         
##     PERMA_R1_1          1.000                               1.646    0.614
##     PERMA_R2_1          1.167    0.097   12.068    0.000    1.922    0.720
##     PERMA_R3_1          1.107    0.096   11.504    0.000    1.822    0.685
##   Meaning =~                                                              
##     PERMA_M1_1          1.000                               1.986    0.846
##     PERMA_M2_1          1.070    0.057   18.848    0.000    2.125    0.908
##     PERMA_M3_1          0.939    0.058   16.065    0.000    1.865    0.830
##       fmi
##          
##        NA
##     0.087
##     0.101
##          
##        NA
##     0.047
##    -0.020
##          
##        NA
##     0.029
##     0.081
##          
##        NA
##     0.015
##     0.041
##          
##        NA
##     0.505
##     0.506
## 
## Covariances:
##                      Estimate  Std.Err  Z-value  P(>|z|)   Std.lv  Std.all
##   Acomplishment ~~                                                        
##     Engagement          2.590    0.253   10.251    0.000    0.886    0.886
##     PositiveEmotin      3.230    0.279   11.599    0.000    0.888    0.888
##     Relationship        2.680    0.288    9.316    0.000    0.851    0.851
##     Meaning             3.805    0.336   11.312    0.000    1.001    1.001
##   Engagement ~~                                                           
##     PositiveEmotin      2.574    0.245   10.523    0.000    0.886    0.886
##     Relationship        2.178    0.250    8.718    0.000    0.866    0.866
##     Meaning             2.622    0.267    9.812    0.000    0.864    0.864
##   PositiveEmotion ~~                                                      
##     Relationship        2.780    0.286    9.736    0.000    0.888    0.888
##     Meaning             3.557    0.317   11.228    0.000    0.942    0.942
##   Relationship ~~                                                         
##     Meaning             2.671    0.303    8.824    0.000    0.817    0.817
##       fmi
##          
##     0.011
##    -0.003
##     0.029
##     0.187
##          
##    -0.009
##     0.036
##     0.132
##          
##     0.010
##     0.174
##          
##     0.153
## 
## Intercepts:
##                    Estimate  Std.Err  Z-value  P(>|z|)   Std.lv  Std.all
##     PERMA_A1_1        6.826    0.110   62.314    0.000    6.826    2.856
##     PERMA_A2_1        7.088    0.108   65.787    0.000    7.088    3.015
##     PERMA_A3_1        7.828    0.104   75.034    0.000    7.828    3.439
##     PERMA_E1_1        7.721    0.102   75.333    0.000    7.721    3.453
##     PERMA_E2_1        7.683    0.103   74.850    0.000    7.683    3.431
##     PERMA_E3_1        8.359    0.114   73.615    0.000    8.359    3.374
##     PERMA_P1_1        7.298    0.106   68.963    0.000    7.298    3.161
##     PERMA_P2          7.330    0.111   66.087    0.000    7.330    3.029
##     PERMA_P3_1        6.834    0.103   66.074    0.000    6.834    3.028
##     PERMA_R1_1        7.265    0.123   59.125    0.000    7.265    2.710
##     PERMA_R2_1        7.513    0.122   61.446    0.000    7.513    2.816
##     PERMA_R3_1        7.263    0.122   59.549    0.000    7.263    2.729
##     PERMA_M1_1        7.229    0.126   57.271    0.000    7.229    3.081
##     PERMA_M2_1        7.285    0.121   59.973    0.000    7.285    3.112
##     PERMA_M3_1        7.009    0.122   57.489    0.000    7.009    3.119
##     Acomplishment     0.000                               0.000    0.000
##     Engagement        0.000                               0.000    0.000
##     PositiveEmotin    0.000                               0.000    0.000
##     Relationship      0.000                               0.000    0.000
##     Meaning           0.000                               0.000    0.000
##       fmi
##     0.000
##     0.000
##     0.000
##     0.000
##     0.000
##     0.000
##     0.000
##     0.000
##     0.000
##     0.000
##     0.000
##     0.000
##     0.274
##     0.220
##     0.286
##        NA
##        NA
##        NA
##        NA
##        NA
## 
## Variances:
##                    Estimate  Std.Err  Z-value  P(>|z|)   Std.lv  Std.all
##     PERMA_A1_1        2.048    0.183   11.175    0.000    2.048    0.359
##     PERMA_A2_1        2.846    0.214   13.279    0.000    2.846    0.515
##     PERMA_A3_1        2.906    0.209   13.890    0.000    2.906    0.561
##     PERMA_E1_1        2.665    0.207   12.889    0.000    2.665    0.533
##     PERMA_E2_1        1.849    0.174   10.627    0.000    1.849    0.369
##     PERMA_E3_1        4.496    0.314   14.318    0.000    4.496    0.732
##     PERMA_P1_1        1.717    0.152   11.309    0.000    1.717    0.322
##     PERMA_P2          1.593    0.156   10.209    0.000    1.593    0.272
##     PERMA_P3_1        2.784    0.201   13.886    0.000    2.784    0.547
##     PERMA_R1_1        4.475    0.328   13.658    0.000    4.475    0.623
##     PERMA_R2_1        3.423    0.298   11.505    0.000    3.423    0.481
##     PERMA_R3_1        3.759    0.297   12.675    0.000    3.759    0.531
##     PERMA_M1_1        1.561    0.171    9.142    0.000    1.561    0.284
##     PERMA_M2_1        0.961    0.127    7.591    0.000    0.961    0.175
##     PERMA_M3_1        1.572    0.168    9.355    0.000    1.572    0.311
##     Acomplishment     3.663    0.368    9.956    0.000    1.000    1.000
##     Engagement        2.334    0.297    7.865    0.000    1.000    1.000
##     PositiveEmotin    3.614    0.343   10.534    0.000    1.000    1.000
##     Relationship      2.711    0.395    6.862    0.000    1.000    1.000
##     Meaning           3.945    0.439    8.988    0.000    1.000    1.000
##       fmi
##     0.159
##     0.112
##     0.067
##     0.034
##    -0.071
##     0.028
##     0.160
##     0.188
##     0.058
##    -0.005
##     0.074
##     0.000
##     0.514
##     0.506
##     0.514
##     0.039
##     0.017
##     0.031
##    -0.004
##     0.372
## 
## R-Square:
##                    Estimate
##     PERMA_A1_1        0.641
##     PERMA_A2_1        0.485
##     PERMA_A3_1        0.439
##     PERMA_E1_1        0.467
##     PERMA_E2_1        0.631
##     PERMA_E3_1        0.268
##     PERMA_P1_1        0.678
##     PERMA_P2          0.728
##     PERMA_P3_1        0.453
##     PERMA_R1_1        0.377
##     PERMA_R2_1        0.519
##     PERMA_R3_1        0.469
##     PERMA_M1_1        0.716
##     PERMA_M2_1        0.825
##     PERMA_M3_1        0.689

Summarie with complete cases

summary(five.fit1, standardized = TRUE, rsquare=TRUE)
## lavaan (0.5-19) converged normally after  81 iterations
## 
##   Number of observations                           239
## 
##   Number of missing patterns                         1
## 
##   Estimator                                         ML
##   Minimum Function Test Statistic              281.723
##   Degrees of freedom                                80
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Information                                 Observed
##   Standard Errors                             Standard
## 
## Latent Variables:
##                      Estimate  Std.Err  Z-value  P(>|z|)   Std.lv  Std.all
##   Acomplishment =~                                                        
##     PERMA_A1_1          1.000                               1.874    0.847
##     PERMA_A2_1          0.947    0.060   15.691    0.000    1.775    0.821
##     PERMA_A3_1          0.802    0.065   12.324    0.000    1.503    0.715
##   Engagement =~                                                           
##     PERMA_E1_1          1.000                               1.561    0.764
##     PERMA_E2_1          1.224    0.084   14.564    0.000    1.911    0.899
##     PERMA_E3_1          0.996    0.095   10.489    0.000    1.554    0.665
##   PositiveEmotion =~                                                      
##     PERMA_P1_1          1.000                               2.010    0.905
##     PERMA_P2            1.038    0.042   24.520    0.000    2.087    0.938
##     PERMA_P3_1          0.663    0.055   12.011    0.000    1.332    0.662
##   Relationship =~                                                         
##     PERMA_R1_1          1.000                               1.891    0.761
##     PERMA_R2_1          1.047    0.083   12.625    0.000    1.979    0.808
##     PERMA_R3_1          0.966    0.082   11.721    0.000    1.827    0.776
##   Meaning =~                                                              
##     PERMA_M1_1          1.000                               1.980    0.847
##     PERMA_M2_1          1.070    0.056   18.945    0.000    2.118    0.908
##     PERMA_M3_1          0.935    0.058   16.029    0.000    1.851    0.826
##       fmi
##          
##        NA
##    -0.005
##     0.059
##          
##        NA
##     0.016
##    -0.007
##          
##        NA
##    -0.028
##     0.035
##          
##        NA
##     0.008
##     0.066
##          
##        NA
##     0.005
##     0.006
## 
## Covariances:
##                      Estimate  Std.Err  Z-value  P(>|z|)   Std.lv  Std.all
##   Acomplishment ~~                                                        
##     Engagement          2.617    0.322    8.124    0.000    0.895    0.895
##     PositiveEmotin      3.253    0.369    8.827    0.000    0.863    0.863
##     Relationship        2.996    0.383    7.830    0.000    0.845    0.845
##     Meaning             3.600    0.400    9.007    0.000    0.970    0.970
##   Engagement ~~                                                           
##     PositiveEmotin      2.825    0.332    8.516    0.000    0.901    0.901
##     Relationship        2.546    0.338    7.526    0.000    0.863    0.863
##     Meaning             2.735    0.335    8.175    0.000    0.885    0.885
##   PositiveEmotion ~~                                                      
##     Relationship        3.436    0.409    8.394    0.000    0.904    0.904
##     Meaning             3.642    0.401    9.085    0.000    0.915    0.915
##   Relationship ~~                                                         
##     Meaning             3.133    0.400    7.840    0.000    0.837    0.837
##       fmi
##          
##     0.010
##    -0.012
##     0.014
##     0.003
##          
##    -0.014
##     0.021
##    -0.004
##          
##     0.007
##    -0.002
##          
##     0.014
## 
## Intercepts:
##                    Estimate  Std.Err  Z-value  P(>|z|)   Std.lv  Std.all
##     PERMA_A1_1        7.163    0.143   50.037    0.000    7.163    3.237
##     PERMA_A2_1        7.126    0.140   50.927    0.000    7.126    3.294
##     PERMA_A3_1        7.845    0.136   57.664    0.000    7.845    3.730
##     PERMA_E1_1        7.816    0.132   59.133    0.000    7.816    3.825
##     PERMA_E2_1        7.845    0.137   57.074    0.000    7.845    3.692
##     PERMA_E3_1        8.268    0.151   54.702    0.000    8.268    3.538
##     PERMA_P1_1        7.695    0.144   53.565    0.000    7.695    3.465
##     PERMA_P2          7.552    0.144   52.477    0.000    7.552    3.394
##     PERMA_P3_1        7.184    0.130   55.189    0.000    7.184    3.570
##     PERMA_R1_1        7.406    0.161   46.046    0.000    7.406    2.978
##     PERMA_R2_1        7.527    0.158   47.514    0.000    7.527    3.073
##     PERMA_R3_1        7.531    0.152   49.478    0.000    7.531    3.200
##     PERMA_M1_1        7.456    0.151   49.286    0.000    7.456    3.188
##     PERMA_M2_1        7.527    0.151   49.903    0.000    7.527    3.228
##     PERMA_M3_1        7.222    0.145   49.841    0.000    7.222    3.224
##     Acomplishment     0.000                               0.000    0.000
##     Engagement        0.000                               0.000    0.000
##     PositiveEmotin    0.000                               0.000    0.000
##     Relationship      0.000                               0.000    0.000
##     Meaning           0.000                               0.000    0.000
##       fmi
##     0.000
##     0.000
##     0.000
##     0.000
##     0.000
##     0.000
##     0.000
##     0.000
##     0.000
##     0.000
##     0.000
##     0.000
##     0.000
##     0.000
##     0.000
##        NA
##        NA
##        NA
##        NA
##        NA
## 
## Variances:
##                    Estimate  Std.Err  Z-value  P(>|z|)   Std.lv  Std.all
##     PERMA_A1_1        1.385    0.172    8.033    0.000    1.385    0.283
##     PERMA_A2_1        1.527    0.179    8.535    0.000    1.527    0.326
##     PERMA_A3_1        2.164    0.218    9.912    0.000    2.164    0.489
##     PERMA_E1_1        1.739    0.187    9.317    0.000    1.739    0.417
##     PERMA_E2_1        0.864    0.139    6.229    0.000    0.864    0.191
##     PERMA_E3_1        3.043    0.302   10.079    0.000    3.043    0.557
##     PERMA_P1_1        0.891    0.111    7.995    0.000    0.891    0.181
##     PERMA_P2          0.595    0.098    6.069    0.000    0.595    0.120
##     PERMA_P3_1        2.275    0.221   10.284    0.000    2.275    0.562
##     PERMA_R1_1        2.607    0.290    9.004    0.000    2.607    0.422
##     PERMA_R2_1        2.081    0.270    7.705    0.000    2.081    0.347
##     PERMA_R3_1        2.201    0.248    8.866    0.000    2.201    0.397
##     PERMA_M1_1        1.549    0.169    9.143    0.000    1.549    0.283
##     PERMA_M2_1        0.952    0.126    7.578    0.000    0.952    0.175
##     PERMA_M3_1        1.593    0.170    9.382    0.000    1.593    0.317
##     Acomplishment     3.513    0.445    7.887    0.000    1.000    1.000
##     Engagement        2.436    0.361    6.754    0.000    1.000    1.000
##     PositiveEmotin    4.041    0.450    8.975    0.000    1.000    1.000
##     Relationship      3.576    0.538    6.641    0.000    1.000    1.000
##     Meaning           3.921    0.489    8.021    0.000    1.000    1.000
##       fmi
##     0.089
##     0.095
##     0.022
##     0.040
##    -0.047
##     0.013
##     0.019
##     0.056
##     0.035
##     0.023
##     0.149
##     0.007
##     0.031
##     0.015
##     0.035
##     0.013
##     0.011
##     0.001
##     0.007
##     0.004
## 
## R-Square:
##                    Estimate
##     PERMA_A1_1        0.717
##     PERMA_A2_1        0.674
##     PERMA_A3_1        0.511
##     PERMA_E1_1        0.583
##     PERMA_E2_1        0.809
##     PERMA_E3_1        0.443
##     PERMA_P1_1        0.819
##     PERMA_P2          0.880
##     PERMA_P3_1        0.438
##     PERMA_R1_1        0.578
##     PERMA_R2_1        0.653
##     PERMA_R3_1        0.603
##     PERMA_M1_1        0.717
##     PERMA_M2_1        0.825
##     PERMA_M3_1        0.683

