hypothesis: hot group will spend less time in the dark, avoiding the the side of the tank where they experinced a noxious stimulus. there may be learning effects over trials and/or experiments

data<-Behavioral.Trials.All.Data
#Separate trials
T1<- data[data$trial=="1",]
T2<- data[data$trial=="2",]
T3<- data[data$trial=="3",]
data23<- rbind(T2,T3)

#separate experiments
exp1<-(data[data$exp=="1",])
exp2<-(data[data$exp=="2",])

#separate groups
hot<-(data[data$hot=="y",])
control<-(data[data$hot=="n",])
# Reorder subjects based on the 'hot' group
data <- data %>%
  mutate(subject = factor(subject, levels = unique(subject[order(hot)])))

Raw data plot:

library(ggplot2)
ggplot(data, aes(x = trial, y = dark, color = hot)) +
  stat_summary(fun = mean, geom = "line", aes(group = hot)) +
  stat_summary(fun.data = mean_se, geom = "errorbar", width = 0.2) +
  stat_summary(fun = mean, geom = "point", size = 3) +
  scale_color_manual(values = c("n" = "grey50", "y" = "red")) +
  labs(title = "Dark Across Trials by Treatment - Raw Data", y = "dark", x = "Trial", color="Hot?")

#Transformation not necessary - boxcox transformation did not make it significantly better and actually increased skewness. Use raw variable.  
#Model with dark data

model <- lmer( dark ~ hot * trial * exp + (1 | subject), data = data)
modeltrial <- lmer( dark ~ hot * trial + (1 | subject), data = data)
modelexp <- lmer( dark ~ hot * exp + (1 | subject), data = data)

anova(model, modeltrial, modelexp)
## refitting model(s) with ML (instead of REML)
## Data: data
## Models:
## modelexp: dark ~ hot * exp + (1 | subject)
## modeltrial: dark ~ hot * trial + (1 | subject)
## model: dark ~ hot * trial * exp + (1 | subject)
##            npar    AIC    BIC  logLik -2*log(L)  Chisq Df Pr(>Chisq)  
## modelexp      6 1839.8 1857.3 -913.87    1827.8                       
## modeltrial    8 1851.0 1874.4 -917.47    1835.0  0.000  2    1.00000  
## model        14 1847.6 1888.6 -909.80    1819.6 15.355  6    0.01767 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

#model including trial and experiment interactions significantly improves fit

anova(model)
## Type III Analysis of Variance Table with Satterthwaite's method
##               Sum Sq Mean Sq NumDF   DenDF F value  Pr(>F)  
## hot           148089  148089     1  23.499  4.8298 0.03808 *
## trial         129499   64749     2 105.000  2.1118 0.12614  
## exp            57699   57699     1 105.000  1.8818 0.17305  
## hot:trial      79712   39856     2 105.000  1.2999 0.27691  
## hot:exp       200555  200555     1  21.000  6.5410 0.01834 *
## trial:exp     140767   70383     2 105.000  2.2955 0.10574  
## hot:trial:exp  67206   33603     2 105.000  1.0959 0.33802  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

