4+3
[1] 7
4-3
[1] 1
4==3
[1] FALSE
3^2
[1] 9
sqrt(4)
[1] 2
3==5
[1] FALSE
3==8
[1] FALSE
3==3
[1] TRUE
3==(2+1)
[1] TRUE
4!=4
[1] FALSE
2!=4
[1] TRUE
log(10)#1n, natural log, base e=2.72
[1] 2.302585
log10(10)
[1] 1
log10(100)
[1] 2
log10(1000)
[1] 3
TRUE | FALSE
[1] TRUE
TRUE & FALSE
[1] FALSE
!FALSE 
[1] TRUE
!TRUE
[1] FALSE
!FALSE & FALSE | TRUE
[1] TRUE
!FALSE & !TRUE | TRUE
[1] TRUE
2>5|1==3
[1] FALSE
11>7|4==3
[1] TRUE

#Question_1

log(10,base=5)
[1] 1.430677
log(10)#ln of 10
[1] 2.302585
log10(10)
[1] 1
#Batting Average=(No. of Hits)/(No. of At Bats)
#What is the batting average of a player that bats 29 hits in 112 at bats?
BA=(29)/(112)
BA
[1] 0.2589286
Batting_Average=round(BA,digits = 3)
Batting_Average
[1] 0.259

#Question_2:What is the batting average of a player that bats 42 hits in 212 at bats?

BA_1=(42)/212
Batting_Average1=round(BA_1,digits = 3)
Batting_Average1
[1] 0.198
On_Base_Percentage=round(OBP,digits = 3)
On_Base_Percentage
[1] 0.35

On Base Percentage OBP=(H+BB+HBP)/(At Bats+BB+HBP+SF) Let us compute the OBP for a player with the following general stats AB=515,H=172,BB=84,HBP=5,SF=6

OBP=(172+84+5)/(515+84+5+6)
OBP 
[1] 0.4278689

#Question_3:Compute the OBP for a player with the following general stats: AB=565,H=156,BB=65,HBP=3,SF=7

OBP=(156+65+3)/(565+65+3+7)
On_Base_Percentage2=round(OBP,digits =3)
On_Base_Percentage2
[1] 0.35
Total_Bases<-136+ 214
Total_Bases
[1] 350
ls()
 [1] "BA"                  "BA_1"                "Batting_Average"     "Batting_Average1"    "contract_length"     "contract_years"     
 [7] "contracts_mean"      "contracts_median"    "contracts_n"         "contracts_sd"        "contracts_w1sd"      "contracts_w2sd"     
[13] "contracts_w3sd"      "firstbase"           "firstbaseTest"       "game_day"            "getMode"             "HR_before"          
[19] "model1"              "model2"              "model3"              "model4"              "model5"              "model6"             
[25] "model7"              "n_1"                 "n_2"                 "n_3"                 "n_4"                 "n_seasons"          
[31] "n_soto_seasons"      "OBP"                 "On_Base_Percentage"  "On_Base_Percentage2" "pitches_by_innings"  "players_positions"  
[37] "predictTest"         "Robert_HRs"          "salary_ave"          "salary_ave_2"        "sals"                "soccer_positions"   
[43] "Soto_Walks_6"        "Soto_Walks_Before"   "SSE"                 "strikes_by_innings"  "Total_Bases"         "wanted_BB"          
[49] "wanted_HR"           "Wins_Season"         "x"                   "x_4"                 "y_1"                 "y_2"                
[55] "y_3"                 "y_4"                
rm(Total_Bases)
ls()
 [1] "BA"                  "BA_1"                "Batting_Average"     "Batting_Average1"    "contract_length"     "contract_years"     
 [7] "contracts_mean"      "contracts_median"    "contracts_n"         "contracts_sd"        "contracts_w1sd"      "contracts_w2sd"     
[13] "contracts_w3sd"      "firstbase"           "firstbaseTest"       "game_day"            "getMode"             "HR_before"          
[19] "model1"              "model2"              "model3"              "model4"              "model5"              "model6"             
[25] "model7"              "n_1"                 "n_2"                 "n_3"                 "n_4"                 "n_seasons"          
[31] "n_soto_seasons"      "OBP"                 "On_Base_Percentage"  "On_Base_Percentage2" "pitches_by_innings"  "players_positions"  
[37] "predictTest"         "Robert_HRs"          "salary_ave"          "salary_ave_2"        "sals"                "soccer_positions"   
[43] "Soto_Walks_6"        "Soto_Walks_Before"   "SSE"                 "strikes_by_innings"  "wanted_BB"           "wanted_HR"          
[49] "Wins_Season"         "x"                   "x_4"                 "y_1"                 "y_2"                 "y_3"                
[55] "y_4"                
pitches_by_innings <- c(12, 15, 10, 20, 10) 
pitches_by_innings
[1] 12 15 10 20 10
Wins_Season<-c(94,88,96,87,79)
Wins_Season
[1] 94 88 96 87 79
strikes_by_innings <- c(5,6,9,7,14)
strikes_by_innings
[1]  5  6  9  7 14

#Question_4: Define two vectors,runs_per_9innings and hits_per_9innings, each with five elements.

rep(2,5)
[1] 2 2 2 2 2
1:6
[1] 1 2 3 4 5 6
seq(3,10,3)
[1] 3 6 9
strikes_by_innings
[1]  5  6  9  7 14
Wins_Season
[1] 94 88 96 87 79
pitches_by_innings
[1] 12 15 10 20 10
strikes_by_innings+pitches_by_innings
[1] 17 21 19 27 24
strikes_by_innings==pitches_by_innings
[1] FALSE FALSE FALSE FALSE FALSE
length(pitches_by_innings)
[1] 5
min(pitches_by_innings)
[1] 10
max(pitches_by_innings)
[1] 20
mean(pitches_by_innings)
[1] 13.4
pitches_by_innings[3]
[1] 10
pitches_by_innings[1]
[1] 12
pitches_by_innings[5]
[1] 10
pitches_by_innings[length(pitches_by_innings)]
[1] 10
pitches_by_innings[c(2,3,4)]
[1] 15 10 20
players_positions <- c("catcher", "pitcher", "infielders", "outfielders")
players_positions
[1] "catcher"     "pitcher"     "infielders"  "outfielders"
soccer_positions<- c("goalkeepers","defenders","midfielders", "forwards")
soccer_positions
[1] "goalkeepers" "defenders"   "midfielders" "forwards"   
data.frame(bonus = c(2, 3, 1),#in millions 
           active_roster = c("yes", "no", "yes"), 
           salary = c(1.5, 2.5, 1))#in millions 
sample(1:9, size=2)
[1] 6 3
x<-c("yes","no","no","no","yes","yes","yes","yes","yes","yes")
x
 [1] "yes" "no"  "no"  "no"  "yes" "yes" "yes" "yes" "yes" "yes"
table(x)
x
 no yes 
  3   7 
sals <- c(12, .4, 5, 2, 50, 8, 3, 1, 4, 0.25)
# the average
mean(sals) 
[1] 8.565
var(sals)
[1] 225.5145
sd(sals)
[1] 15.01714
median(sals)
[1] 3.5
# Tukey's five number summary, usefull for boxplots
# five numbers: min, lower hinge, median, upper hinge, max
fivenum(sals)
[1]  0.25  1.00  3.50  8.00 50.00
summary(sals)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  0.250   1.250   3.500   8.565   7.250  50.000 
# Function to find the mode, i.e. most frequent value
getMode <- function(x) {
     ux <- unique(x)
     ux[which.max(tabulate(match(x, ux)))]
 }
getMode(pitches_by_innings)
[1] 10

#Question_7: Find the most frequent value of hits_per_9innings.

getMode(Wins_Season)
[1] 94
Wins_Season
[1] 94 88 96 87 79

#Question_8: Summarize the following survey with the table() command: #What is your favorite day of the week to watch baseball? A total of 10 fans submitted this survey. #Saturday, Saturday, Sunday, Monday, Saturday,Tuesday, Sunday, Friday, Friday, Monday

game_day<-c("Saturday", "Saturday", "Sunday", "Monday", "Saturday","Tuesday", "Sunday", "Friday", "Friday", "Monday")
table(game_day)
game_day
  Friday   Monday Saturday   Sunday  Tuesday 
       2        2        3        2        1 

#Question_9: What is the most frequent answer recorded in the survey? Use the getMode function to compute results.

