library(kirkegaard)
## Loading required package: tidyverse
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.2 ✔ tibble 3.2.1
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.0.4
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
## Loading required package: magrittr
##
##
## Attaching package: 'magrittr'
##
##
## The following object is masked from 'package:purrr':
##
## set_names
##
##
## The following object is masked from 'package:tidyr':
##
## extract
##
##
## Loading required package: weights
##
## Loading required package: Hmisc
##
##
## Attaching package: 'Hmisc'
##
##
## The following objects are masked from 'package:dplyr':
##
## src, summarize
##
##
## The following objects are masked from 'package:base':
##
## format.pval, units
##
##
## Loading required package: assertthat
##
##
## Attaching package: 'assertthat'
##
##
## The following object is masked from 'package:tibble':
##
## has_name
##
##
## Loading required package: psych
##
##
## Attaching package: 'psych'
##
##
## The following object is masked from 'package:Hmisc':
##
## describe
##
##
## The following objects are masked from 'package:ggplot2':
##
## %+%, alpha
##
##
##
## Attaching package: 'kirkegaard'
##
##
## The following object is masked from 'package:psych':
##
## rescale
##
##
## The following object is masked from 'package:assertthat':
##
## are_equal
##
##
## The following object is masked from 'package:purrr':
##
## is_logical
##
##
## The following object is masked from 'package:base':
##
## +
load_packages(
patchwork,
googlesheets4,
rms,
ggeffects,
rnaturalearth,
sf
)
## Linking to GEOS 3.10.2, GDAL 3.4.1, PROJ 8.2.1; sf_use_s2() is TRUE
theme_set(theme_bw())
options(
digits = 3
)
#multithreading
#library(future)
#plan(multisession(workers = 8))
d_vac = read_csv("data/share-of-people-who-completed-the-initial-covid-19-vaccination-protocol.csv") %>%
df_legalize_names()
## Rows: 77011 Columns: 3
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): Entity
## dbl (1): People fully vaccinated (cumulative, per hundred)
## date (1): Day
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
d_lockdown = read_csv("data/covid-19-stringency-index.csv") %>%
df_legalize_names()
## Rows: 202760 Columns: 5
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): Entity
## dbl (3): Stringency index (non-vaccinated), Stringency index (vaccinated), ...
## date (1): Day
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
d_fert_owid = read_csv("data/children-born-per-woman/children-born-per-woman.csv") %>%
df_legalize_names()
## Rows: 18958 Columns: 4
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (2): Entity, Code
## dbl (2): Year, Fertility rate (period), historical
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
d_fert_bg = read_csv("data/tfr birth gauge.csv") %>%
df_legalize_names()
## Rows: 94 Columns: 7
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): Country
## dbl (6): Births_2024, Births_2025, Change, TFR_2023, TFR_2024, TFR_2025
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
d_hdi = read_csv("data/human-development-index/human-development-index.csv") %>%
df_legalize_names() %>%
filter(
Year == 2019
)
## Rows: 6603 Columns: 4
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (2): Entity, Code
## dbl (2): Year, Human Development Index
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
d_world = ne_countries(scale = "medium", returnclass = "sf")
d_world %>%
ggplot() +
geom_sf() +
theme_minimal() +
ggtitle("World Countries Map")
#for vac, we need the largest value for countries
d_vac_final = d_vac %>%
group_by(Entity) %>%
summarise(
vaccine_coverage = max(People_fully_vaccinated_cumulative_per_hundred, na.rm = TRUE)
) %>%
ungroup() %>%
mutate(
ISO = pu_translate(Entity, fuzzy = F)
) %>%
filter(
#filter out non-countries, which are those without ISO codes
!is.na(ISO)
)
## No exact match: Africa
## No exact match: Asia
## No exact match: Bonaire Sint Eustatius and Saba
## No exact match: Europe
## No exact match: European Union (27)
## No exact match: High-income countries
## No exact match: Low-income countries
## No exact match: Lower-middle-income countries
## No exact match: North America
## No exact match: Oceania
## No exact match: South America
## No exact match: Upper-middle-income countries
## No exact match: World
#for lockdowns, we need a single value for a country, so we take the mean of the variables
