Data was downloaded from TDC, specifically population estimates.
pop_2023 <- read.csv("../alldata.csv")
locations <- read.csv("../../location_countyNames copy.csv") |>
select(Location, LocationId)
#total nums
pop_cleaned_total <- pop_2023 |>
filter(Age == "All Ages") |>
mutate(County = str_to_title(County)) |>
mutate(County = sub(" County", "", County),
County = sub("State Of ", "", County))
#total pop nums
total_final <- pop_cleaned_total |>
select(County, Total) |>
rename(Location = County) |>
left_join(locations, by = "Location") |>
mutate(DataFormat = "Number",
TimeFrame = 2023,
LocationType = ifelse(Location == "Texas", "State", "County"),
Total = as.numeric(Total))
percent_race_eth <- pop_cleaned_total |>
select(-FIPS, -contains("Female"), -contains("Male")) |>
mutate(Anglo = NH_White_Total/Total,
Black = NH_Black_Total/Total,
Hispanic = Hispanic_Total/Total,
Asian = NH_Asian_Total/Total,
Other = NH_Other_Total/Total) |>
select(-Age, -Total) |>
select(County, Anglo, Black, Hispanic, Asian, Other) |>
pivot_longer(cols = c(Anglo, Black, Hispanic, Asian, Other),
names_to = "RaceEthnicity",
values_to = "Data") |>
mutate(DataFormat = "Percent")
num_race_eth <- pop_cleaned_total |>
select(-FIPS, -contains("Female"), -contains("Male")) |>
rename(Anglo = NH_White_Total,
Black = NH_Black_Total,
Hispanic = Hispanic_Total,
Asian = NH_Asian_Total,
Other = NH_Other_Total) |>
select(-Age, -Total) |>
select(County, Anglo, Black, Hispanic, Asian, Other) |>
pivot_longer(cols = c(Anglo, Black, Hispanic, Asian, Other),
names_to = "RaceEthnicity",
values_to = "Data") |>
mutate(DataFormat = "Number")
final_race_eth_2023 <- rbind(percent_race_eth, num_race_eth) |>
rename(Location = County) |>
mutate(LocationType = ifelse(Location == "Texas", "State", "County")) |>
left_join(locations, by = "Location") |>
arrange(desc(LocationType), Location, DataFormat)
NON-DISAGGREGATED
percent_race_eth_dis <- pop_cleaned_total |>
select(-FIPS, -contains("Female"), -contains("Male")) |>
mutate(Anglo = NH_White_Total/Total,
Black = NH_Black_Total/Total,
Hispanic = Hispanic_Total/Total,
Other = (NH_Other_Total + NH_Asian_Total)/Total) |>
select(-Age, -Total) |>
select(County, Anglo, Black, Hispanic, Other) |>
pivot_longer(cols = c(Anglo, Black, Hispanic, Other),
names_to = "RaceEthnicity",
values_to = "Data") |>
mutate(DataFormat = "Percent")
num_race_eth_dis <- pop_cleaned_total |>
select(-FIPS, -contains("Female"), -contains("Male")) |>
rename(Anglo = NH_White_Total,
Black = NH_Black_Total,
Hispanic = Hispanic_Total)|>
mutate(Other = NH_Other_Total + NH_Asian_Total) |>
select(-Age, -Total) |>
select(County, Anglo, Black, Hispanic, Other) |>
pivot_longer(cols = c(Anglo, Black, Hispanic, Other),
names_to = "RaceEthnicity",
values_to = "Data") |>
mutate(DataFormat = "Number")
final_race_eth_2023_dis <- rbind(percent_race_eth_dis, num_race_eth_dis) |>
rename(Location = County) |>
mutate(LocationType = ifelse(Location == "Texas", "State", "County")) |>
left_join(locations, by = "Location") |>
arrange(desc(LocationType), Location, DataFormat)
Child Population
children <- pop_2023 |>
mutate(Age = sub("< 1 Year", 0, Age)) |>
mutate(Age = as.numeric(sub(" Years", "", Age)))|>
filter(!is.na(Age) & Age < 18) |>
mutate(County = str_to_title(County)) |>
mutate(County = sub(" County", "", County),
County = sub("State Of ", "", County)) |>
select(-FIPS, -contains("Female"), -contains("Male"))
