4+3
4-3
4==3
3^2
sqrt(4)

Does 3 equals 8?

3==8
3==5
3 != 8
4!=4
2!=4
3 <= 8
3>4
TRUE | FALSE
FALSE | FALSE
TRUE & FALSE
!FALSE
!TRUE
!FALSE & FALSE | TRUE
!FALSE & !TRUE | TRUE
2>5|1==3
11>7|4==3
log (10) #ln, natural log, base e=2.72
log10 (10)
log10 (100)
log10 (1000)

#Question_1: Compute the log base 5 of 10 and the log of 10.

log (10, base = 5)
log10(10)
#Batting Average=(No. of Hits)/(No. of At Bats)
#What is the batting average of a player that bats 29 hits in 112 at bats?
BA=(29)/(112)
BA
Batting_Average=round(BA,digits = 3)
Batting_Average

#Question_2:What is the batting average of a player that bats 42 hits in 212 at bats?

BA_1=(42)/212
Batting_Average1=round(BA_1,digits = 3)
Batting_Average1

#On Base Percentage #OBP=(H+BB+HBP)/(At Bats+BB+HBP+SF) #Let us compute the OBP for a player with the following general stats #AB=515,H=172,BB=84,HBP=5,SF=6


OBP=(172+84+5)/(515+84+5+6)
OBP
On_Base_Percentage=round(OBP,digits = 3)
On_Base_Percentage

#Question_3:Compute the OBP for a player with the following general stats: #AB=565,H=156,BB=65,HBP=3,SF=7

