PACKAGE

library(terra)
## terra 1.8.54
library(sp)
library(sf)
## Linking to GEOS 3.13.1, GDAL 3.11.0, PROJ 9.6.0; sf_use_s2() is TRUE
library(remotes)
library(lmtest)
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following object is masked from 'package:terra':
## 
##     time<-
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
library(quantreg)
## Loading required package: SparseM
library(readxl)
library(sp)
library(spData)
## To access larger datasets in this package, install the spDataLarge
## package with: `install.packages('spDataLarge',
## repos='https://nowosad.github.io/drat/', type='source')`
library(spdep)
library(car)
## Loading required package: carData
library(skedastic)
## Registered S3 methods overwritten by 'registry':
##   method               from 
##   print.registry_field proxy
##   print.registry_entry proxy
library(spatialreg)
## Loading required package: Matrix
## 
## Attaching package: 'Matrix'
## The following object is masked from 'package:SparseM':
## 
##     det
## 
## Attaching package: 'spatialreg'
## The following objects are masked from 'package:spdep':
## 
##     get.ClusterOption, get.coresOption, get.mcOption,
##     get.VerboseOption, get.ZeroPolicyOption, set.ClusterOption,
##     set.coresOption, set.mcOption, set.VerboseOption,
##     set.ZeroPolicyOption
library(nortest)
library(ggplot2)
library(corrplot)
## corrplot 0.95 loaded

IMPORT DATA

data <- data_jateng <- read_excel("C:/Users/halfi/Downloads/SAR SARQR BU RINA/SAR SARQR BU RINA/data.xlsx")
## New names:
## • `` -> `...9`
head(data)
## # A tibble: 6 × 9
##   KABKOT                     Y    X1     X2    X3    X4    X5     X6  ...9
##   <chr>                  <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl>  <dbl> <dbl>
## 1 Kabupaten Cilacap       71.0  5.37 190960  9.62  65.6   327 402074     1
## 2 Kabupaten Banyumas      73.2  4.88 220470  6.05  64.8   389 475654     2
## 3 Kabupaten Purbalingga   69.5  2.75 145330  5.23  73.5   160 413194     3
## 4 Kabupaten Banjarnegara  68.6  2.8  141250  6.38  72.2   152 432505     4
## 5 Kabupaten Kebumen       70.8  3.72 196160  5.92  71.6   164 483725     5
## 6 Kabupaten Purworejo     73.6  2.1   82640  4.45  72.4   150 449772     6
str(data)
## tibble [35 × 9] (S3: tbl_df/tbl/data.frame)
##  $ KABKOT: chr [1:35] "Kabupaten Cilacap" "Kabupaten Banyumas" "Kabupaten Purbalingga" "Kabupaten Banjarnegara" ...
##  $ Y     : num [1:35] 71 73.2 69.5 68.6 70.8 ...
##  $ X1    : num [1:35] 5.37 4.88 2.75 2.8 3.72 2.1 2.42 3.54 2.92 3.45 ...
##  $ X2    : num [1:35] 190960 220470 145330 141250 196160 ...
##  $ X3    : num [1:35] 9.62 6.05 5.23 6.38 5.92 4.45 5.01 4.97 4.92 4.31 ...
##  $ X4    : num [1:35] 65.7 64.8 73.5 72.2 71.6 ...
##  $ X5    : num [1:35] 327 389 160 152 164 150 118 284 299 366 ...
##  $ X6    : num [1:35] 402074 475654 413194 432505 483725 ...
##  $ ...9  : num [1:35] 1 2 3 4 5 6 7 8 9 10 ...
datax = data[2:8]
head(datax)
## # A tibble: 6 × 7
##       Y    X1     X2    X3    X4    X5     X6
##   <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl>  <dbl>
## 1  71.0  5.37 190960  9.62  65.6   327 402074
## 2  73.2  4.88 220470  6.05  64.8   389 475654
## 3  69.5  2.75 145330  5.23  73.5   160 413194
## 4  68.6  2.8  141250  6.38  72.2   152 432505
## 5  70.8  3.72 196160  5.92  71.6   164 483725
## 6  73.6  2.1   82640  4.45  72.4   150 449772
attach(datax)
library(sf)
library(sp)
jateng_sf = st_read("C:/Users/halfi/Downloads/SAR SARQR BU RINA/SAR SARQR BU RINA/RBI_50K_2023_Jawa Tengah/RBI_50K_2023_Jawa Tengah.shp")
## Reading layer `RBI_50K_2023_Jawa Tengah' from data source 
##   `C:\Users\halfi\Downloads\SAR SARQR BU RINA\SAR SARQR BU RINA\RBI_50K_2023_Jawa Tengah\RBI_50K_2023_Jawa Tengah.shp' 
##   using driver `ESRI Shapefile'
## Simple feature collection with 35 features and 20 fields
## Geometry type: MULTIPOLYGON
## Dimension:     XY
## Bounding box:  xmin: 108.5558 ymin: -8.211806 xmax: 111.6914 ymax: -5.725371
## Geodetic CRS:  WGS 84
jateng = as(jateng_sf, "Spatial")
class(jateng)
## [1] "SpatialPolygonsDataFrame"
## attr(,"package")
## [1] "sp"
coords = coordinates(jateng)

EXPLORATORY DATA

summary(datax)
##        Y               X1              X2               X3       
##  Min.   :67.03   Min.   :0.330   Min.   :  8650   Min.   :1.760  
##  1st Qu.:70.78   1st Qu.:2.255   1st Qu.: 75820   1st Qu.:4.355  
##  Median :73.15   Median :2.790   Median : 97180   Median :5.010  
##  Mean   :73.50   Mean   :2.857   Mean   :109470   Mean   :5.345  
##  3rd Qu.:75.89   3rd Qu.:3.580   3rd Qu.:143940   3rd Qu.:6.505  
##  Max.   :84.35   Max.   :5.430   Max.   :290660   Max.   :9.640  
##        X4              X5               X6         
##  Min.   :64.75   Min.   :  89.0   Min.   : 402074  
##  1st Qu.:68.63   1st Qu.: 147.5   1st Qu.: 454754  
##  Median :70.99   Median : 179.0   Median : 522326  
##  Mean   :71.12   Mean   : 229.6   Mean   : 584428  
##  3rd Qu.:73.72   3rd Qu.: 237.0   3rd Qu.: 594390  
##  Max.   :79.57   Max.   :1356.0   Max.   :1536037
library(sp)
jateng_sp<-as(jateng_sf,"Spatial")
library(RColorBrewer)
colfunc <- colorRampPalette(c("#EEE2DC", "#DA7B93","#5D001E")) 
#colorRampPalette menentukan warna apa saja yang kita inginkan
jateng_sf$Y <- Y
spplot(jateng_sp, "Y",
       col.regions = colfunc(6),
       cuts = 3,
       at = seq(min(Y), max(Y), length.out = 4),
       main = "Peta Sebaran Indeks Pembangunan Manusia di Jawa Tengah")

#KORELASI

korelasi = cor(datax)
korelasi
##              Y         X1          X2          X3         X4          X5
## Y   1.00000000 -0.4440284 -0.63110435 -0.04075512 -0.2202671  0.44930786
## X1 -0.44402837  1.0000000  0.85455527  0.41410116 -0.2510019  0.37214764
## X2 -0.63110435  0.8545553  1.00000000  0.33424492 -0.2047442  0.05084769
## X3 -0.04075512  0.4141012  0.33424492  1.00000000 -0.4868062  0.25782272
## X4 -0.22026707 -0.2510019 -0.20474417 -0.48680618  1.0000000 -0.13671246
## X5  0.44930786  0.3721476  0.05084769  0.25782272 -0.1367125  1.00000000
## X6  0.87002747 -0.4346296 -0.56762791  0.10913585 -0.1872612  0.36429127
##            X6
## Y   0.8700275
## X1 -0.4346296
## X2 -0.5676279
## X3  0.1091359
## X4 -0.1872612
## X5  0.3642913
## X6  1.0000000
corrplot(korelasi,
         tl.col="black", 
         tl.srt=360, 
         method = "color",
         addCoef.col = "black") # Bentuk visualisasi

Analisis Regresi

reg=lm(Y~X1+X2+X3+X4+X5+X6,data=datax)
summary(reg)
## 
## Call:
## lm(formula = Y ~ X1 + X2 + X3 + X4 + X5 + X6, data = datax)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.780 -1.372 -0.201  1.022  3.123 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  9.216e+01  8.362e+00  11.021 1.08e-11 ***
## X1          -4.239e-01  6.424e-01  -0.660  0.51467    
## X2          -1.619e-05  1.142e-05  -1.417  0.16751    
## X3          -3.909e-01  1.919e-01  -2.036  0.05126 .  
## X4          -2.975e-01  1.028e-01  -2.894  0.00729 ** 
## X5           6.655e-03  2.186e-03   3.044  0.00504 ** 
## X6           1.035e-05  2.028e-06   5.102 2.10e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.744 on 28 degrees of freedom
## Multiple R-squared:  0.8739, Adjusted R-squared:  0.8469 
## F-statistic: 32.34 on 6 and 28 DF,  p-value: 2.401e-11

#Prediksi Presentase Kemiskinan

Yh_Reg=reg$coefficients[1]+(reg$coefficients[2]*X1)+(reg$coefficients[3]*X2)+(reg$coefficients[4]*X3)+(reg$coefficients[5]*X4)+(reg$coefficients[6]*X5)+(reg$coefficients[7]*X6)

Uji Asumsi

#Uji Multikolinearitas

vif(reg)
##       X1       X2       X3       X4       X5       X6 
## 7.224138 5.453935 1.592232 1.438354 2.398385 2.601139

#Uji Normalitas

ressi=residuals(reg)
lillie.test(ressi)
## 
##  Lilliefors (Kolmogorov-Smirnov) normality test
## 
## data:  ressi
## D = 0.11492, p-value = 0.2858

#Uji Independensi

dwtest(reg)
## 
##  Durbin-Watson test
## 
## data:  reg
## DW = 1.4528, p-value = 0.0238
## alternative hypothesis: true autocorrelation is greater than 0

#Uji Identik

bptest(reg)
## 
##  studentized Breusch-Pagan test
## 
## data:  reg
## BP = 4.4947, df = 6, p-value = 0.61

REGRESI KUANTIL MULTIVARIATE

model_kuantil=rq(Y~X1+X2+X3+X4+X5+X6,data=datax,tau=c(0.1,0.25,0.5,0.75,0.9))
summary(model_kuantil,se="iid",method="br")
## Warning in rq.fit.br(x, y, tau = tau, ...): Solution may be nonunique
## 
## Call: rq(formula = Y ~ X1 + X2 + X3 + X4 + X5 + X6, tau = c(0.1, 0.25, 
##     0.5, 0.75, 0.9), data = datax)
## 
## tau: [1] 0.1
## 
## Coefficients:
##             Value    Std. Error t value  Pr(>|t|)
## (Intercept) 88.32905  9.08976    9.71743  0.00000
## X1          -0.80696  0.69822   -1.15573  0.25756
## X2          -0.00001  0.00001   -0.62179  0.53911
## X3          -0.29162  0.20863   -1.39778  0.17316
## X4          -0.28381  0.11176   -2.53938  0.01694
## X5           0.00647  0.00238    2.72313  0.01101
## X6           0.00001  0.00000    5.23435  0.00001
## 
## Call: rq(formula = Y ~ X1 + X2 + X3 + X4 + X5 + X6, tau = c(0.1, 0.25, 
##     0.5, 0.75, 0.9), data = datax)
## 
## tau: [1] 0.25
## 
## Coefficients:
##             Value    Std. Error t value  Pr(>|t|)
## (Intercept) 99.90583 10.15586    9.83726  0.00000
## X1          -0.64146  0.78011   -0.82227  0.41787
## X2          -0.00001  0.00001   -0.60386  0.55080
## X3          -0.65244  0.23310   -2.79898  0.00918
## X4          -0.41603  0.12487   -3.33168  0.00243
## X5           0.00651  0.00266    2.45359  0.02063
## X6           0.00001  0.00000    4.61592  0.00008
## 
## Call: rq(formula = Y ~ X1 + X2 + X3 + X4 + X5 + X6, tau = c(0.1, 0.25, 
##     0.5, 0.75, 0.9), data = datax)
## 
## tau: [1] 0.5
## 
## Coefficients:
##             Value     Std. Error t value   Pr(>|t|) 
## (Intercept) 103.92402  12.70484    8.17987   0.00000
## X1           -0.55548   0.97591   -0.56919   0.57377
## X2           -0.00001   0.00002   -0.78627   0.43832
## X3           -0.57634   0.29160   -1.97647   0.05803
## X4           -0.44865   0.15621   -2.87201   0.00769
## X5            0.00603   0.00332    1.81591   0.08011
## X6            0.00001   0.00000    3.25029   0.00300
## 
## Call: rq(formula = Y ~ X1 + X2 + X3 + X4 + X5 + X6, tau = c(0.1, 0.25, 
##     0.5, 0.75, 0.9), data = datax)
## 
## tau: [1] 0.75
## 
## Coefficients:
##             Value    Std. Error t value  Pr(>|t|)
## (Intercept) 84.54457  6.12181   13.81039  0.00000
## X1          -0.60741  0.47024   -1.29171  0.20702
## X2          -0.00003  0.00001   -3.13288  0.00403
## X3          -0.18929  0.14051   -1.34721  0.18871
## X4          -0.17381  0.07527   -2.30908  0.02853
## X5           0.01522  0.00160    9.50830  0.00000
## X6           0.00001  0.00000    5.44515  0.00001
## 
## Call: rq(formula = Y ~ X1 + X2 + X3 + X4 + X5 + X6, tau = c(0.1, 0.25, 
##     0.5, 0.75, 0.9), data = datax)
## 
## tau: [1] 0.9
## 
## Coefficients:
##             Value    Std. Error t value  Pr(>|t|)
## (Intercept) 90.21812  7.93940   11.36334  0.00000
## X1          -0.48382  0.60986   -0.79333  0.43426
## X2          -0.00003  0.00001   -2.33538  0.02692
## X3          -0.52273  0.18223   -2.86856  0.00776
## X4          -0.21637  0.09762   -2.21648  0.03496
## X5           0.01365  0.00208    6.57474  0.00000
## X6           0.00001  0.00000    3.95346  0.00048

#Prediksi Kemiskinan setiap Kuantil

Yhat_1=model_kuantil$coefficients[1,1]+(model_kuantil$coefficients[2,1]*data$X1)+(model_kuantil$coefficients[3,1]*data$X2)+(model_kuantil$coefficients[4,1]*data$X3)+(model_kuantil$coefficients[5,1]*data$X4)+(model_kuantil$coefficients[6,1]*data$X5)+(model_kuantil$coefficients[7,1]*data$X6)
Yhat_2=model_kuantil$coefficients[1,2]+(model_kuantil$coefficients[2,2]*data$X1)+(model_kuantil$coefficients[3,2]*data$X2)+(model_kuantil$coefficients[4,2]*data$X3)+(model_kuantil$coefficients[5,2]*data$X4)+(model_kuantil$coefficients[6,2]*data$X5)+(model_kuantil$coefficients[7,2]*data$X6)
Yhat_3=model_kuantil$coefficients[1,3]+(model_kuantil$coefficients[2,3]*data$X1)+(model_kuantil$coefficients[3,3]*data$X2)+(model_kuantil$coefficients[4,3]*data$X3)+(model_kuantil$coefficients[5,3]*data$X4)+(model_kuantil$coefficients[6,3]*data$X5)+(model_kuantil$coefficients[7,3]*data$X6)
Yhat_4=model_kuantil$coefficients[1,4]+(model_kuantil$coefficients[2,4]*data$X1)+(model_kuantil$coefficients[3,4]*data$X2)+(model_kuantil$coefficients[4,4]*data$X3)+(model_kuantil$coefficients[5,4]*data$X4)+(model_kuantil$coefficients[6,4]*data$X5)+(model_kuantil$coefficients[7,4]*data$X6)
Yhat_5=model_kuantil$coefficients[1,5]+(model_kuantil$coefficients[2,5]*data$X1)+(model_kuantil$coefficients[3,5]*data$X2)+(model_kuantil$coefficients[4,5]*data$X3)+(model_kuantil$coefficients[5,5]*data$X4)+(model_kuantil$coefficients[6,5]*data$X5)+(model_kuantil$coefficients[7,5]*data$X6)

PLOT REGRESI KUANTIL UNIVARIATE

plot(X1,Y,type="n",xlab="Persentase Jumlah Penduduk", ylab="Indeks Pembangunan Manusia")
points(X1,Y,cex=1.4,col="blue")
abline(rq(Y~X1, tau=0.1), col="red")
abline(rq(Y~X1, tau=0.25), col="orange")
abline(rq(Y~X1, tau=0.5), col="black")
abline(rq(Y~X1, tau=0.75), col="green")
abline(rq(Y~X1, tau=0.9), col="violet")
legend(4.55,84.6,c("Q0.1","Q0.25","Q0.50","Q0.75","Q0.9"),lty=c(1,1),lwd=c(1),col=c("red","orange","black","green","violet"))

plot(X2,Y,type="n",xlab="Jumlah Penduduk Miskin", ylab="Indeks Pembangunan Manusia")
points(X2,Y,cex=1.4,col="blue")
abline(rq(Y~X2, tau=0.1), col="red")
abline(rq(Y~X2, tau=0.25), col="orange")
abline(rq(Y~X2, tau=0.5), col="black")
abline(rq(Y~X2, tau=0.75), col="green")
abline(rq(Y~X2, tau=0.9), col="violet")
legend(242200,84.6,c("Q0.1","Q0.25","Q0.50","Q0.75","Q0.9"),lty=c(1,1),lwd=c(1),col=c("red","orange","black","green","violet"))

plot(X3,Y,type="n",xlab="Tingkat Pengangguran Terbuka", ylab="Indeks Pembangunan Manusia")
points(X3,Y,cex=1.4,col="blue")
abline(rq(Y~X3, tau=0.1), col="red")
abline(rq(Y~X3, tau=0.25), col="orange")
abline(rq(Y~X3, tau=0.5), col="black")
abline(rq(Y~X3, tau=0.75), col="green")
abline(rq(Y~X3, tau=0.9), col="violet")
legend(8.25,84.6,c("Q0.1","Q0.25","Q0.50","Q0.75","Q0.9"),lty=c(1,1),lwd=c(1),col=c("red","orange","black","green","violet"))

plot(X4,Y,type="n",xlab="Tingkat Partisipasi Angkatan Kerja", ylab="Indeks Pembangunan Manusia")
points(X4,Y,cex=1.4,col="blue")
abline(rq(Y~X4, tau=0.1), col="red")
abline(rq(Y~X4, tau=0.25), col="orange")
abline(rq(Y~X4, tau=0.5), col="black")
abline(rq(Y~X4, tau=0.75), col="green")
abline(rq(Y~X4, tau=0.9), col="violet")
legend(77,84.6,c("Q0.1","Q0.25","Q0.50","Q0.75","Q0.9"),lty=c(1,1),lwd=c(1),col=c("red","orange","black","green","violet"))

plot(X5,Y,type="n",xlab="Kriminalitas", ylab="Indeks Pembangunan Manusia")
points(X5,Y,cex=1.4,col="blue")
abline(rq(Y~X5, tau=0.1), col="red")
abline(rq(Y~X5, tau=0.25), col="orange")
abline(rq(Y~X5, tau=0.5), col="black")
abline(rq(Y~X5, tau=0.75), col="green")
abline(rq(Y~X5, tau=0.9), col="violet")
legend(10.55,84.6,c("Q0.1","Q0.25","Q0.50","Q0.75","Q0.9"),lty=c(1,1),lwd=c(1),col=c("red","orange","black","green","violet"))

plot(X6,Y,type="n",xlab="Persentase Pengeluaran per Kapita Bukan Makanan", ylab="Indeks Pembangunan Manusia")
points(X6,Y,cex=1.4,col="blue")
abline(rq(Y~X6, tau=0.1), col="red")
abline(rq(Y~X6, tau=0.25), col="orange")
abline(rq(Y~X6, tau=0.5), col="black")
abline(rq(Y~X6, tau=0.75), col="green")
abline(rq(Y~X6, tau=0.9), col="violet")
legend(1340000,75.5,c("Q0.1","Q0.25","Q0.50","Q0.75","Q0.9"),lty=c(1,1),lwd=c(1),col=c("red","orange","black","green","violet"))

PEMBOBOTAN

#Queen Contiguity

queenw = poly2nb(jateng, queen = TRUE)
queenw1 = nb2listw(queenw, style = "W", zero.policy = TRUE)
queenw2 = nb2mat(queenw, style = "W", zero.policy = TRUE)
queenw1
## Characteristics of weights list object:
## Neighbour list object:
## Number of regions: 35 
## Number of nonzero links: 148 
## Percentage nonzero weights: 12.08163 
## Average number of links: 4.228571 
## 
## Weights style: W 
## Weights constants summary:
##    n   nn S0       S1       S2
## W 35 1225 35 18.64242 151.0178
yy = data.frame(queenw2)

SPATIAL AUTOREGRESSIVE

#Moran Test

lm.morantest(reg, queenw1, alternative = "two.sided")
## 
##  Global Moran I for regression residuals
## 
## data:  
## model: lm(formula = Y ~ X1 + X2 + X3 + X4 + X5 + X6, data = datax)
## weights: queenw1
## 
## Moran I statistic standard deviate = -0.27443, p-value = 0.7838
## alternative hypothesis: two.sided
## sample estimates:
## Observed Moran I      Expectation         Variance 
##      -0.05017725      -0.01768544       0.01401784

#Lagrange Multiplier Lag

lm.LMtests(reg, queenw1, test = c("LMlag"))
## Please update scripts to use lm.RStests in place of lm.LMtests
## 
##  Rao's score (a.k.a Lagrange multiplier) diagnostics for spatial
##  dependence
## 
## data:  
## model: lm(formula = Y ~ X1 + X2 + X3 + X4 + X5 + X6, data = datax)
## test weights: listw
## 
## RSlag = 0.37156, df = 1, p-value = 0.5422

#Pemodelan SAR

SAR=lagsarlm(Y~X1+X2+X3+X4+X5+X6, listw=queenw1, data=datax, type="lag")
summary(SAR)
## 
## Call:lagsarlm(formula = Y ~ X1 + X2 + X3 + X4 + X5 + X6, data = datax, 
##     listw = queenw1, type = "lag")
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.64295 -1.42575 -0.09703  1.02463  3.10880 
## 
## Type: lag 
## Coefficients: (asymptotic standard errors) 
##                Estimate  Std. Error z value  Pr(>|z|)
## (Intercept)  8.6518e+01  1.2639e+01  6.8452 7.637e-12
## X1          -3.6902e-01  5.7424e-01 -0.6426 0.5204720
## X2          -1.6395e-05  1.0190e-05 -1.6090 0.1076161
## X3          -3.8353e-01  1.7082e-01 -2.2453 0.0247507
## X4          -2.8248e-01  9.4980e-02 -2.9741 0.0029386
## X5           6.4662e-03  1.9548e-03  3.3078 0.0009402
## X6           1.0456e-05  1.8188e-06  5.7488 8.986e-09
## 
## Rho: 0.059565, LR test value: 0.32684, p-value: 0.56753
## Asymptotic standard error: 0.11033
##     z-value: 0.53988, p-value: 0.58928
## Wald statistic: 0.29147, p-value: 0.58928
## 
## Log likelihood: -65.05588 for lag model
## ML residual variance (sigma squared): 2.408, (sigma: 1.5518)
## Number of observations: 35 
## Number of parameters estimated: 9 
## AIC: 148.11, (AIC for lm: 146.44)
## LM test for residual autocorrelation
## test value: 0.74872, p-value: 0.38688

#Prediksi Persentase Penduduk Miskin

Yh_SAR=SAR$coefficients[1]+(0.39668*(queenw2%*%Y))+(SAR$coefficients[2]*X1)+(SAR$coefficients[3]*X2)+(SAR$coefficients[4]*X3)+(SAR$coefficients[5]*X4)+(SAR$coefficients[6]*X5)+(SAR$coefficients[7]*X6)

#Peta Persebaran Prediksi Presentase Penduduk Miskin

colfunc <- colorRampPalette(c("#EEE2DC", "#DA7B93","#5D001E")) 
#colorRampPalette menentukan warna apa saja yang kita inginkan

jateng$Yh_SAR <- Yh_SAR
spplot(jateng, "Yh_SAR",
       col.regions = colfunc(6), 
       cuts = 3, 
main = "Peta Sebaran Prediksi Indeks Pembangunan Manusia di Jawa Tengah")