Residual correlations with all data

correl = residuals(five.fit, type="cor")
correl
## $type
## [1] "cor.bollen"
## 
## $cor
##            PERMA_A1 PERMA_A2 PERMA_A3 PERMA_E1 PERMA_E2 PERMA_E3 PERMA_P1
## PERMA_A1_1  0.000                                                        
## PERMA_A2_1  0.017    0.000                                               
## PERMA_A3_1 -0.023    0.005    0.000                                      
## PERMA_E1_1 -0.011    0.026    0.058    0.000                             
## PERMA_E2_1  0.015   -0.015    0.041   -0.032    0.000                    
## PERMA_E3_1 -0.108   -0.069    0.002    0.116   -0.012    0.000           
## PERMA_P1_1 -0.055   -0.040    0.029   -0.039    0.016   -0.013    0.000  
## PERMA_P2   -0.022   -0.004    0.034   -0.035    0.024   -0.007    0.035  
## PERMA_P3_1  0.080    0.074    0.043    0.041    0.002   -0.014   -0.026  
## PERMA_R1_1  0.026    0.017    0.006    0.035    0.025    0.006   -0.053  
## PERMA_R2_1 -0.019   -0.022   -0.032   -0.004   -0.026   -0.004    0.016  
## PERMA_R3_1  0.001    0.013    0.034    0.018   -0.020    0.020    0.046  
## PERMA_M1_1  0.018   -0.049   -0.131   -0.022    0.013    0.007   -0.011  
## PERMA_M2_1  0.006   -0.021   -0.048   -0.070    0.040   -0.032   -0.009  
## PERMA_M3_1  0.036    0.056    0.063   -0.017    0.021   -0.015   -0.126  
##            PERMA_P2 PERMA_P3 PERMA_R1 PERMA_R2 PERMA_R3 PERMA_M1 PERMA_M2
## PERMA_A1_1                                                               
## PERMA_A2_1                                                               
## PERMA_A3_1                                                               
## PERMA_E1_1                                                               
## PERMA_E2_1                                                               
## PERMA_E3_1                                                               
## PERMA_P1_1                                                               
## PERMA_P2    0.000                                                        
## PERMA_P3_1 -0.051    0.000                                               
## PERMA_R1_1  0.028    0.047    0.000                                      
## PERMA_R2_1 -0.041    0.052    0.017    0.000                             
## PERMA_R3_1 -0.057    0.068   -0.062    0.028    0.000                    
## PERMA_M1_1  0.055   -0.004    0.024    0.056    0.017    0.000           
## PERMA_M2_1  0.054    0.003   -0.055   -0.040   -0.037    0.005    0.000  
## PERMA_M3_1 -0.071    0.041   -0.008    0.027   -0.042   -0.002   -0.023  
##            PERMA_M3
## PERMA_A1_1         
## PERMA_A2_1         
## PERMA_A3_1         
## PERMA_E1_1         
## PERMA_E2_1         
## PERMA_E3_1         
## PERMA_P1_1         
## PERMA_P2           
## PERMA_P3_1         
## PERMA_R1_1         
## PERMA_R2_1         
## PERMA_R3_1         
## PERMA_M1_1         
## PERMA_M2_1         
## PERMA_M3_1  0.000  
## 
## $mean
## PERMA_A1_1 PERMA_A2_1 PERMA_A3_1 PERMA_E1_1 PERMA_E2_1 PERMA_E3_1 
##      0.000      0.000      0.000      0.000      0.000      0.000 
## PERMA_P1_1   PERMA_P2 PERMA_P3_1 PERMA_R1_1 PERMA_R2_1 PERMA_R3_1 
##      0.000      0.000      0.000      0.000      0.000      0.000 
## PERMA_M1_1 PERMA_M2_1 PERMA_M3_1 
##     -0.048     -0.076      0.002

