rm()

————————–

Functions

————————–

# --- Functions ---
FlipCoin <- function(n) sample(0:1, n, rep=TRUE)
RollDie <- function(n) sample(1:6, n, rep=TRUE)
# --- Coin Toss: 100 tosses ---
set.seed(1)
coin_100 <- FlipCoin(100)
coin_100_table <- table(coin_100)
coin_100_rel <- prop.table(coin_100_table)
# --- Coin Toss: 100 tosses ---
set.seed(1)
coin_100 <- FlipCoin(100)
coin_100_table <- table(coin_100)
coin_100_rel <- prop.table(coin_100_table)
# --- Coin Toss: 500 tosses ---
coin_500 <- FlipCoin(500)
coin_500_table <- table(coin_500)
coin_500_rel <- prop.table(coin_500_table)
# --- Coin Toss: 500 tosses ---
coin_500 <- FlipCoin(500)
coin_500_table <- table(coin_500)
coin_500_rel <- prop.table(coin_500_table)
# --- Die Roll: 200 rolls ---
set.seed(2)
die_200 <- RollDie(200)
die_200_table <- table(factor(die_200, levels = 1:6))
die_200_rel <- prop.table(die_200_table)
# --- Die Roll: 1000 rolls ---
die_1000 <- RollDie(1000)
die_1000_table <- table(factor(die_1000, levels = 1:6))
die_1000_rel <- prop.table(die_1000_table)

————————–

Histograms

————————–

# --- Histograms ---
hist(coin_100,
     breaks = c(-0.5, 0.5, 1.5),
     prob = TRUE,
     col = c("skyblue", "salmon"),
     xlab = "Outcome (0 = Tails, 1 = Heads)",
     main = "Mozart St. Brun: Coin Tosses (100)")

hist(die_200,
     breaks = seq(0.5, 6.5, by=1),
     prob = TRUE,
     col = "lightgreen",
     xlab = "Die Face",
     main = "Mozart St. Brun: Die Rolls (200)")

————————–

Final Output Table

————————–

# --- Relative Frequency Tables ---

# Coin results
coin_table <- data.frame(
  Outcome = c("Tails (0)", "Heads (1)"),
  RelFreq_100 = as.numeric(coin_100_rel),
  RelFreq_500 = as.numeric(coin_500_rel)
)

# Die results
die_table <- data.frame(
  Face = 1:6,
  RelFreq_200 = as.numeric(die_200_rel),
  RelFreq_1000 = as.numeric(die_1000_rel)
)

# Show tables
cat("\nRelative Frequency Table: Coin Tosses\n")

Relative Frequency Table: Coin Tosses
print(coin_table, row.names = FALSE)

cat("\nRelative Frequency Table: Die Rolls\n")