getMode(game_day)
[1] "Saturday"
LS0tCnRpdGxlOiAiUiBOb3RlYm9vayIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKCgpgYGB7cn0KNCszCjQtMwo0PT0zCjNeMgpzcXJ0KDQpCmBgYApgYGB7cn0KMz09NQozPT04CjM9PTMKMz09KDIrMSkKNCE9NAoyIT00CgpgYGAKCgpgYGB7cn0KbG9nKDEwKSMxbiwgbmF0dXJhbCBsb2csIGJhc2UgZT0yLjcyCmBgYApgYGB7cn0KbG9nMTAoMTApCmxvZzEwKDEwMCkKbG9nMTAoMTAwMCkKYGBgCgpgYGB7cn0KVFJVRSB8IEZBTFNFCmBgYAoKYGBge3J9ClRSVUUgJiBGQUxTRQpgYGAKCmBgYHtyfQohRkFMU0UgCmBgYApgYGB7cn0KIVRSVUUKYGBgCmBgYHtyfQohRkFMU0UgJiBGQUxTRSB8IFRSVUUKIUZBTFNFICYgIVRSVUUgfCBUUlVFCmBgYApgYGB7cn0KMj41fDE9PTMKMTE+N3w0PT0zCmBgYAoKCgojUXVlc3Rpb25fMQpgYGB7cn0KbG9nKDEwLGJhc2U9NSkKYGBgCgpgYGB7cn0KbG9nKDEwKSNsbiBvZiAxMApsb2cxMCgxMCkKYGBgCgoKYGBge3J9CiNCYXR0aW5nIEF2ZXJhZ2U9KE5vLiBvZiBIaXRzKS8oTm8uIG9mIEF0IEJhdHMpCiNXaGF0IGlzIHRoZSBiYXR0aW5nIGF2ZXJhZ2Ugb2YgYSBwbGF5ZXIgdGhhdCBiYXRzIDI5IGhpdHMgaW4gMTEyIGF0IGJhdHM/CkJBPSgyOSkvKDExMikKQkEKYGBgCgpgYGB7cn0KQmF0dGluZ19BdmVyYWdlPXJvdW5kKEJBLGRpZ2l0cyA9IDMpCkJhdHRpbmdfQXZlcmFnZQpgYGAKI1F1ZXN0aW9uXzI6V2hhdCBpcyB0aGUgYmF0dGluZyBhdmVyYWdlIG9mIGEgcGxheWVyIHRoYXQgYmF0cyA0MiBoaXRzIGluIDIxMiBhdCBiYXRzPwpgYGB7cn0KQkFfMT0oNDIpLzIxMgpCYXR0aW5nX0F2ZXJhZ2UxPXJvdW5kKEJBXzEsZGlnaXRzID0gMykKQmF0dGluZ19BdmVyYWdlMQpgYGAKCgpgYGB7cn0KT25fQmFzZV9QZXJjZW50YWdlPXJvdW5kKE9CUCxkaWdpdHMgPSAzKQpPbl9CYXNlX1BlcmNlbnRhZ2UKYGBgCgoKCgpPbiBCYXNlIFBlcmNlbnRhZ2UKT0JQPShIK0JCK0hCUCkvKEF0IEJhdHMrQkIrSEJQK1NGKQpMZXQgdXMgY29tcHV0ZSB0aGUgT0JQIGZvciBhIHBsYXllciB3aXRoIHRoZSBmb2xsb3dpbmcgZ2VuZXJhbCBzdGF0cwpBQj01MTUsSD0xNzIsQkI9ODQsSEJQPTUsU0Y9NgoKCmBgYHtyfQpPQlA9KDE3Mis4NCs1KS8oNTE1Kzg0KzUrNikKT0JQIApgYGAKCgoKCiNRdWVzdGlvbl8zOkNvbXB1dGUgdGhlIE9CUCBmb3IgYSBwbGF5ZXIgd2l0aCB0aGUgZm9sbG93aW5nIGdlbmVyYWwgc3RhdHM6IEFCPTU2NSxIPTE1NixCQj02NSxIQlA9MyxTRj03CgpgYGB7cn0KT0JQPSgxNTYrNjUrMykvKDU2NSs2NSszKzcpCk9uX0Jhc2VfUGVyY2VudGFnZTI9cm91bmQoT0JQLGRpZ2l0cyA9MykKT25fQmFzZV9QZXJjZW50YWdlMgpgYGAKCgoKCgpgYGB7cn0KVG90YWxfQmFzZXM8LTEzNisgMjE0ClRvdGFsX0Jhc2VzCmBgYAoKYGBge3J9CmxzKCkKYGBgCgpgYGB7cn0Kcm0oVG90YWxfQmFzZXMpCmBgYAoKYGBge3J9CmxzKCkKYGBgCgoKYGBge3J9CnBpdGNoZXNfYnlfaW5uaW5ncyA8LSBjKDEyLCAxNSwgMTAsIDIwLCAxMCkgCnBpdGNoZXNfYnlfaW5uaW5ncwpgYGAKCgpgYGB7cn0KV2luc19TZWFzb248LWMoOTQsODgsOTYsODcsNzkpCldpbnNfU2Vhc29uCmBgYApgYGB7cn0Kc3RyaWtlc19ieV9pbm5pbmdzIDwtIGMoNSw2LDksNywxNCkKc3RyaWtlc19ieV9pbm5pbmdzCmBgYAojUXVlc3Rpb25fNDogRGVmaW5lIHR3byB2ZWN0b3JzLHJ1bnNfcGVyXzlpbm5pbmdzIGFuZCBoaXRzX3Blcl85aW5uaW5ncywgZWFjaCB3aXRoIGZpdmUgZWxlbWVudHMuCgpgYGB7cn0KcmVwKDIsNSkKYGBgCgpgYGB7cn0KMTo2CnNlcSgzLDEwLDMpCmBgYApgYGB7cn0Kc3RyaWtlc19ieV9pbm5pbmdzCldpbnNfU2Vhc29uCnBpdGNoZXNfYnlfaW5uaW5ncwpgYGAKCmBgYHtyfQpzdHJpa2VzX2J5X2lubmluZ3MrcGl0Y2hlc19ieV9pbm5pbmdzCnN0cmlrZXNfYnlfaW5uaW5ncz09cGl0Y2hlc19ieV9pbm5pbmdzCmBgYAoKYGBge3J9Cmxlbmd0aChwaXRjaGVzX2J5X2lubmluZ3MpCm1pbihwaXRjaGVzX2J5X2lubmluZ3MpCm1heChwaXRjaGVzX2J5X2lubmluZ3MpCm1lYW4ocGl0Y2hlc19ieV9pbm5pbmdzKQpgYGAKCmBgYHtyfQpwaXRjaGVzX2J5X2lubmluZ3NbM10KcGl0Y2hlc19ieV9pbm5pbmdzWzFdCnBpdGNoZXNfYnlfaW5uaW5nc1s1XQpgYGAKCmBgYHtyfQpwaXRjaGVzX2J5X2lubmluZ3NbbGVuZ3RoKHBpdGNoZXNfYnlfaW5uaW5ncyldCmBgYAoKYGBge3J9CnBpdGNoZXNfYnlfaW5uaW5nc1tjKDIsMyw0KV0KYGBgCgpgYGB7cn0KcGxheWVyc19wb3NpdGlvbnMgPC0gYygiY2F0Y2hlciIsICJwaXRjaGVyIiwgImluZmllbGRlcnMiLCAib3V0ZmllbGRlcnMiKQpwbGF5ZXJzX3Bvc2l0aW9ucwpgYGAKCmBgYHtyfQpzb2NjZXJfcG9zaXRpb25zPC0gYygiZ29hbGtlZXBlcnMiLCJkZWZlbmRlcnMiLCJtaWRmaWVsZGVycyIsICJmb3J3YXJkcyIpCnNvY2Nlcl9wb3NpdGlvbnMKYGBgCgoKCgpgYGB7cn0KZGF0YS5mcmFtZShib251cyA9IGMoMiwgMywgMSksI2luIG1pbGxpb25zIAogICAgICAgICAgIGFjdGl2ZV9yb3N0ZXIgPSBjKCJ5ZXMiLCAibm8iLCAieWVzIiksIAogICAgICAgICAgIHNhbGFyeSA9IGMoMS41LCAyLjUsIDEpKSNpbiBtaWxsaW9ucyAKYGBgCgpgYGB7cn0Kc2FtcGxlKDE6OSwgc2l6ZT0yKQpgYGAKCmBgYHtyfQp4PC1jKCJ5ZXMiLCJubyIsIm5vIiwibm8iLCJ5ZXMiLCJ5ZXMiLCJ5ZXMiLCJ5ZXMiLCJ5ZXMiLCJ5ZXMiKQp4CnRhYmxlKHgpCmBgYAoKYGBge3J9CnNhbHMgPC0gYygxMiwgLjQsIDUsIDIsIDUwLCA4LCAzLCAxLCA0LCAwLjI1KQojIHRoZSBhdmVyYWdlCm1lYW4oc2FscykgCmBgYAoKYGBge3J9CnZhcihzYWxzKQpzZChzYWxzKQptZWRpYW4oc2FscykKYGBgCgoKYGBge3J9CiMgVHVrZXkncyBmaXZlIG51bWJlciBzdW1tYXJ5LCB1c2VmdWxsIGZvciBib3hwbG90cwojIGZpdmUgbnVtYmVyczogbWluLCBsb3dlciBoaW5nZSwgbWVkaWFuLCB1cHBlciBoaW5nZSwgbWF4CmZpdmVudW0oc2FscykKYGBgCgpgYGB7cn0Kc3VtbWFyeShzYWxzKQpgYGAKCmBgYHtyfQojIEZ1bmN0aW9uIHRvIGZpbmQgdGhlIG1vZGUsIGkuZS4gbW9zdCBmcmVxdWVudCB2YWx1ZQpnZXRNb2RlIDwtIGZ1bmN0aW9uKHgpIHsKICAgICB1eCA8LSB1bmlxdWUoeCkKICAgICB1eFt3aGljaC5tYXgodGFidWxhdGUobWF0Y2goeCwgdXgpKSldCiB9CmBgYAoKYGBge3J9CmdldE1vZGUocGl0Y2hlc19ieV9pbm5pbmdzKQpgYGAKCiNRdWVzdGlvbl83OiBGaW5kIHRoZSBtb3N0IGZyZXF1ZW50IHZhbHVlIG9mIGhpdHNfcGVyXzlpbm5pbmdzLgoKYGBge3J9CmdldE1vZGUoV2luc19TZWFzb24pCldpbnNfU2Vhc29uCmBgYAojUXVlc3Rpb25fODogU3VtbWFyaXplIHRoZSBmb2xsb3dpbmcgc3VydmV5IHdpdGggdGhlIGB0YWJsZSgpYCBjb21tYW5kOgojV2hhdCBpcyB5b3VyIGZhdm9yaXRlIGRheSBvZiB0aGUgd2VlayB0byB3YXRjaCBiYXNlYmFsbD8gQSB0b3RhbCBvZiAxMCBmYW5zIHN1Ym1pdHRlZCB0aGlzIHN1cnZleS4KI1NhdHVyZGF5LCBTYXR1cmRheSwgU3VuZGF5LCBNb25kYXksIFNhdHVyZGF5LFR1ZXNkYXksIFN1bmRheSwgRnJpZGF5LCBGcmlkYXksIE1vbmRheQoKCmBgYHtyfQpnYW1lX2RheTwtYygiU2F0dXJkYXkiLCAiU2F0dXJkYXkiLCAiU3VuZGF5IiwgIk1vbmRheSIsICJTYXR1cmRheSIsIlR1ZXNkYXkiLCAiU3VuZGF5IiwgIkZyaWRheSIsICJGcmlkYXkiLCAiTW9uZGF5IikKdGFibGUoZ2FtZV9kYXkpCmBgYAoKI1F1ZXN0aW9uXzk6IFdoYXQgaXMgdGhlIG1vc3QgZnJlcXVlbnQgYW5zd2VyIHJlY29yZGVkIGluIHRoZSBzdXJ2ZXk/IFVzZSB0aGUgZ2V0TW9kZSBmdW5jdGlvbiB0byBjb21wdXRlIHJlc3VsdHMuIApgYGB7cn0KZ2V0TW9kZShnYW1lX2RheSkKYGBgCgo=