Residual correlations with complete cases

correl1 = residuals(five.fit1, type="cor")
correl1
## $type
## [1] "cor.bollen"
## 
## $cor
##            PERMA_A1 PERMA_A2 PERMA_A3 PERMA_E1 PERMA_E2 PERMA_E3 PERMA_P1
## PERMA_A1_1  0.000                                                        
## PERMA_A2_1  0.032    0.000                                               
## PERMA_A3_1 -0.050   -0.007    0.000                                      
## PERMA_E1_1  0.013    0.072    0.086    0.000                             
## PERMA_E2_1 -0.010   -0.045    0.067   -0.003    0.000                    
## PERMA_E3_1 -0.093   -0.071    0.075    0.068   -0.023    0.000           
## PERMA_P1_1 -0.066   -0.019    0.082   -0.057    0.000    0.011    0.000  
## PERMA_P2   -0.059    0.003    0.070   -0.064    0.023    0.008    0.014  
## PERMA_P3_1  0.119    0.161    0.148    0.074    0.047    0.026   -0.029  
## PERMA_R1_1  0.003    0.079   -0.003    0.029    0.044    0.039   -0.016  
## PERMA_R2_1 -0.061   -0.026   -0.014   -0.022   -0.067    0.072   -0.006  
## PERMA_R3_1 -0.001    0.015    0.066   -0.034    0.022   -0.003    0.043  
## PERMA_M1_1  0.006   -0.030   -0.075   -0.017    0.002    0.016    0.001  
## PERMA_M2_1 -0.001   -0.022   -0.002   -0.039    0.017   -0.013    0.000  
## PERMA_M3_1  0.036    0.038    0.076    0.019   -0.005    0.009   -0.085  
##            PERMA_P2 PERMA_P3 PERMA_R1 PERMA_R2 PERMA_R3 PERMA_M1 PERMA_M2
## PERMA_A1_1                                                               
## PERMA_A2_1                                                               
## PERMA_A3_1                                                               
## PERMA_E1_1                                                               
## PERMA_E2_1                                                               
## PERMA_E3_1                                                               
## PERMA_P1_1                                                               
## PERMA_P2    0.000                                                        
## PERMA_P3_1 -0.042    0.000                                               
## PERMA_R1_1  0.002    0.071    0.000                                      
## PERMA_R2_1 -0.032   -0.001    0.044    0.000                             
## PERMA_R3_1 -0.004    0.113   -0.093    0.032    0.000                    
## PERMA_M1_1  0.025    0.036    0.038    0.042    0.043    0.000           
## PERMA_M2_1  0.023    0.061   -0.025   -0.048    0.010    0.002    0.000  
## PERMA_M3_1 -0.061    0.105    0.010   -0.006   -0.010    0.017   -0.012  
##            PERMA_M3
## PERMA_A1_1         
## PERMA_A2_1         
## PERMA_A3_1         
## PERMA_E1_1         
## PERMA_E2_1         
## PERMA_E3_1         
## PERMA_P1_1         
## PERMA_P2           
## PERMA_P3_1         
## PERMA_R1_1         
## PERMA_R2_1         
## PERMA_R3_1         
## PERMA_M1_1         
## PERMA_M2_1         
## PERMA_M3_1  0.000  
## 
## $mean
## PERMA_A1_1 PERMA_A2_1 PERMA_A3_1 PERMA_E1_1 PERMA_E2_1 PERMA_E3_1 
##          0          0          0          0          0          0 
## PERMA_P1_1   PERMA_P2 PERMA_P3_1 PERMA_R1_1 PERMA_R2_1 PERMA_R3_1 
##          0          0          0          0          0          0 
## PERMA_M1_1 PERMA_M2_1 PERMA_M3_1 
##          0          0          0

Zscore correlation for all data anything over 1.96 is going to be statistically significant at the .05 level

zcorrels = residuals(five.fit, type = "standardized")

Zscore correlation for complete cases anything over 1.96 is going to be statistically significant at the .05 level

zcorrels1 = residuals(five.fit1, type = "standardized")

Modification indicies for all data

modindices(five.fit, sort. = TRUE, minimum.value = 3.84)
## Warning in lav_object_post_check(lavobject): lavaan WARNING:
## covariance matrix of latent variables is not positive definite; use
## inspect(fit,"cov.lv") to investigate.
##                 lhs op        rhs     mi    epc sepc.lv sepc.all sepc.nox
## 195      PERMA_P1_1 ~~   PERMA_P2 26.899  0.800   0.800    0.143    0.143
## 71    Acomplishment =~ PERMA_P3_1 24.764  0.836   1.600    0.709    0.709
## 166      PERMA_E1_1 ~~ PERMA_E3_1 21.639  0.848   0.848    0.153    0.153
## 110    Relationship =~ PERMA_P3_1 20.335  0.890   1.466    0.650    0.650
## 69    Acomplishment =~ PERMA_P1_1 20.032 -0.829  -1.587   -0.687   -0.687
## 118         Meaning =~ PERMA_E2_1 17.426  0.909   1.806    0.806    0.806
## 203        PERMA_P2 ~~ PERMA_P3_1 14.875 -0.500  -0.500   -0.092   -0.092
## 162      PERMA_A3_1 ~~ PERMA_M1_1 14.174 -0.594  -0.594   -0.111   -0.111
## 120         Meaning =~ PERMA_P1_1 14.126 -0.678  -1.347   -0.583   -0.583
## 130      PERMA_A1_1 ~~ PERMA_E3_1 13.739 -0.592  -0.592   -0.100   -0.100
## 109    Relationship =~   PERMA_P2 13.453 -0.743  -1.223   -0.505   -0.505
## 206        PERMA_P2 ~~ PERMA_R3_1 13.356 -0.537  -0.537   -0.083   -0.083
## 94  PositiveEmotion =~ PERMA_E2_1 13.333  1.003   1.906    0.851    0.851
## 119         Meaning =~ PERMA_E3_1 12.607 -0.641  -1.274   -0.514   -0.514
## 122         Meaning =~ PERMA_P3_1 12.187  0.648   1.288    0.571    0.571
## 101 PositiveEmotion =~ PERMA_M3_1 11.806 -0.724  -1.376   -0.612   -0.612
## 68    Acomplishment =~ PERMA_E3_1 11.151 -0.678  -1.297   -0.524   -0.524
## 197      PERMA_P1_1 ~~ PERMA_R1_1 11.137 -0.510  -0.510   -0.082   -0.082
## 80       Engagement =~ PERMA_A3_1 10.890  0.702   1.072    0.471    0.471
## 133      PERMA_A1_1 ~~ PERMA_P3_1  9.655  0.394   0.394    0.073    0.073
## 165      PERMA_E1_1 ~~ PERMA_E2_1  9.654 -0.633  -0.633   -0.126   -0.126
## 217      PERMA_R1_1 ~~ PERMA_R3_1  8.985 -0.719  -0.719   -0.101   -0.101
## 202      PERMA_P1_1 ~~ PERMA_M3_1  8.621 -0.377  -0.377   -0.073   -0.073
## 67    Acomplishment =~ PERMA_E2_1  8.606  0.670   1.283    0.573    0.573
## 76    Acomplishment =~ PERMA_M2_1  8.494 -1.165  -2.230   -0.953   -0.953
## 83       Engagement =~ PERMA_P3_1  8.282  0.616   0.942    0.417    0.417
## 199      PERMA_P1_1 ~~ PERMA_R3_1  8.068  0.414   0.414    0.067    0.067
## 92  PositiveEmotion =~ PERMA_A3_1  7.678  0.498   0.946    0.416    0.416
## 131      PERMA_A1_1 ~~ PERMA_P1_1  6.748 -0.287  -0.287   -0.052   -0.052
## 77    Acomplishment =~ PERMA_M3_1  6.706  1.049   2.009    0.894    0.894
## 93  PositiveEmotion =~ PERMA_E1_1  6.399 -0.587  -1.116   -0.499   -0.499
## 208        PERMA_P2 ~~ PERMA_M2_1  5.689  0.274   0.274    0.048    0.048
## 99  PositiveEmotion =~ PERMA_M1_1  5.422  0.501   0.952    0.406    0.406
## 204        PERMA_P2 ~~ PERMA_R1_1  5.303  0.354   0.354    0.055    0.055
## 85       Engagement =~ PERMA_R2_1  5.063 -0.779  -1.190   -0.446   -0.446
## 146      PERMA_A2_1 ~~ PERMA_P3_1  4.855  0.312   0.312    0.059    0.059
## 205        PERMA_P2 ~~ PERMA_R2_1  4.679 -0.313  -0.313   -0.048   -0.048
## 209        PERMA_P2 ~~ PERMA_M3_1  4.637 -0.276  -0.276   -0.051   -0.051
## 78       Engagement =~ PERMA_A1_1  4.459 -0.484  -0.740   -0.310   -0.310
## 222      PERMA_R2_1 ~~ PERMA_M1_1  4.332  0.374   0.374    0.060    0.060
## 111    Relationship =~ PERMA_M1_1  4.321  0.327   0.538    0.229    0.229
## 84       Engagement =~ PERMA_R1_1  4.266  0.642   0.981    0.366    0.366
## 215      PERMA_P3_1 ~~ PERMA_M3_1  4.022  0.303   0.303    0.060    0.060
## 164      PERMA_A3_1 ~~ PERMA_M3_1  3.865  0.307   0.307    0.060    0.060