d_lockdown_final = d_lockdown %>%
group_by(Entity) %>%
summarise(
lockdown_index_nonvac = mean(Stringency_index_non_vaccinated, na.rm = TRUE),
lockdown_index_vac = mean(Stringency_index_vaccinated, na.rm = TRUE),
lockdown_index = mean(Stringency_index_weighted_average, na.rm = TRUE)
) %>%
ungroup() %>%
mutate(
ISO = pu_translate(Entity, fuzzy = F)
) %>%
filter(
#filter out non-countries, which are those without ISO codes
!is.na(ISO)
)
#fert data, we are interested in the 2019-final period, the decline in fertility in %
d_fert_final = d_fert_owid %>%
filter(
Year %in% c(2019, 2023)
) %>%
dplyr::rename(
ISO = Code
) %>%
plyr::ddply("ISO", function(x) {
#skip if it doesnt have 2 rows
if (nrow(x) != 2) return(NULL)
tibble(
fertility_2019 = x$Fertility_rate_period_historical[x$Year == 2019],
fertility_2023 = x$Fertility_rate_period_historical[x$Year == 2023],
fertility_decline_19_23 = (fertility_2023 - fertility_2019) / fertility_2019
)
}) %>%
#join with 2025 numbers from bg
left_join(
d_fert_bg %>% mutate(
ISO = pu_translate(Country)
) %>% select(ISO, TFR_2025)
) %>%
mutate(
fertility_decline_19_25 = (TFR_2025 - fertility_2019) / fertility_2019
)
## Joining with `by = join_by(ISO)`
#country groupings
gs4_deauth()
d_classifications = read_sheet("https://docs.google.com/spreadsheets/d/1ToJWNbwYY--w0_nh05slEv4ZCko4a-XZc1rAkymTxAA/edit?gid=0#gid=0") %>%
df_legalize_names()
## ✔ Reading from "Countries regional codings".
## ✔ Range 'Sheet1'.
#check for duplicated rows first
assert_that(!any(duplicated(d_fert_final$ISO)))
## [1] TRUE
assert_that(!any(duplicated(d_vac_final$ISO)))
## [1] TRUE
assert_that(!any(duplicated(d_lockdown_final$ISO)))
## [1] TRUE
#finally, join all these data
d = full_join(
d_vac_final %>% select(-Entity),
d_lockdown_final %>% select(-Entity),
by = "ISO"
) %>%
full_join(
d_fert_final,
by = "ISO"
) %>%
full_join(
d_classifications %>% select(ISO3, Region1, Region2, Region3) %>% rename(ISO = ISO3),
by = "ISO"
) %>%
full_join(
d_hdi %>% rename(ISO = Code, HDI2019 = Human_Development_Index) %>% select(ISO, HDI2019) %>% filter(!is.na(ISO)),
by = "ISO"
) %>%
mutate(
country = pu_translate(ISO, reverse = T)
)
## No match: OWID_KOS
## No match: OWID_WRL
#check for duplicated rows
assert_that(!any(duplicated(d$ISO)))
## [1] TRUE
#regions as factors
d %<>% mutate(
Region1 = Region1 %>% fct_relevel("Europe"),
Region2 = Region2 %>% fct_relevel("Northern Europe"),
Region3 = Region3 %>% fct_relevel("Northern Europe")
)
#data for decline
d$fertility_decline_19_23 %>% miss_count(reverse = T)
## [1] 238
d$fertility_decline_19_25 %>% miss_count(reverse = T)
## [1] 92
#check correlations of key variables
d %>% select(
vaccine_coverage,
lockdown_index_nonvac,
lockdown_index_vac,
lockdown_index,
fertility_decline_19_23,
fertility_decline_19_25,
HDI2019
) %>%
GG_heatmap()
GG_save("figs/correlation_heatmap.png")
#scatterplots
p1 = d %>%
GG_scatter("lockdown_index", "fertility_decline_19_23", case_names = "ISO") +
labs(
x = "Lockdown index",
y = "Fertility decline 2019-2023 (%)"
)
p2 = d %>%
GG_scatter("lockdown_index", "fertility_decline_19_25", case_names = "ISO") +
labs(
x = "Lockdown index",
y = "Fertility decline 2019-2025 (%)"
)
p3 = d %>%
GG_scatter("vaccine_coverage", "fertility_decline_19_23", case_names = "ISO") +
labs(
x = "Vaccine coverage (%)",
y = "Fertility decline 2019-2023 (%)"
)
p4 = d %>%
GG_scatter("vaccine_coverage", "fertility_decline_19_25", case_names = "ISO") +
labs(
x = "Vaccine coverage (%)",
y = "Fertility decline 2019-2025 (%)"
)
p1 + p2 + p3 + p4 + plot_layout(ncol = 2)
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
GG_save("figs/scatter_lockdown_vaccine_fertility_decline.png")
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
#by region
p_region1 = d %>%
GG_group_means("fertility_decline_19_25", groupvar = "Region1") +
scale_y_continuous(
labels = scales::percent_format()
) +
labs(
x = "Region (large)",
y = ""
)
## Missing values were removed.
p_region2 = d %>%
GG_group_means("fertility_decline_19_25", groupvar = "Region2") +
scale_y_continuous(
labels = scales::percent_format()
) +
labs(
x = "Region (medium)",
y = "Fertility decline 2019-2025 (%)"
) +
theme(
#smaller text on x axis
axis.text.x = element_text(size = 7, angle = 15, hjust = 1)
)
## Missing values were removed.
p_region3 = d %>%
GG_group_means("fertility_decline_19_25", groupvar = "Region3") +
scale_y_continuous(
labels = scales::percent_format()
) +
labs(
x = "Region (small)",
y = ""
) +
theme(
#smaller text on x axis
axis.text.x = element_text(size = 7, angle = 20, hjust = 1)
)
## Missing values were removed.
p_region1 + p_region2 + p_region3 + plot_layout(ncol = 1)
GG_save("figs/scatter_fertility_decline_by_region.png")
d %>%
GG_scatter("fertility_decline_19_23", "fertility_decline_19_25", case_names = "ISO")
## `geom_smooth()` using formula = 'y ~ x'
p_fert23 = d %>%
GG_scatter("fertility_2019", "fertility_2023", case_names = "ISO") +
geom_abline(slope = 1, intercept = 0, linetype = "dashed") +
labs(
x = "Fertility 2019",
y = "Fertility 2023"
)
p_fert25 = d %>%
GG_scatter("fertility_2019", "TFR_2025", case_names = "ISO") +
geom_abline(slope = 1, intercept = 0, linetype = "dashed") +
labs(
x = "Fertility 2019",
y = "Fertility 2025"
)
p_fert23 + p_fert25 + plot_layout(ncol = 2)
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
GG_save("figs/scatter_fertility_2019_2023_2025.png")
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
#map
d_world2 = d_world %>%
left_join(
d %>% select(ISO, fertility_decline_19_23, fertility_decline_19_25),
by = c("adm0_a3" = "ISO")
)
d_world2 %>%
ggplot() +
geom_sf(aes(fill = fertility_decline_19_23)) +
scale_fill_gradient2(
high = "blue",
mid = "white",
low = "red",
midpoint = 0,
na.value = "grey50"
) +
theme_minimal() +
guides(
fill = guide_colorbar(
position = "bottom",
title.position = "top"
)
) +
labs(
fill = "Fertility decline 2019-2023 (%)",
title = "Fertility decline in 2019-2023"
)
GG_save("figs/fertility_decline_2019_2023_map.png")
d_world2 %>%
ggplot() +
geom_sf(aes(fill = fertility_decline_19_25)) +
scale_fill_gradient2(
high = "blue",
mid = "white",
low = "red",
midpoint = 0,
na.value = "grey50"
) +
theme_minimal() +
guides(
fill = guide_colorbar(
position = "bottom",
title.position = "top"
)
) +
labs(
fill = "Fertility decline 2019-2025 (%)",
title = "Fertility decline in 2019-2025"
)
GG_save("figs/fertility_decline_2019_2025_map.png")
#faster decline post-COVID?