Relative Frequency Table: Die Rolls
print(die_table, row.names = FALSE)
LS0tDQp0aXRsZTogIkxhYm9yYXRvcnkgMiBBc3NpZ25tZW50IE1vemFydCBTdC4gQnJ1biINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQoNCmBgYHtyfQ0Kcm0oKQ0KYGBgDQoNCiMgLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0NCiMgRnVuY3Rpb25zDQojIC0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tDQoNCmBgYHtyfQ0KIyAtLS0gRnVuY3Rpb25zIC0tLQ0KRmxpcENvaW4gPC0gZnVuY3Rpb24obikgc2FtcGxlKDA6MSwgbiwgcmVwPVRSVUUpDQpSb2xsRGllIDwtIGZ1bmN0aW9uKG4pIHNhbXBsZSgxOjYsIG4sIHJlcD1UUlVFKQ0KYGBgDQoNCmBgYHtyfQ0KIyAtLS0gQ29pbiBUb3NzOiAxMDAgdG9zc2VzIC0tLQ0Kc2V0LnNlZWQoMSkNCmNvaW5fMTAwIDwtIEZsaXBDb2luKDEwMCkNCmNvaW5fMTAwX3RhYmxlIDwtIHRhYmxlKGNvaW5fMTAwKQ0KY29pbl8xMDBfcmVsIDwtIHByb3AudGFibGUoY29pbl8xMDBfdGFibGUpDQpgYGANCg0KYGBge3J9DQojIC0tLSBDb2luIFRvc3M6IDEwMCB0b3NzZXMgLS0tDQpzZXQuc2VlZCgxKQ0KY29pbl8xMDAgPC0gRmxpcENvaW4oMTAwKQ0KY29pbl8xMDBfdGFibGUgPC0gdGFibGUoY29pbl8xMDApDQpjb2luXzEwMF9yZWwgPC0gcHJvcC50YWJsZShjb2luXzEwMF90YWJsZSkNCmBgYA0KDQpgYGB7cn0NCiMgLS0tIENvaW4gVG9zczogNTAwIHRvc3NlcyAtLS0NCmNvaW5fNTAwIDwtIEZsaXBDb2luKDUwMCkNCmNvaW5fNTAwX3RhYmxlIDwtIHRhYmxlKGNvaW5fNTAwKQ0KY29pbl81MDBfcmVsIDwtIHByb3AudGFibGUoY29pbl81MDBfdGFibGUpDQpgYGANCg0KYGBge3J9DQojIC0tLSBDb2luIFRvc3M6IDUwMCB0b3NzZXMgLS0tDQpjb2luXzUwMCA8LSBGbGlwQ29pbig1MDApDQpjb2luXzUwMF90YWJsZSA8LSB0YWJsZShjb2luXzUwMCkNCmNvaW5fNTAwX3JlbCA8LSBwcm9wLnRhYmxlKGNvaW5fNTAwX3RhYmxlKQ0KYGBgDQoNCmBgYHtyfQ0KIyAtLS0gRGllIFJvbGw6IDIwMCByb2xscyAtLS0NCnNldC5zZWVkKDIpDQpkaWVfMjAwIDwtIFJvbGxEaWUoMjAwKQ0KZGllXzIwMF90YWJsZSA8LSB0YWJsZShmYWN0b3IoZGllXzIwMCwgbGV2ZWxzID0gMTo2KSkNCmRpZV8yMDBfcmVsIDwtIHByb3AudGFibGUoZGllXzIwMF90YWJsZSkNCmBgYA0KDQpgYGB7cn0NCiMgLS0tIERpZSBSb2xsOiAxMDAwIHJvbGxzIC0tLQ0KZGllXzEwMDAgPC0gUm9sbERpZSgxMDAwKQ0KZGllXzEwMDBfdGFibGUgPC0gdGFibGUoZmFjdG9yKGRpZV8xMDAwLCBsZXZlbHMgPSAxOjYpKQ0KZGllXzEwMDBfcmVsIDwtIHByb3AudGFibGUoZGllXzEwMDBfdGFibGUpDQpgYGANCg0KIyAtLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLQ0KIyBIaXN0b2dyYW1zDQojIC0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tDQoNCg0KYGBge3J9DQojIC0tLSBIaXN0b2dyYW1zIC0tLQ0KaGlzdChjb2luXzEwMCwNCiAgICAgYnJlYWtzID0gYygtMC41LCAwLjUsIDEuNSksDQogICAgIHByb2IgPSBUUlVFLA0KICAgICBjb2wgPSBjKCJza3libHVlIiwgInNhbG1vbiIpLA0KICAgICB4bGFiID0gIk91dGNvbWUgKDAgPSBUYWlscywgMSA9IEhlYWRzKSIsDQogICAgIG1haW4gPSAiTW96YXJ0IFN0LiBCcnVuOiBDb2luIFRvc3NlcyAoMTAwKSIpDQpoaXN0KGRpZV8yMDAsDQogICAgIGJyZWFrcyA9IHNlcSgwLjUsIDYuNSwgYnk9MSksDQogICAgIHByb2IgPSBUUlVFLA0KICAgICBjb2wgPSAibGlnaHRncmVlbiIsDQogICAgIHhsYWIgPSAiRGllIEZhY2UiLA0KICAgICBtYWluID0gIk1vemFydCBTdC4gQnJ1bjogRGllIFJvbGxzICgyMDApIikNCmBgYA0KDQojIC0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tDQojIEZpbmFsIE91dHB1dCBUYWJsZQ0KIyAtLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLQ0KDQoNCmBgYHtyfQ0KIyAtLS0gUmVsYXRpdmUgRnJlcXVlbmN5IFRhYmxlcyAtLS0NCg0KIyBDb2luIHJlc3VsdHMNCmNvaW5fdGFibGUgPC0gZGF0YS5mcmFtZSgNCiAgT3V0Y29tZSA9IGMoIlRhaWxzICgwKSIsICJIZWFkcyAoMSkiKSwNCiAgUmVsRnJlcV8xMDAgPSBhcy5udW1lcmljKGNvaW5fMTAwX3JlbCksDQogIFJlbEZyZXFfNTAwID0gYXMubnVtZXJpYyhjb2luXzUwMF9yZWwpDQopDQoNCiMgRGllIHJlc3VsdHMNCmRpZV90YWJsZSA8LSBkYXRhLmZyYW1lKA0KICBGYWNlID0gMTo2LA0KICBSZWxGcmVxXzIwMCA9IGFzLm51bWVyaWMoZGllXzIwMF9yZWwpLA0KICBSZWxGcmVxXzEwMDAgPSBhcy5udW1lcmljKGRpZV8xMDAwX3JlbCkNCikNCg0KIyBTaG93IHRhYmxlcw0KY2F0KCJcblJlbGF0aXZlIEZyZXF1ZW5jeSBUYWJsZTogQ29pbiBUb3NzZXNcbiIpDQpwcmludChjb2luX3RhYmxlLCByb3cubmFtZXMgPSBGQUxTRSkNCg0KY2F0KCJcblJlbGF0aXZlIEZyZXF1ZW5jeSBUYWJsZTogRGllIFJvbGxzXG4iKQ0KcHJpbnQoZGllX3RhYmxlLCByb3cubmFtZXMgPSBGQUxTRSkNCmBgYA0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg==