unemployment_2024 <- read.csv("LAUS_Report_2024.csv")
locations <- read.csv("../../location_countyNames copy.csv") |>
select(Location, LocationId)
cleaned_uemp_2024 <- unemployment_2024 |>
select(Area, Year, Area.Type, Unemployment, Unemployment.Rate) |>
mutate(Unemployment = gsub(",", "", Unemployment)) |>
mutate(Unemployment.Rate = Unemployment.Rate / 100) |>
mutate(Area.Type = ifelse(Area.Type == "Texas", "State", "County"), Area.Type) |>
mutate(Area = gsub(" ", "", Area)) |>
rename(Location = Area,
TimeFrame = Year,
LocationType = Area.Type) |>
arrange(desc(LocationType))
withids_2024 <- left_join(cleaned_uemp_2024, locations, by = "Location")
nums_2024 <- withids_2024 |>
select(-Unemployment.Rate) |>
mutate(DataFormat = "Number") |>
rename(Data = Unemployment)
percents_2024 <- withids_2024 |>
select(-Unemployment) |>
mutate(DataFormat = "Percent") |>
rename(Data = Unemployment.Rate)
final_unemployment_2024 <- rbind(nums_2024, percents_2024) |>
arrange(desc(LocationType), Location, DataFormat) |>
select(LocationId, Location, LocationType, TimeFrame, Data, DataFormat)
Exports
write.csv(file = "CLEANED_2.4_Unemployment_2024.csv", final_unemployment_2024)