Modification indicies for complet cases

modindices(five.fit1, sort. = TRUE, minimum.value = 3.84)
##                 lhs op        rhs     mi    epc sepc.lv sepc.all sepc.nox
## 71    Acomplishment =~ PERMA_P3_1 38.164  0.891   1.670    0.830    0.830
## 195      PERMA_P1_1 ~~   PERMA_P2 26.776  0.848   0.848    0.172    0.172
## 122         Meaning =~ PERMA_P3_1 25.651  0.849   1.682    0.836    0.836
## 77    Acomplishment =~ PERMA_M3_1 23.908  1.781   3.338    1.490    1.490
## 80       Engagement =~ PERMA_A3_1 23.300  1.074   1.677    0.797    0.797
## 217      PERMA_R1_1 ~~ PERMA_R3_1 22.743 -1.002  -1.002   -0.171   -0.171
## 92  PositiveEmotion =~ PERMA_A3_1 19.581  0.630   1.267    0.602    0.602
## 93  PositiveEmotion =~ PERMA_E1_1 18.637 -0.844  -1.697   -0.830   -0.830
## 101 PositiveEmotion =~ PERMA_M3_1 17.755 -0.662  -1.330   -0.594   -0.594
## 90  PositiveEmotion =~ PERMA_A1_1 16.473 -0.592  -1.189   -0.537   -0.537
## 83       Engagement =~ PERMA_P3_1 16.016  0.873   1.363    0.677    0.677
## 162      PERMA_A3_1 ~~ PERMA_M1_1 15.569 -0.536  -0.536   -0.109   -0.109
## 110    Relationship =~ PERMA_P3_1 13.667  0.719   1.360    0.676    0.676
## 85       Engagement =~ PERMA_R2_1 13.227 -0.988  -1.542   -0.630   -0.630
## 181      PERMA_E2_1 ~~ PERMA_R2_1 12.431 -0.451  -0.451   -0.087   -0.087
## 203        PERMA_P2 ~~ PERMA_P3_1 12.240 -0.370  -0.370   -0.083   -0.083
## 94  PositiveEmotion =~ PERMA_E2_1 11.497  0.809   1.626    0.765    0.765
## 141      PERMA_A2_1 ~~ PERMA_E1_1 10.577  0.402   0.402    0.091    0.091
## 142      PERMA_A2_1 ~~ PERMA_E2_1 10.371 -0.346  -0.346   -0.075   -0.075
## 102    Relationship =~ PERMA_A1_1  9.412 -0.435  -0.823   -0.372   -0.372
## 190      PERMA_E3_1 ~~ PERMA_R2_1  9.260  0.576   0.576    0.101    0.101
## 76    Acomplishment =~ PERMA_M2_1  8.693 -1.051  -1.971   -0.845   -0.845
## 69    Acomplishment =~ PERMA_P1_1  8.585 -0.412  -0.773   -0.348   -0.348
## 120         Meaning =~ PERMA_P1_1  8.301 -0.435  -0.861   -0.388   -0.388
## 202      PERMA_P1_1 ~~ PERMA_M3_1  8.275 -0.275  -0.275   -0.055   -0.055
## 78       Engagement =~ PERMA_A1_1  8.239 -0.644  -1.005   -0.454   -0.454
## 215      PERMA_P3_1 ~~ PERMA_M3_1  8.134  0.382   0.382    0.085    0.085
## 130      PERMA_A1_1 ~~ PERMA_E3_1  7.726 -0.426  -0.426   -0.082   -0.082
## 126      PERMA_A1_1 ~~ PERMA_A2_1  7.670  0.441   0.441    0.092    0.092
## 146      PERMA_A2_1 ~~ PERMA_P3_1  7.594  0.367   0.367    0.084    0.084
## 97  PositiveEmotion =~ PERMA_R2_1  7.427 -0.759  -1.526   -0.623   -0.623
## 84       Engagement =~ PERMA_R1_1  7.306  0.722   1.127    0.453    0.453
## 127      PERMA_A1_1 ~~ PERMA_A3_1  7.158 -0.387  -0.387   -0.083   -0.083
## 132      PERMA_A1_1 ~~   PERMA_P2  7.037 -0.229  -0.229   -0.047   -0.047
## 147      PERMA_A2_1 ~~ PERMA_R1_1  7.023  0.408   0.408    0.076    0.076
## 209        PERMA_P2 ~~ PERMA_M3_1  6.736 -0.228  -0.228   -0.046   -0.046
## 216      PERMA_R1_1 ~~ PERMA_R2_1  6.693  0.573   0.573    0.094    0.094
## 208        PERMA_P2 ~~ PERMA_M2_1  6.585  0.200   0.200    0.039    0.039
## 116         Meaning =~ PERMA_A3_1  6.567  1.037   2.054    0.976    0.976
## 73    Acomplishment =~ PERMA_R2_1  6.429 -0.450  -0.843   -0.344   -0.344
## 111    Relationship =~ PERMA_M1_1  6.424  0.336   0.635    0.272    0.272
## 109    Relationship =~   PERMA_P2  6.317 -0.431  -0.815   -0.366   -0.366
## 168      PERMA_E1_1 ~~   PERMA_P2  6.243 -0.228  -0.228   -0.050   -0.050
## 166      PERMA_E1_1 ~~ PERMA_E3_1  6.222  0.423   0.423    0.089    0.089
## 104    Relationship =~ PERMA_A3_1  6.022  0.350   0.662    0.315    0.315
## 178      PERMA_E2_1 ~~   PERMA_P2  5.878  0.197   0.197    0.042    0.042
## 124         Meaning =~ PERMA_R2_1  5.842 -0.425  -0.842   -0.344   -0.344
## 222      PERMA_R2_1 ~~ PERMA_M1_1  5.718  0.339   0.339    0.059    0.059
## 212      PERMA_P3_1 ~~ PERMA_R3_1  5.591  0.382   0.382    0.081    0.081
## 174      PERMA_E1_1 ~~ PERMA_M2_1  5.320 -0.241  -0.241   -0.051   -0.051
## 98  PositiveEmotion =~ PERMA_R3_1  5.107  0.579   1.165    0.495    0.495
## 133      PERMA_A1_1 ~~ PERMA_P3_1  5.025  0.290   0.290    0.065    0.065
## 164      PERMA_A3_1 ~~ PERMA_M3_1  4.732  0.295   0.295    0.063    0.063
## 156      PERMA_A3_1 ~~ PERMA_P1_1  4.645  0.231   0.231    0.050    0.050
## 99  PositiveEmotion =~ PERMA_M1_1  4.582  0.344   0.691    0.296    0.296
## 221      PERMA_R2_1 ~~ PERMA_R3_1  4.142  0.432   0.432    0.075    0.075
## 143      PERMA_A2_1 ~~ PERMA_E3_1  4.065 -0.317  -0.317   -0.063   -0.063
## 219      PERMA_R1_1 ~~ PERMA_M2_1  4.058 -0.263  -0.263   -0.045   -0.045
## 169      PERMA_E1_1 ~~ PERMA_P3_1  3.955  0.278   0.278    0.068    0.068

Fit Measures for all data

fitmeasures(five.fit)
##                npar                fmin               chisq 
##              55.000               0.254             241.641 
##                  df              pvalue      baseline.chisq 
##              80.000               0.000            3624.205 
##         baseline.df     baseline.pvalue                 cfi 
##             105.000               0.000               0.954 
##                 tli                nnfi                 rfi 
##               0.940               0.940               0.912 
##                 nfi                pnfi                 ifi 
##               0.933               0.711               0.954 
##                 rni                logl   unrestricted.logl 
##               0.954          -13049.462          -12928.642 
##                 aic                 bic              ntotal 
##           26208.925           26438.023             476.000 
##                bic2               rmsea      rmsea.ci.lower 
##           26263.461               0.065               0.056 
##      rmsea.ci.upper        rmsea.pvalue                 rmr 
##               0.075               0.004               0.211 
##          rmr_nomean                srmr        srmr_bentler 
##               0.224               0.037               0.037 
## srmr_bentler_nomean         srmr_bollen  srmr_bollen_nomean 
##               0.039               0.038               0.039 
##          srmr_mplus   srmr_mplus_nomean               cn_05 
##               0.038               0.040             201.689 
##               cn_01                 gfi                agfi 
##             222.273               0.980               0.967 
##                pgfi                 mfi                ecvi 
##               0.581               0.844                  NA

Fit Measures for complate cases

fitmeasures(five.fit1)
##                npar                fmin               chisq 
##              55.000               0.589             281.723 
##                  df              pvalue      baseline.chisq 
##              80.000               0.000            3114.805 
##         baseline.df     baseline.pvalue                 cfi 
##             105.000               0.000               0.933 
##                 tli                nnfi                 rfi 
##               0.912               0.912               0.881 
##                 nfi                pnfi                 ifi 
##               0.910               0.693               0.934 
##                 rni                logl   unrestricted.logl 
##               0.933           -6559.524           -6418.662 
##                 aic                 bic              ntotal 
##           13229.048           13420.254             239.000 
##                bic2               rmsea      rmsea.ci.lower 
##           13245.919               0.103               0.090 
##      rmsea.ci.upper        rmsea.pvalue                 rmr 
##               0.116               0.000               0.214 
##          rmr_nomean                srmr        srmr_bentler 
##               0.227               0.045               0.045 
## srmr_bentler_nomean         srmr_bollen  srmr_bollen_nomean 
##               0.047               0.045               0.047 
##          srmr_mplus   srmr_mplus_nomean               cn_05 
##               0.045               0.047              87.430 
##               cn_01                 gfi                agfi 
##              96.294               0.965               0.941 
##                pgfi                 mfi                ecvi 
##               0.572               0.656                  NA

Create dataset for Target rotation for all data

PermaTR<-select(data, PERMA_P1_1,  PERMA_P2,  PERMA_P3_1, PERMA_E1_1, PERMA_E2_1, PERMA_E3_1, PERMA_R1_1,  PERMA_R2_1,   PERMA_R3_1, PERMA_M1_1, PERMA_M2_1,  PERMA_M3_1, PERMA_A1_1, PERMA_A2_1, PERMA_A3_1)
colnames(PermaTR) <- c("1","2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15")
PermaTR<-tbl_df(PermaTR)
PermaTR
## Source: local data frame [753 x 15]
## 
##        1     2     3     4     5     6     7     8     9    10    11    12
##    (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int)
## 1      7     7     8     8     7     7     9    11     8    NA    NA    NA
## 2      9     9     9     7    11     7    11    11    11    NA    NA    NA
## 3      2     3     5     3     3     5     2     3     2    NA    NA    NA
## 4      7     7     7     9     6    11     8     7     7    NA    NA    NA
## 5      8     4     9     6     7     8     7    11     7    NA    NA    NA
## 6      7     7     8     6     6     6     6     9     7    NA    NA    NA
## 7      9     7     9     5     8     9     8    11    11    NA    NA    NA
## 8     11     9     8     8     9     8     5     9     7    NA    NA    NA
## 9      5     5     5     5     7     7     5     7     5    NA    NA    NA
## 10     9     9     8     9     9     9    11     8     9    NA    NA    NA
## ..   ...   ...   ...   ...   ...   ...   ...   ...   ...   ...   ...   ...
## Variables not shown: 13 (int), 14 (int), 15 (int)

Target Rotation for all 753 cases

Targ_key <- make.keys(15,list(f1=1:3,f2=4:6, f3=7:9, f4=10:12, f5=13:15))

fix the 0s, allow the NAs to be estimated

Targ_key <- scrub(Targ_key,isvalue=1)  
Targ_key <- list(Targ_key)

convert the raw data to correlation matrix uisng FIML

Perma_cor <- corFiml(PermaTR) 

TargetT for orthogonal rotation

out_targetQ <- fa(Perma_cor,5,rotate="TargetQ", n.obs = 753, Target=Targ_key) 
out_targetQ[c("loadings", "score.cor", "TLI", "RMSEA","uniquenesses")]
## $loadings
## 
## Loadings:
##    MR4    MR1    MR3    MR5    MR2   
## 1          0.562  0.284              
## 2   0.273  0.692                0.164
## 3   0.156         0.376  0.233       
## 4          0.110  0.266  0.242  0.270
## 5   0.158  0.282  0.148  0.256  0.109
## 6          0.211  0.171         0.183
## 7          0.149  0.210         0.309
## 8   0.122         0.532         0.152
## 9                 0.636              
## 10  0.730  0.200  0.143 -0.189  0.150
## 11  0.553  0.393         0.291 -0.228
## 12  0.541 -0.116         0.412  0.195
## 13  0.540         0.190  0.252       
## 14  0.310         0.110  0.363       
## 15         0.174         0.600  0.225
## 
##                  MR4   MR1   MR3   MR5   MR2
## SS loadings    1.673 1.208 1.152 1.042 0.439
## Proportion Var 0.112 0.081 0.077 0.069 0.029
## Cumulative Var 0.112 0.192 0.269 0.338 0.368
## 
## $score.cor
##           [,1]      [,2]      [,3]      [,4]
## [1,] 1.0000000 0.8029568 0.7305003 0.7329355
## [2,] 0.8029568 1.0000000 0.7526710 0.6715957
## [3,] 0.7305003 0.7526710 1.0000000 0.6489682
## [4,] 0.7329355 0.6715957 0.6489682 1.0000000
## 
## $TLI
## [1] 0.938391
## 
## $RMSEA
##      RMSEA      lower      upper confidence 
## 0.07476504 0.06429075 0.08433872 0.10000000 
## 
## $uniquenesses
##          1          2          3          4          5          6 
## 0.29643745 0.16154343 0.50264371 0.54050145 0.43614911 0.74615626 
##          7          8          9         10         11         12 
## 0.63053448 0.47743054 0.48216741 0.15103282 0.04644654 0.21215728 
##         13         14         15 
## 0.31823162 0.49402829 0.41539892
out_targetQ
## Factor Analysis using method =  minres
## Call: fa(r = Perma_cor, nfactors = 5, n.obs = 753, rotate = "TargetQ", 
##     Target = Targ_key)
## Standardized loadings (pattern matrix) based upon correlation matrix
##      MR4   MR1   MR3   MR5   MR2   h2    u2 com
## 1   0.06  0.56  0.28  0.04  0.03 0.70 0.296 1.5
## 2   0.27  0.69 -0.08  0.02  0.16 0.84 0.162 1.5
## 3   0.16  0.04  0.38  0.23  0.05 0.50 0.503 2.1
## 4  -0.03  0.11  0.27  0.24  0.27 0.46 0.541 3.3
## 5   0.16  0.28  0.15  0.26  0.11 0.56 0.436 3.5
## 6  -0.02  0.21  0.17  0.09  0.18 0.25 0.746 3.3
## 7   0.07  0.15  0.21  0.04  0.31 0.37 0.631 2.4
## 8   0.12  0.06  0.53 -0.03  0.15 0.52 0.477 1.3
## 9  -0.06  0.09  0.64  0.07  0.03 0.52 0.482 1.1
## 10  0.73  0.20  0.14 -0.19  0.15 0.85 0.151 1.5
## 11  0.55  0.39  0.01  0.29 -0.23 0.95 0.046 2.8
## 12  0.54 -0.12  0.01  0.41  0.20 0.79 0.212 2.3
## 13  0.54 -0.05  0.19  0.25  0.02 0.68 0.318 1.7
## 14  0.31 -0.01  0.11  0.36  0.09 0.51 0.494 2.3
## 15 -0.06  0.17 -0.03  0.60  0.22 0.58 0.415 1.5
## 
##                        MR4  MR1  MR3  MR5  MR2
## SS loadings           2.58 1.96 1.91 1.77 0.87
## Proportion Var        0.17 0.13 0.13 0.12 0.06
## Cumulative Var        0.17 0.30 0.43 0.55 0.61
## Proportion Explained  0.28 0.22 0.21 0.19 0.10
## Cumulative Proportion 0.28 0.50 0.71 0.90 1.00
## 
##  With factor correlations of 
##      MR4  MR1  MR3  MR5  MR2
## MR4 1.00 0.57 0.59 0.59 0.37
## MR1 0.57 1.00 0.59 0.50 0.35
## MR3 0.59 0.59 1.00 0.54 0.49
## MR5 0.59 0.50 0.54 1.00 0.37
## MR2 0.37 0.35 0.49 0.37 1.00
## 
## Mean item complexity =  2.1
## Test of the hypothesis that 5 factors are sufficient.
## 
## The degrees of freedom for the null model are  105  and the objective function was  9.64 with Chi Square of  7193.1
## The degrees of freedom for the model are 40  and the objective function was  0.28 
## 
## The root mean square of the residuals (RMSR) is  0.02 
## The df corrected root mean square of the residuals is  0.04 
## 
## The harmonic number of observations is  753 with the empirical chi square  89.85  with prob <  1.1e-05 
## The total number of observations was  753  with MLE Chi Square =  205.6  with prob <  3.8e-24 
## 
## Tucker Lewis Index of factoring reliability =  0.938
## RMSEA index =  0.075  and the 90 % confidence intervals are  0.064 0.084
## BIC =  -59.36
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                 MR4  MR1  MR3  MR5  MR2
## Correlation of scores with factors             0.95 0.93 0.88 0.90 0.84
## Multiple R square of scores with factors       0.90 0.86 0.78 0.81 0.70
## Minimum correlation of possible factor scores  0.80 0.72 0.56 0.62 0.41

CFI

1-((out_targetQ$STATISTIC - out_targetQ$dof)/(out_targetQ$null.chisq- out_targetQ$null.dof))
## [1] 0.9766363

Complete 239 cases

PermaTR<-select(data1, PERMA_P1_1,  PERMA_P2,  PERMA_P3_1, PERMA_E1_1, PERMA_E2_1, PERMA_E3_1, PERMA_R1_1,  PERMA_R2_1,   PERMA_R3_1, PERMA_M1_1, PERMA_M2_1,  PERMA_M3_1, PERMA_A1_1, PERMA_A2_1, PERMA_A3_1)
colnames(PermaTR) <- c("1","2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15")
PermaTR<-tbl_df(PermaTR)
PermaTR
## Source: local data frame [239 x 15]
## 
##        1     2     3     4     5     6     7     8     9    10    11    12
##    (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int)
## 1     11    11    11     9    11    11    11    11    11     7    11    11
## 2     11    11    11    11    11    11    11    11    11    11    11    11
## 3     11    11    11    11    11    11    11    11    11    11    11    11
## 4      6     8    10    11    10    11     9     8     9     8     8     9
## 5     11    11    11    11    11    11    11    11    11    11    11    11
## 6      2     6     6     6     6     4     3     1     5     6     6     4
## 7      6     5     6     6     5     6     6     5     6     6     5     6
## 8      7     5     5    10     7     7     4     8     8     6     7     9
## 9     10     9     3    10     9    11     9    11    11    10    10    11
## 10     8     8     8     8     8     8     8     8     8     8     8     8
## ..   ...   ...   ...   ...   ...   ...   ...   ...   ...   ...   ...   ...
## Variables not shown: 13 (int), 14 (int), 15 (int)

Target Roratation for complete cases

Targ_key <- make.keys(15,list(f1=1:3,f2=4:6, f3=7:9, f4=10:12, f5=13:15))

fix the 0s, allow the NAs to be estimated

Targ_key <- scrub(Targ_key,isvalue=1)  
Targ_key <- list(Targ_key)

convert the raw data to correlation matrix uisng FIML

Perma_cor <- corFiml(PermaTR)

TargetT for orthogonal rotation

out_targetQ <- fa(Perma_cor,5,rotate="TargetQ", n.obs = 239, Target=Targ_key)
## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate =
## rotate, : A Heywood case was detected. Examine the loadings carefully.
out_targetQ[c("loadings", "score.cor", "TLI", "RMSEA","uniquenesses")]
## $loadings
## 
## Loadings:
##    MR3    MR2    MR4    MR1    MR5   
## 1   0.210         0.105  0.622       
## 2   0.120  0.127  0.252  0.599       
## 3   0.190                0.176  0.478
## 4          0.864        -0.124  0.162
## 5          0.510  0.163  0.286       
## 6   0.117  0.688               -0.204
## 7   0.441  0.203                     
## 8   1.135                      -0.131
## 9   0.498                0.317  0.190
## 10  0.122         0.652  0.112       
## 11                0.562  0.283  0.156
## 12  0.103  0.169  0.485         0.288
## 13                0.473         0.427
## 14  0.160         0.192         0.485
## 15         0.350         0.277  0.251
## 
##                  MR3   MR2   MR4   MR1   MR5
## SS loadings    1.899 1.732 1.349 1.178 0.953
## Proportion Var 0.127 0.115 0.090 0.079 0.064
## Cumulative Var 0.127 0.242 0.332 0.411 0.474
## 
## $score.cor
##           [,1]      [,2]      [,3]      [,4]      [,5]
## [1,] 1.0000000 0.7290056 0.7322217 0.7833113 0.7059846
## [2,] 0.7290056 1.0000000 0.7826899 0.7887300 0.7206277
## [3,] 0.7322217 0.7826899 1.0000000 0.7939168 0.7958536
## [4,] 0.7833113 0.7887300 0.7939168 1.0000000 0.7002563
## [5,] 0.7059846 0.7206277 0.7958536 0.7002563 1.0000000
## 
## $TLI
## [1] 0.9569872
## 
## $RMSEA
##      RMSEA      lower      upper confidence 
## 0.07293242 0.05008028 0.09036081 0.10000000 
## 
## $uniquenesses
##           1           2           3           4           5           6 
## 0.160201953 0.100513043 0.418994610 0.267126654 0.236125486 0.461300545 
##           7           8           9          10          11          12 
## 0.445043140 0.004998883 0.400064274 0.234361576 0.173689243 0.279397797 
##          13          14          15 
## 0.239658222 0.281750782 0.427846134
out_targetQ
## Factor Analysis using method =  minres
## Call: fa(r = Perma_cor, nfactors = 5, n.obs = 239, rotate = "TargetQ", 
##     Target = Targ_key)
## 
##  Warning: A Heywood case was detected. 
## Standardized loadings (pattern matrix) based upon correlation matrix
##      MR3   MR2   MR4   MR1   MR5   h2    u2 com
## 1   0.21  0.09  0.10  0.62  0.00 0.84 0.160 1.3
## 2   0.12  0.13  0.25  0.60 -0.04 0.90 0.101 1.6
## 3   0.19  0.08  0.00  0.18  0.48 0.58 0.419 1.7
## 4   0.01  0.86 -0.06 -0.12  0.16 0.73 0.267 1.1
## 5  -0.04  0.51  0.16  0.29  0.07 0.76 0.236 1.9
## 6   0.12  0.69  0.07  0.01 -0.20 0.54 0.461 1.3
## 7   0.44  0.20  0.02  0.10  0.09 0.55 0.445 1.6
## 8   1.13 -0.04  0.00 -0.10 -0.13 1.00 0.005 1.0
## 9   0.50 -0.06 -0.03  0.32  0.19 0.60 0.400 2.1
## 10  0.12  0.07  0.65  0.11  0.01 0.77 0.234 1.2
## 11 -0.01  0.06  0.56  0.28  0.16 0.83 0.174 1.7
## 12  0.10  0.17  0.48 -0.07  0.29 0.72 0.279 2.1
## 13  0.08  0.07  0.47 -0.05  0.43 0.76 0.240 2.1
## 14  0.16  0.10  0.19  0.09  0.48 0.72 0.282 1.7
## 15  0.04  0.35 -0.02  0.28  0.25 0.57 0.428 2.8
## 
##                        MR3  MR2  MR4  MR1  MR5
## SS loadings           2.50 2.48 2.29 1.99 1.61
## Proportion Var        0.17 0.17 0.15 0.13 0.11
## Cumulative Var        0.17 0.33 0.49 0.62 0.72
## Proportion Explained  0.23 0.23 0.21 0.18 0.15
## Cumulative Proportion 0.23 0.46 0.67 0.85 1.00
## 
##  With factor correlations of 
##      MR3  MR2  MR4  MR1  MR5
## MR3 1.00 0.72 0.67 0.62 0.45
## MR2 0.72 1.00 0.68 0.66 0.57
## MR4 0.67 0.68 1.00 0.62 0.56
## MR1 0.62 0.66 0.62 1.00 0.41
## MR5 0.45 0.57 0.56 0.41 1.00
## 
## Mean item complexity =  1.7
## Test of the hypothesis that 5 factors are sufficient.
## 
## The degrees of freedom for the null model are  105  and the objective function was  13.03 with Chi Square of  3025.76
## The degrees of freedom for the model are 40  and the objective function was  0.38 
## 
## The root mean square of the residuals (RMSR) is  0.02 
## The df corrected root mean square of the residuals is  0.03 
## 
## The harmonic number of observations is  239 with the empirical chi square  18.24  with prob <  1 
## The total number of observations was  239  with MLE Chi Square =  87.15  with prob <  2.4e-05 
## 
## Tucker Lewis Index of factoring reliability =  0.957
## RMSEA index =  0.073  and the 90 % confidence intervals are  0.05 0.09
## BIC =  -131.91
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                 MR3  MR2  MR4  MR1  MR5
## Correlation of scores with factors             1.00 0.94 0.93 0.94 0.89
## Multiple R square of scores with factors       0.99 0.88 0.87 0.89 0.79
## Minimum correlation of possible factor scores  0.99 0.76 0.74 0.78 0.57

CFI

1-((out_targetQ$STATISTIC - out_targetQ$dof)/(out_targetQ$null.chisq- out_targetQ$null.dof))
## [1] 0.9838579