OBP=(156+65+3)/(565+65+3+7)
On_Base_Percentage=round(OBP,digits = 3)
On_Base_Percentage
Total_Bases <- 136+214
Total_Bases
ls()
rm(Total_Bases)
ls()
pitches_by_innings <- c(12, 15, 10, 20, 10) 
pitches_by_innings
Wins_Season<-c(94,88,96,87,79)
Wins_Season
strikes_by_innings <- c(5, 6, 9, 7, 14)
strikes_by_innings
rep(2, 5)
1:6
seq(3,10,3)
strikes_by_innings
Wins_Season
pitches_by_innings
strikes_by_innings+pitches_by_innings
strikes_by_innings==pitches_by_innings
length(pitches_by_innings)
min(pitches_by_innings)
max(pitches_by_innings)
mean(pitches_by_innings)
pitches_by_innings[3]
pitches_by_innings[1]
pitches_by_innings[5]
pitches_by_innings[length(pitches_by_innings)]
pitches_by_innings[c(2,3,4)]
player_positions <- c("catcher", "pitcher", "infielders", "outfielders")
player_positions
soccer_positions <- c("goalkeeper", "defender", "Midfield", "forwards")
soccer_positions
data.frame(bonus = c(2, 3, 1),#in millions 
           active_roster = c("yes", "no", "yes"), 
           salary = c(1.5, 2.5, 1))#in millions 
sample(1:9,size = 2)
x <- c("Yes","No","No","No","Yes","Yes","Yes","Yes","Yes","Yes") 
x
table(x)
sals <- c(12, .4, 5, 2, 50, 8, 3, 1, 4, 0.25)
mean(sals) 
var(sals)
sd(sals)
median(sals)
# Tukey's five number summary, usefull for boxplots
# five numbers: min, lower hinge, median, upper hinge, max
fivenum(sals)
summary(sals)
# Function to find the mode, i.e. most frequent value
getMode <- function(x) {
     ux <- unique(x)
     ux[which.max(tabulate(match(x, ux)))]
 }
getMode(pitches_by_innings)
getMode(Wins_Season)
Wins_Season
#Question_8: Summarize the following survey with the `table()` command:
#What is your favorite day of the week to watch baseball? A total of 10 fans submitted this survey.
#Saturday, Saturday, Sunday, Monday, Saturday,Tuesday, Sunday, Friday, Friday, Monday
game_day<-c("Saturday", "Saturday", "Sunday", "Monday", "Saturday","Tuesday", "Sunday", "Friday", "Friday", "Monday")
table(game_day)
getMode(game_day)
LS0tCnRpdGxlOiAiUiBOb3RlYm9vayBBY3Rpdml0eSA0IgpvdXRwdXQ6CiAgaHRtbF9ub3RlYm9vazogZGVmYXVsdAogIHdvcmRfZG9jdW1lbnQ6IGRlZmF1bHQKLS0tCmBgYHtyfQo0KzMKNC0zCjQ9PTMKM14yCnNxcnQoNCkKYGBgCgojIERvZXMgMyBlcXVhbHMgOD8KCmBgYHtyfQozPT04CjM9PTUKMyAhPSA4CjQhPTQKMiE9NAozIDw9IDgKMz40CmBgYApgYGB7cn0KVFJVRSB8IEZBTFNFCkZBTFNFIHwgRkFMU0UKYGBgCgoKYGBge3J9ClRSVUUgJiBGQUxTRQpgYGAKCgpgYGB7cn0KIUZBTFNFCmBgYApgYGB7cn0KIVRSVUUKYGBgCmBgYHtyfQohRkFMU0UgJiBGQUxTRSB8IFRSVUUKIUZBTFNFICYgIVRSVUUgfCBUUlVFCmBgYAoKYGBge3J9CjI+NXwxPT0zCjExPjd8ND09MwpgYGAKCmBgYHtyfQpsb2cgKDEwKSAjbG4sIG5hdHVyYWwgbG9nLCBiYXNlIGU9Mi43MgpgYGAKCmBgYHtyfQpsb2cxMCAoMTApCmxvZzEwICgxMDApCmxvZzEwICgxMDAwKQpgYGAKI1F1ZXN0aW9uXzE6IENvbXB1dGUgdGhlIGxvZyBiYXNlIDUgb2YgMTAgYW5kIHRoZSBsb2cgb2YgMTAuCmBgYHtyfQpsb2cgKDEwLCBiYXNlID0gNSkKbG9nMTAoMTApCmBgYApgYGB7cn0KI0JhdHRpbmcgQXZlcmFnZT0oTm8uIG9mIEhpdHMpLyhOby4gb2YgQXQgQmF0cykKI1doYXQgaXMgdGhlIGJhdHRpbmcgYXZlcmFnZSBvZiBhIHBsYXllciB0aGF0IGJhdHMgMjkgaGl0cyBpbiAxMTIgYXQgYmF0cz8KQkE9KDI5KS8oMTEyKQpCQQpgYGAKYGBge3J9CkJhdHRpbmdfQXZlcmFnZT1yb3VuZChCQSxkaWdpdHMgPSAzKQpCYXR0aW5nX0F2ZXJhZ2UKYGBgCgojUXVlc3Rpb25fMjpXaGF0IGlzIHRoZSBiYXR0aW5nIGF2ZXJhZ2Ugb2YgYSBwbGF5ZXIgdGhhdCBiYXRzIDQyIGhpdHMgaW4gMjEyIGF0IGJhdHM/CmBgYHtyfQpCQV8xPSg0MikvMjEyCkJhdHRpbmdfQXZlcmFnZTE9cm91bmQoQkFfMSxkaWdpdHMgPSAzKQpCYXR0aW5nX0F2ZXJhZ2UxCmBgYAojT24gQmFzZSBQZXJjZW50YWdlCiNPQlA9KEgrQkIrSEJQKS8oQXQgQmF0cytCQitIQlArU0YpCiNMZXQgdXMgY29tcHV0ZSB0aGUgT0JQIGZvciBhIHBsYXllciB3aXRoIHRoZSBmb2xsb3dpbmcgZ2VuZXJhbCBzdGF0cwojQUI9NTE1LEg9MTcyLEJCPTg0LEhCUD01LFNGPTYKYGBge3J9CgpPQlA9KDE3Mis4NCs1KS8oNTE1Kzg0KzUrNikKT0JQCmBgYApgYGB7cn0KT25fQmFzZV9QZXJjZW50YWdlPXJvdW5kKE9CUCxkaWdpdHMgPSAzKQpPbl9CYXNlX1BlcmNlbnRhZ2UKYGBgCiNRdWVzdGlvbl8zOkNvbXB1dGUgdGhlIE9CUCBmb3IgYSBwbGF5ZXIgd2l0aCB0aGUgZm9sbG93aW5nIGdlbmVyYWwgc3RhdHM6CiNBQj01NjUsSD0xNTYsQkI9NjUsSEJQPTMsU0Y9NwpgYGB7cn0KT0JQPSgxNTYrNjUrMykvKDU2NSs2NSszKzcpCk9uX0Jhc2VfUGVyY2VudGFnZT1yb3VuZChPQlAsZGlnaXRzID0gMykKT25fQmFzZV9QZXJjZW50YWdlCmBgYApgYGB7cn0KVG90YWxfQmFzZXMgPC0gMTM2KzIxNApUb3RhbF9CYXNlcwpgYGAKCgpgYGB7cn0KbHMoKQpgYGAKCmBgYHtyfQpybShUb3RhbF9CYXNlcykKYGBgCgpgYGB7cn0KbHMoKQpgYGAKCmBgYHtyfQpwaXRjaGVzX2J5X2lubmluZ3MgPC0gYygxMiwgMTUsIDEwLCAyMCwgMTApIApwaXRjaGVzX2J5X2lubmluZ3MKYGBgCgoKYGBge3J9CldpbnNfU2Vhc29uPC1jKDk0LDg4LDk2LDg3LDc5KQpXaW5zX1NlYXNvbgpgYGAKCmBgYHtyfQpzdHJpa2VzX2J5X2lubmluZ3MgPC0gYyg1LCA2LCA5LCA3LCAxNCkKc3RyaWtlc19ieV9pbm5pbmdzCmBgYAoKCgpgYGB7cn0KcmVwKDIsIDUpCmBgYAoKYGBge3J9CjE6NgpzZXEoMywxMCwzKQpgYGAKCmBgYHtyfQpzdHJpa2VzX2J5X2lubmluZ3MKV2luc19TZWFzb24KcGl0Y2hlc19ieV9pbm5pbmdzCmBgYAoKYGBge3J9CnN0cmlrZXNfYnlfaW5uaW5ncytwaXRjaGVzX2J5X2lubmluZ3MKc3RyaWtlc19ieV9pbm5pbmdzPT1waXRjaGVzX2J5X2lubmluZ3MKYGBgCgpgYGB7cn0KbGVuZ3RoKHBpdGNoZXNfYnlfaW5uaW5ncykKbWluKHBpdGNoZXNfYnlfaW5uaW5ncykKbWF4KHBpdGNoZXNfYnlfaW5uaW5ncykKbWVhbihwaXRjaGVzX2J5X2lubmluZ3MpCmBgYAoKYGBge3J9CnBpdGNoZXNfYnlfaW5uaW5nc1szXQpwaXRjaGVzX2J5X2lubmluZ3NbMV0KcGl0Y2hlc19ieV9pbm5pbmdzWzVdCmBgYApgYGB7cn0KcGl0Y2hlc19ieV9pbm5pbmdzW2xlbmd0aChwaXRjaGVzX2J5X2lubmluZ3MpXQpgYGAKCmBgYHtyfQpwaXRjaGVzX2J5X2lubmluZ3NbYygyLDMsNCldCmBgYAoKYGBge3J9CnBsYXllcl9wb3NpdGlvbnMgPC0gYygiY2F0Y2hlciIsICJwaXRjaGVyIiwgImluZmllbGRlcnMiLCAib3V0ZmllbGRlcnMiKQpwbGF5ZXJfcG9zaXRpb25zCmBgYAoKYGBge3J9CnNvY2Nlcl9wb3NpdGlvbnMgPC0gYygiZ29hbGtlZXBlciIsICJkZWZlbmRlciIsICJNaWRmaWVsZCIsICJmb3J3YXJkcyIpCnNvY2Nlcl9wb3NpdGlvbnMKYGBgCgoKYGBge3J9CmRhdGEuZnJhbWUoYm9udXMgPSBjKDIsIDMsIDEpLCNpbiBtaWxsaW9ucyAKICAgICAgICAgICBhY3RpdmVfcm9zdGVyID0gYygieWVzIiwgIm5vIiwgInllcyIpLCAKICAgICAgICAgICBzYWxhcnkgPSBjKDEuNSwgMi41LCAxKSkjaW4gbWlsbGlvbnMgCmBgYAoKYGBge3J9CnNhbXBsZSgxOjksc2l6ZSA9IDIpCmBgYAoKYGBge3J9CnggPC0gYygiWWVzIiwiTm8iLCJObyIsIk5vIiwiWWVzIiwiWWVzIiwiWWVzIiwiWWVzIiwiWWVzIiwiWWVzIikgCngKdGFibGUoeCkKYGBgCgpgYGB7cn0Kc2FscyA8LSBjKDEyLCAuNCwgNSwgMiwgNTAsIDgsIDMsIDEsIDQsIDAuMjUpCm1lYW4oc2FscykgCmBgYAoKYGBge3J9CnZhcihzYWxzKQpzZChzYWxzKQptZWRpYW4oc2FscykKYGBgCgpgYGB7cn0KIyBUdWtleSdzIGZpdmUgbnVtYmVyIHN1bW1hcnksIHVzZWZ1bGwgZm9yIGJveHBsb3RzCiMgZml2ZSBudW1iZXJzOiBtaW4sIGxvd2VyIGhpbmdlLCBtZWRpYW4sIHVwcGVyIGhpbmdlLCBtYXgKZml2ZW51bShzYWxzKQpgYGAKCmBgYHtyfQpzdW1tYXJ5KHNhbHMpCmBgYAoKYGBge3J9CiMgRnVuY3Rpb24gdG8gZmluZCB0aGUgbW9kZSwgaS5lLiBtb3N0IGZyZXF1ZW50IHZhbHVlCmdldE1vZGUgPC0gZnVuY3Rpb24oeCkgewogICAgIHV4IDwtIHVuaXF1ZSh4KQogICAgIHV4W3doaWNoLm1heCh0YWJ1bGF0ZShtYXRjaCh4LCB1eCkpKV0KIH0KYGBgCgoKYGBge3J9CmdldE1vZGUocGl0Y2hlc19ieV9pbm5pbmdzKQpgYGAKCmBgYHtyfQpnZXRNb2RlKFdpbnNfU2Vhc29uKQpXaW5zX1NlYXNvbgpgYGAKCmBgYHtyfQojUXVlc3Rpb25fODogU3VtbWFyaXplIHRoZSBmb2xsb3dpbmcgc3VydmV5IHdpdGggdGhlIGB0YWJsZSgpYCBjb21tYW5kOgojV2hhdCBpcyB5b3VyIGZhdm9yaXRlIGRheSBvZiB0aGUgd2VlayB0byB3YXRjaCBiYXNlYmFsbD8gQSB0b3RhbCBvZiAxMCBmYW5zIHN1Ym1pdHRlZCB0aGlzIHN1cnZleS4KI1NhdHVyZGF5LCBTYXR1cmRheSwgU3VuZGF5LCBNb25kYXksIFNhdHVyZGF5LFR1ZXNkYXksIFN1bmRheSwgRnJpZGF5LCBGcmlkYXksIE1vbmRheQpnYW1lX2RheTwtYygiU2F0dXJkYXkiLCAiU2F0dXJkYXkiLCAiU3VuZGF5IiwgIk1vbmRheSIsICJTYXR1cmRheSIsIlR1ZXNkYXkiLCAiU3VuZGF5IiwgIkZyaWRheSIsICJGcmlkYXkiLCAiTW9uZGF5IikKYGBgCgpgYGB7cn0KdGFibGUoZ2FtZV9kYXkpCmBgYAoKYGBge3J9CmdldE1vZGUoZ2FtZV9kYXkpCmBgYAoKCgoKCgoKCgoKCgoKCgoKCg==