d_fert_owid %<>% mutate(
year2019 = Year >= 2019
) %>%
filter(!is.na(Code)) %>%
group_by(Code) %>%
mutate(
#calculate the difference in % between years
fert_change = (Fertility_rate_period_historical - lag(Fertility_rate_period_historical, order_by = Year)) / lag(Fertility_rate_period_historical, order_by = Year),
fert_change_log = fert_change %>% log()
) %>% ungroup()
## Warning: There were 237 warnings in `mutate()`.
## The first warning was:
## ℹ In argument: `fert_change_log = fert_change %>% log()`.
## ℹ In group 1: `Code = "ABW"`.
## Caused by warning in `log()`:
## ! NaNs produced
## ℹ Run `dplyr::last_dplyr_warnings()` to see the 236 remaining warnings.
lm(Fertility_rate_period_historical ~ Year * year2019, data = d_fert_owid) %>%
summary()
##
## Call:
## lm(formula = Fertility_rate_period_historical ~ Year * year2019,
## data = d_fert_owid)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.602 -1.399 -0.246 1.448 4.927
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.16e+01 1.31e+00 69.9 <2e-16 ***
## Year -4.41e-02 6.61e-04 -66.8 <2e-16 ***
## year2019TRUE -1.44e+01 7.31e+01 -0.2 0.84
## Year:year2019TRUE 7.13e-03 3.61e-02 0.2 0.84
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.76 on 17827 degrees of freedom
## Multiple R-squared: 0.234, Adjusted R-squared: 0.234
## F-statistic: 1.81e+03 on 3 and 17827 DF, p-value: <2e-16
lm(fert_change ~ Year * year2019, data = d_fert_owid) %>%
summary()
##
## Call:
## lm(formula = fert_change ~ Year * year2019, data = d_fert_owid)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.4733 -0.0120 0.0026 0.0120 0.9234
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.52e-01 2.47e-02 10.18 <2e-16 ***
## Year -1.32e-04 1.25e-05 -10.63 <2e-16 ***
## year2019TRUE -1.20e+00 1.35e+00 -0.89 0.37
## Year:year2019TRUE 5.96e-04 6.68e-04 0.89 0.37
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.0326 on 17589 degrees of freedom
## (238 observations deleted due to missingness)
## Multiple R-squared: 0.00743, Adjusted R-squared: 0.00726
## F-statistic: 43.9 on 3 and 17589 DF, p-value: <2e-16
#plot decline
d_fert_owid %>%
filter(
Year >= 1990
) %>%
ggplot(aes(x = Year, y = fert_change)) +
geom_line(aes(group = Code)) +
geom_hline(yintercept = 0, linetype = "dashed") +
labs(
x = "Year",
y = "Fertility change (%)",
title = "Fertility change over time"
) +
theme_minimal()
GG_save("figs/fertility_change_over_time.png")
#fertility decline by year
d_fert_owid %>%
filter(
Year >= 1990
) %>%
ggplot(aes(x = Year, y = fert_change_log)) +
#histogram of declines that year across countries
geom_smooth() +
# geom_histogram() +
# geom_hline(yintercept = 0, linetype = "dashed") +
labs(
x = "Year",
y = "Fertility change (log)",
title = "Fertility change over time (log)"
) +
theme_minimal()