## Warning: There was 1 warning in `mutate()`.
## ℹ In argument: `Age = as.numeric(sub(" Years", "", Age))`.
## Caused by warning:
## ! NAs introduced by coercion
total_children <- children |>
group_by(County) |>
summarise(Data = sum(Total)) |>
rename(Location = County) |>
left_join(locations, by = "Location") |>
mutate(LocationType = ifelse(Location == "Texas", "State", "County"),
DataFormat = "Number")
child_re_clean <- children |>
group_by(County) |>
summarise(Total = sum(Total),
Anglo = sum(NH_White_Total),
Black = sum(NH_Black_Total),
Asian = sum(NH_Asian_Total),
Hispanic = sum(Hispanic_Total),
Other = sum(NH_Other_Total))
child_percent_race_eth <- child_re_clean |>
mutate(Anglo = Anglo/Total,
Black = Black/Total,
Hispanic = Hispanic/Total,
Asian = Asian/Total,
Other = Other/Total) |>
select( -Total) |>
select(County, Anglo, Black, Hispanic, Asian, Other) |>
pivot_longer(cols = c(Anglo, Black, Hispanic, Asian, Other),
names_to = "RaceEthnicity",
values_to = "Data") |>
mutate(DataFormat = "Percent")
child_num_race_eth <- child_re_clean |>
select(-Total) |>
pivot_longer(cols = c(Anglo, Black, Hispanic, Asian, Other),
names_to = "RaceEthnicity",
values_to = "Data") |>
mutate(DataFormat = "Number")
child_final_race_eth_2023 <- rbind(child_percent_race_eth, child_num_race_eth) |>
rename(Location = County) |>
mutate(LocationType = ifelse(Location == "Texas", "State", "County")) |>
left_join(locations, by = "Location") |>
arrange(desc(LocationType), Location, DataFormat)
#disaggregated
child_re_clean_dis <- child_re_clean |>
rename(og_other = Other) |>
mutate(Other = og_other + Asian) |>
select(-og_other,-Asian)
child_percent_race_eth_dis <- child_re_clean_dis |>
mutate(Anglo = Anglo/Total,
Black = Black/Total,
Hispanic = Hispanic/Total,
Other = (Other)/Total) |>
select( -Total) |>
select(County, Anglo, Black, Hispanic, Other) |>
pivot_longer(cols = c(Anglo, Black, Hispanic, Other),
names_to = "RaceEthnicity",
values_to = "Data") |>
mutate(DataFormat = "Percent")
child_num_race_eth_dis <- child_re_clean_dis |>
select(-Total) |>
pivot_longer(cols = c(Anglo, Black, Hispanic, Other),
names_to = "RaceEthnicity",
values_to = "Data") |>
mutate(DataFormat = "Number")
child_final_race_eth_2023_dis <- rbind(child_percent_race_eth_dis, child_num_race_eth_dis) |>
rename(Location = County) |>
mutate(LocationType = ifelse(Location == "Texas", "State", "County")) |>
left_join(locations, by = "Location") |>
arrange(desc(LocationType), Location, DataFormat)
Exports
write.csv(file = "CLEANED_1.1_TotalPopulation_2023.csv", total_final, row.names = FALSE)
write.csv(file = "../1.1_TotalPopulation_RaceEthnicity_AsianDisaggregated/CLEANED_1.1_TotalPopulation_RaceEthnicity_2023_DIS.csv", final_race_eth_2023, row.names = FALSE)
write.csv(file = "../1.1_TotalPopulation_RaceEthnicity/CLEANED_1.1_TotalPopulation_RaceEthnicity_2023.csv", final_race_eth_2023_dis, row.names = FALSE)
write.csv(file = "../1.2_ChildPopulation/CLEANED_1.2_ChildPopulation_2023.csv", total_children, row.names = FALSE)
write.csv(file = "../1.2_ChildPopulation_RaceEthnicity_AsianDisaggregated/CLEANED_1.2_ChildPopulation_RaceEthnicity_2023_DIS.csv", child_final_race_eth_2023, row.names = FALSE)
write.csv(file = "../1.2_ChildPopulation_RaceEthnicity/CLEANED_1.2_ChildPopulation_RaceEthnicity_2023.csv", child_final_race_eth_2023_dis, row.names = FALSE)