## `geom_smooth()` using method = 'gam' and formula = 'y ~ s(x, bs = "cs")'
## Warning: Removed 6258 rows containing non-finite outside the scale range
## (`stat_smooth()`).
d_fert_owid %>%
filter(Year >= 1990) %>%
ggplot(aes(x = factor(Year), y = fert_change)) +
geom_histogram(stat = "identity") +
geom_hline(yintercept = 0, linetype = "dashed") +
labs(
x = "Year",
y = "Fertility change (log)",
title = "Fertility change over time (log)"
) +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
## Warning in geom_histogram(stat = "identity"): Ignoring unknown parameters:
## `binwidth`, `bins`, and `pad`
summary_df <- d_fert_owid %>%
filter(Year >= 1990) %>%
group_by(Year) %>%
summarise(
mean = mean(fert_change, na.rm = TRUE),
median = median(fert_change, na.rm = TRUE),
max = max(fert_change, na.rm = TRUE),
min = min(fert_change, na.rm = TRUE),
p10 = quantile(fert_change, 0.10, na.rm = TRUE),
p90 = quantile(fert_change, 0.90, na.rm = TRUE),
.groups = "drop"
)
# Step 2: Pivot to long format
long_summary <- summary_df %>%
pivot_longer(cols = -Year, names_to = "statistic", values_to = "value")
#mean mean decline
long_summary %>%
filter(statistic == "mean") %>%
describe2()
# Step 3: Plot
ggplot(long_summary, aes(x = Year, y = value, color = statistic)) +
geom_line(linewidth = 1) +
geom_hline(yintercept = 0, linetype = "dashed") +
labs(
title = "Summary of Fertility Change % by Year",
x = "Year",
y = "Value",
color = "Statistic"
) +
theme_bw() +
scale_y_continuous(labels = scales::percent)
GG_save("figs/fertility_change_summary_by_year.png")
#data subset for fertility modeling
d2 = d %>% select(
ISO,
Region1,
Region2,
Region3,
fertility_decline_19_23,
fertility_decline_19_25,
lockdown_index,
vaccine_coverage,
HDI2019
) %>%
filter(
!is.na(fertility_decline_19_23),
!is.na(lockdown_index),
!is.na(vaccine_coverage),
!is.na(HDI2019)
)
lm_mods = list(
"19-23" = ols(fertility_decline_19_23 ~ lockdown_index + vaccine_coverage + HDI2019, data = d),
"19-23b" = ols(fertility_decline_19_23 ~ lockdown_index + vaccine_coverage + HDI2019 + Region2, data = d),
"19-25" = ols(fertility_decline_19_25 ~ lockdown_index + vaccine_coverage + HDI2019, data = d),
"19-25b" = ols(fertility_decline_19_25 ~ lockdown_index + vaccine_coverage + HDI2019 + Region1, data = d2),
"23" = ols(fertility_2023 ~ fertility_2019 + lockdown_index + vaccine_coverage + HDI2019 + Region2, data = d),
"25" = ols(TFR_2025 ~ fertility_2019 + lockdown_index + vaccine_coverage + HDI2019 + Region1, data = d)
)
lm_mods %>% summarize_models(collapse_factors = T)
lm_mods$`19-23b` %>%
ggpredict(terms = c("Region2")) %>%
plot(show_data = T) +
theme(
axis.text.x = element_text(angle = 45, hjust = 1)
) +
labs(
x = "Region",
y = "Fertility decline 2019-2025 (%)"
)
## Data points may overlap. Use the `jitter` argument to add some amount of
## random variation to the location of data points and avoid overplotting.
GG_save("figs/ggpredict_region2_fertility_decline_19_23.png")
lm_mods$`25` %>%
ggpredict(terms = c("lockdown_index")) %>%
plot(show_data = T) +
theme(
axis.text.x = element_text(angle = 45, hjust = 1)
) +
labs(
y = "Fertility in 2025"
)
## Data points may overlap. Use the `jitter` argument to add some amount of
## random variation to the location of data points and avoid overplotting.
#versions
write_sessioninfo()
## R version 4.5.0 (2025-04-11)
## Platform: x86_64-pc-linux-gnu
## Running under: Linux Mint 21.1
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0 LAPACK version 3.10.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_DK.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_DK.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_DK.UTF-8 LC_IDENTIFICATION=C
##
## time zone: Europe/Brussels
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] sf_1.0-20 rnaturalearth_1.0.1 ggeffects_2.2.1
## [4] rms_8.0-0 googlesheets4_1.1.1 patchwork_1.3.0
## [7] kirkegaard_2025-05-09 psych_2.5.3 assertthat_0.2.1
## [10] weights_1.0.4 Hmisc_5.2-3 magrittr_2.0.3
## [13] lubridate_1.9.4 forcats_1.0.0 stringr_1.5.1
## [16] dplyr_1.1.4 purrr_1.0.4 readr_2.1.5
## [19] tidyr_1.3.1 tibble_3.2.1 ggplot2_3.5.2
## [22] tidyverse_2.0.0
##
## loaded via a namespace (and not attached):
## [1] rstudioapi_0.17.1 jsonlite_2.0.0 shape_1.4.6.1
## [4] datawizard_1.0.2 TH.data_1.1-3 jomo_2.7-6
## [7] farver_2.1.2 nloptr_2.2.1 rmarkdown_2.29
## [10] fs_1.6.6 ragg_1.4.0 vctrs_0.6.5
## [13] minqa_1.2.8 base64enc_0.1-3 terra_1.8-42
## [16] htmltools_0.5.8.1 polspline_1.1.25 haven_2.5.4
## [19] curl_6.2.2 broom_1.0.8 cellranger_1.1.0
## [22] Formula_1.2-5 mitml_0.4-5 sass_0.4.10
## [25] KernSmooth_2.23-26 bslib_0.9.0 htmlwidgets_1.6.4
## [28] plyr_1.8.9 sandwich_3.1-1 zoo_1.8-14
## [31] cachem_1.1.0 lifecycle_1.0.4 iterators_1.0.14
## [34] pkgconfig_2.0.3 Matrix_1.7-3 R6_2.6.1
## [37] fastmap_1.2.0 rbibutils_2.3 digest_0.6.37
## [40] colorspace_2.1-1 textshaping_1.0.0 labeling_0.4.3
## [43] timechange_0.3.0 gdata_3.0.1 mgcv_1.9-1
## [46] httr_1.4.7 compiler_4.5.0 gargle_1.5.2
## [49] proxy_0.4-27 bit64_4.6.0-1 withr_3.0.2
## [52] htmlTable_2.4.3 backports_1.5.0 DBI_1.2.3
## [55] pan_1.9 MASS_7.3-65 quantreg_6.1
## [58] classInt_0.4-11 gtools_3.9.5 tools_4.5.0
## [61] units_0.8-7 foreign_0.8-90 googledrive_2.1.1
## [64] nnet_7.3-20 glue_1.8.0 rnaturalearthdata_1.0.0
## [67] nlme_3.1-168 grid_4.5.0 checkmate_2.3.2
## [70] cluster_2.1.8.1 generics_0.1.3 gtable_0.3.6
## [73] tzdb_0.5.0 class_7.3-23 data.table_1.17.0
## [76] hms_1.1.3 foreach_1.5.2 pillar_1.10.2
## [79] vroom_1.6.5 splines_4.5.0 lattice_0.22-5
## [82] survival_3.8-3 bit_4.6.0 SparseM_1.84-2
## [85] tidyselect_1.2.1 knitr_1.50 reformulas_0.4.0
## [88] gridExtra_2.3 xfun_0.52 stringi_1.8.7
## [91] yaml_2.3.10 boot_1.3-31 evaluate_1.0.3
## [94] codetools_0.2-19 cli_3.6.4 rpart_4.1.24
## [97] systemfonts_1.2.2 Rdpack_2.6.4 munsell_0.5.1
## [100] jquerylib_0.1.4 Rcpp_1.0.14 readxl_1.4.5
## [103] parallel_4.5.0 MatrixModels_0.5-4 lme4_1.1-37
## [106] glmnet_4.1-8 mvtnorm_1.3-3 scales_1.3.0
## [109] e1071_1.7-16 insight_1.3.1 crayon_1.5.3
## [112] rlang_1.1.6 multcomp_1.4-28 mnormt_2.1.1
## [115] mice_3.17.0
#write data to file for reuse
d %>% write_rds("data/data_for_reuse.rds")
#OSF
if (F) {
library(osfr)
#login
osf_auth(readr::read_lines("~/.config/osf_token"))
#the project we will use
osf_proj = osf_retrieve_node("https://osf.io/XXX/")
#upload all files in project
#overwrite existing (versioning)
osf_upload(
osf_proj,
path = c("data", "figures", "papers", "notebook.Rmd", "notebook.html", "sessions_info.txt"),
conflicts = "overwrite"
)
}