#significant interactions for trial and experiment

# Get EMMs for all combinations
emm <- emmeans(model, ~ hot * trial * exp)

# Compare trials within hot and exp
trial_contrasts <- contrast(emm, method = "pairwise", by = c("hot", "exp"), adjust = "tukey")
summary(trial_contrasts)
## hot = n, exp = 1:
##  contrast        estimate   SE  df t.ratio p.value
##  trial1 - trial2    -81.7 71.5 105  -1.142  0.4903
##  trial1 - trial3   -105.2 71.5 105  -1.472  0.3086
##  trial2 - trial3    -23.5 71.5 105  -0.329  0.9420
## 
## hot = y, exp = 1:
##  contrast        estimate   SE  df t.ratio p.value
##  trial1 - trial2    -85.8 74.7 105  -1.149  0.4866
##  trial1 - trial3     28.2 74.7 105   0.378  0.9244
##  trial2 - trial3    114.0 74.7 105   1.526  0.2827
## 
## hot = n, exp = 2:
##  contrast        estimate   SE  df t.ratio p.value
##  trial1 - trial2     73.7 74.7 105   0.987  0.5865
##  trial1 - trial3    103.6 74.7 105   1.388  0.3509
##  trial2 - trial3     29.9 74.7 105   0.401  0.9154
## 
## hot = y, exp = 2:
##  contrast        estimate   SE  df t.ratio p.value
##  trial1 - trial2     59.9 71.5 105   0.837  0.6807
##  trial1 - trial3     44.9 71.5 105   0.629  0.8048
##  trial2 - trial3    -14.9 71.5 105  -0.209  0.9763
## 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 3 estimates
# Compare hot vs. control within each trial × exp:
hot_contrasts <- contrast(emm, method = "pairwise", by = c("trial", "exp"), adjust = "tukey")
summary(hot_contrasts)
## trial = 1, exp = 1:
##  contrast estimate   SE  df t.ratio p.value
##  n - y      -111.8 78.4 116  -1.426  0.1566
## 
## trial = 2, exp = 1:
##  contrast estimate   SE  df t.ratio p.value
##  n - y      -115.9 78.4 116  -1.478  0.1421
## 
## trial = 3, exp = 1:
##  contrast estimate   SE  df t.ratio p.value
##  n - y        21.6 78.4 116   0.275  0.7837
## 
## trial = 1, exp = 2:
##  contrast estimate   SE  df t.ratio p.value
##  n - y       166.3 78.4 116   2.121  0.0361
## 
## trial = 2, exp = 2:
##  contrast estimate   SE  df t.ratio p.value
##  n - y       152.5 78.4 116   1.944  0.0543
## 
## trial = 3, exp = 2:
##  contrast estimate   SE  df t.ratio p.value
##  n - y       107.7 78.4 116   1.372  0.1726
## 
## Degrees-of-freedom method: kenward-roger

#no significant differences between trials

#Significant difference between treatment groups in experiment 2, trial 1 (trend in trial 2)- control spent more time in the dark

Looking across trials

#Trial 1 treatment model vs null

model <- lmer( dark ~ hot * exp +
                (1 | subject),
              data = T1)

nullmodel <- lmer( dark ~ 1 * exp +
                (1 | subject),
              data = T1)
anova(model, nullmodel)
## refitting model(s) with ML (instead of REML)
## Data: T1
## Models:
## nullmodel: dark ~ 1 * exp + (1 | subject)
## model: dark ~ hot * exp + (1 | subject)
##           npar    AIC    BIC  logLik -2*log(L)  Chisq Df Pr(>Chisq)   
## nullmodel    3 618.98 624.47 -306.49    612.98                        
## model        6 611.60 622.57 -299.80    599.60 13.387  3    0.00387 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(model)
## Type III Analysis of Variance Table with Satterthwaite's method
##         Sum Sq Mean Sq NumDF DenDF F value  Pr(>F)  
## hot     156672  156672     1  25.1  5.6632 0.02524 *
## exp     190100  190100     1  21.0  6.8716 0.01595 *
## hot:exp 197001  197001     1  21.0  7.1210 0.01438 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

#great improvement on the null model.

Significant effect of treatment, exp, and interaction in trial 1

#Trial 2 treatment model vs null

model <- lmer( dark ~ hot * exp +
                (1 | subject),
              data = T2)

nullmodel <- lmer(dark ~ 1 * exp +
                (1 | subject),
              data = T2)
anova(model, nullmodel)
## refitting model(s) with ML (instead of REML)
## Data: T2
## Models:
## nullmodel: dark ~ 1 * exp + (1 | subject)
## model: dark ~ hot * exp + (1 | subject)
##           npar    AIC    BIC  logLik -2*log(L)  Chisq Df Pr(>Chisq)
## nullmodel    3 613.15 618.64 -303.57    607.15                     
## model        6 614.62 625.59 -301.31    602.62 4.5306  3     0.2096
anova(model)
## Type III Analysis of Variance Table with Satterthwaite's method
##         Sum Sq Mean Sq NumDF  DenDF F value  Pr(>F)  
## hot      65377   65377     1 22.681  3.4695 0.07551 .
## exp       5458    5458     1 21.000  0.2897 0.59610  
## hot:exp  74617   74617     1 21.000  3.9599 0.05977 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

#does not imrpove upon null model #near significant effect of treatment and interaction in trial 2

#Trial 3 treatment model vs null

#interaction not  
model <- lmer( dark ~ hot * exp +
                (1 | subject),
              data = T3)
## boundary (singular) fit: see help('isSingular')
nullmodel <- lmer( dark ~ 1 * exp +
                (1 | subject),
              data = T3)
## boundary (singular) fit: see help('isSingular')
anova(model, nullmodel)
## refitting model(s) with ML (instead of REML)
## Data: T3
## Models:
## nullmodel: dark ~ 1 * exp + (1 | subject)
## model: dark ~ hot * exp + (1 | subject)
##           npar    AIC    BIC  logLik -2*log(L)  Chisq Df Pr(>Chisq)
## nullmodel    3 622.77 628.25 -308.38    616.77                     
## model        6 626.90 637.87 -307.45    614.90 1.8641  3     0.6011
anova(model)
## Type III Analysis of Variance Table with Satterthwaite's method
##          Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## hot      4774.5  4774.5     1    42  0.1165 0.7345
## exp      2907.5  2907.5     1    42  0.0710 0.7912
## hot:exp 21259.6 21259.6     1    42  0.5189 0.4753

#does not improve on null model

#no significant differences in trial 3

Separated by Experiment

# Experiment 1
p1<-ggplot(exp1, aes(x = factor(trial), y = dark, color = hot, group = hot)) +
  geom_jitter(width = 0.2, alpha = 0.5, size = 1.8) +                          # raw data
  stat_summary(fun = mean, geom = "line", aes(group = hot), size = 1) +       # mean line
  stat_summary(fun.data = mean_se, geom = "errorbar", width = 0.2) +          # error bars
  stat_summary(fun = mean, geom = "point", size = 3, shape = 18) +            # mean points
  scale_color_manual(values = c("n" = "grey50", "y" = "red")) +
  labs(title = "Exp 1 - Data + Means and SE" ,
       y = "Dark",
       x = "Trial",
       color = "Hot?") +
  theme_minimal()
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
# Experiment 2
p2<-ggplot(exp2, aes(x = factor(trial), y = dark, color = hot, group = hot)) +
  geom_jitter(width = 0.2, alpha = 0.5, size = 1.8) +
  stat_summary(fun = mean, geom = "line", aes(group = hot), size = 1) +
  stat_summary(fun.data = mean_se, geom = "errorbar", width = 0.2) +
  stat_summary(fun = mean, geom = "point", size = 3, shape = 18) +
  scale_color_manual(values = c("n" = "grey50", "y" = "red")) +
  labs(title = "Exp 2 - Data + Means and SE",
       y = "",
       x = "Trial",
       color = "Hot?") +
  theme_minimal()

library(patchwork)
## Warning: package 'patchwork' was built under R version 4.3.3
# Combine plots and collect shared legend
(p1 + p2) + 
  plot_layout(ncol = 2, guides = "collect") & 
  theme(legend.position = "bottom")

Experiment 1 treatment model vs null

#interaction does not improve model in exp 1
model <- lmer(dark ~ hot * trial +
                (1 | subject),
              data = exp1)

nullmodel <- lmer(dark ~ 1 * trial +
                (1 | subject),
              data = exp1)
anova(model, nullmodel)
## refitting model(s) with ML (instead of REML)
## Data: exp1
## Models:
## nullmodel: dark ~ 1 * trial + (1 | subject)
## model: dark ~ hot * trial + (1 | subject)
##           npar    AIC    BIC  logLik -2*log(L)  Chisq Df Pr(>Chisq)
## nullmodel    3 927.36 934.06 -460.68    921.36                     
## model        8 930.41 948.28 -457.21    914.41 6.9492  5     0.2244
anova(model)
## Type III Analysis of Variance Table with Satterthwaite's method
##           Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## hot        36205   36205     1    21  1.2987 0.2673
## trial      80606   40303     2    42  1.4457 0.2471
## hot:trial  70270   35135     2    42  1.2603 0.2941

#no significant effect of treatment or trial in exp 1

# Fit your model
model1 <- lmer(dark ~ hot * trial + (1 | subject), data = exp1)

# Get estimated marginal means for each trial and hot combination
emm1 <- emmeans(model1, ~ trial | hot)
summary(emm1)
## hot = n:
##  trial emmean   SE   df lower.CL upper.CL
##  1        285 57.3 53.7      170      400
##  2        366 57.3 53.7      251      481
##  3        390 57.3 53.7      275      505
## 
## hot = y:
##  trial emmean   SE   df lower.CL upper.CL
##  1        396 59.9 53.7      276      516
##  2        482 59.9 53.7      362      602
##  3        368 59.9 53.7      248      488
## 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95
#Compare Trials within groups 
pairs(emm1, by = "hot")
## hot = n:
##  contrast        estimate   SE df t.ratio p.value
##  trial1 - trial2    -81.7 68.2 42  -1.198  0.4609
##  trial1 - trial3   -105.2 68.2 42  -1.544  0.2814
##  trial2 - trial3    -23.5 68.2 42  -0.345  0.9364
## 
## hot = y:
##  contrast        estimate   SE df t.ratio p.value
##  trial1 - trial2    -85.8 71.2 42  -1.205  0.4571
##  trial1 - trial3     28.2 71.2 42   0.396  0.9172
##  trial2 - trial3    114.0 71.2 42   1.601  0.2565
## 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 3 estimates

#no significant differences in dark between trials within treatments in exp1

#Hot vs Control at each trial

emm1.1 <- emmeans(model1, ~ hot | trial)
pairs(emm1.1, by = "trial")
## trial = 1:
##  contrast estimate   SE   df t.ratio p.value
##  n - y      -111.8 82.9 53.7  -1.349  0.1831
## 
## trial = 2:
##  contrast estimate   SE   df t.ratio p.value
##  n - y      -115.9 82.9 53.7  -1.398  0.1678
## 
## trial = 3:
##  contrast estimate   SE   df t.ratio p.value
##  n - y        21.6 82.9 53.7   0.260  0.7957
## 
## Degrees-of-freedom method: kenward-roger

#no significant differences in dark between treatment groups within trials in exp 1

emm1 <- emmeans(model1, ~ hot * trial)
emm_df1 <- as.data.frame(emm1)

# Convert trial to numeric (if factor)
emm_df1 <- emm_df1 %>%
  mutate(trial = as.numeric(as.factor(trial)))  # ensures proper spacing on x-axis

# Base plot
p1 <- ggplot(emm_df1, aes(x = factor(trial), y = emmean, group = hot)) +
  geom_line(aes(color = hot), size = 1.2) +
  geom_point(aes(color = hot), size = 3) +
  geom_errorbar(aes(ymin = lower.CL, ymax = upper.CL, color = hot), width = 0.2) +
  scale_color_manual(values = c("n" = "grey50", "y" = "red")) +
  theme_minimal() +
  labs(title="Dark in Experiment 1", x = "Trial", y = "Estimated Mean", color = "Treatment (hot)")
print(p1)

Experiment 2

# Experiment 2 treatment model vs null

model <- lmer( dark ~ hot * trial +
                (1 | subject),
              data = exp2)

nullmodel <- lmer( dark ~ 1 * trial +
                (1 | subject),
              data = exp2)
anova(model, nullmodel)
## refitting model(s) with ML (instead of REML)
## Data: exp2
## Models:
## nullmodel: dark ~ 1 * trial + (1 | subject)
## model: dark ~ hot * trial + (1 | subject)
##           npar    AIC    BIC  logLik -2*log(L)  Chisq Df Pr(>Chisq)  
## nullmodel    3 919.96 926.66 -456.98    913.96                       
## model        8 918.46 936.34 -451.23    902.46 11.493  5    0.04244 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(model)
## Type III Analysis of Variance Table with Satterthwaite's method
##           Sum Sq Mean Sq NumDF DenDF F value   Pr(>F)   
## hot       244533  244533     1    21  8.9567 0.006935 **
## trial      76784   38392     2    42  1.4062 0.256369   
## hot:trial  10803    5402     2    42  0.1978 0.821256   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

#Model significantly better than null.

#significant treatment effect in experiment 2. Hot significantly more likely to spend less time in the dark. Non-significant but consistent decreases in time spent in the dark over trials 2 and 3.

model2 <- lmer(dark ~ hot * trial + (1 | subject), data = exp2)

# Get estimated marginal means for each trial and hot combination
emm2 <- emmeans(model2, ~ trial | hot)
summary(emm2)
## hot = n:
##  trial emmean   SE   df lower.CL upper.CL
##  1        552 53.2 61.1      446      659
##  2        479 53.2 61.1      372      585
##  3        449 53.2 61.1      342      555
## 
## hot = y:
##  trial emmean   SE   df lower.CL upper.CL
##  1        386 51.0 61.1      284      488
##  2        326 51.0 61.1      224      428
##  3        341 51.0 61.1      239      443
## 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95
#Compare Trials within groups
pairs(emm2, by = "hot")
## hot = n:
##  contrast        estimate   SE df t.ratio p.value
##  trial1 - trial2     73.7 70.5 42   1.046  0.5523
##  trial1 - trial3    103.6 70.5 42   1.471  0.3150
##  trial2 - trial3     29.9 70.5 42   0.425  0.9057
## 
## hot = y:
##  contrast        estimate   SE df t.ratio p.value
##  trial1 - trial2     59.9 67.5 42   0.887  0.6511
##  trial1 - trial3     44.9 67.5 42   0.666  0.7843
##  trial2 - trial3    -14.9 67.5 42  -0.221  0.9734
## 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 3 estimates

#no significant differences between trials within treatment groups

#Hot vs Control at each trial

emm2.2 <- emmeans(model2, ~ hot | trial)
pairs(emm2.2, by = "trial")
## trial = 1:
##  contrast estimate   SE   df t.ratio p.value
##  n - y         166 73.7 61.1   2.258  0.0275
## 
## trial = 2:
##  contrast estimate   SE   df t.ratio p.value
##  n - y         152 73.7 61.1   2.070  0.0427
## 
## trial = 3:
##  contrast estimate   SE   df t.ratio p.value
##  n - y         108 73.7 61.1   1.461  0.1491
## 
## Degrees-of-freedom method: kenward-roger

#in experiment 2, significant difference between treatments in trials 1 and 2, and a weak trend in trial 3. Hot group spends less time in the dark across trials, significantly so in trials 1 and 2.

# --- Estimated Marginal Means ---

# Experiment 1
emm1 <- emmeans(model1, ~ hot * trial)
emm_df1 <- as.data.frame(emm1)

emm_df1 <- emm_df1 %>%
  mutate(trial = as.numeric(as.factor(trial)))

# Experiment 2
emm2 <- emmeans(model2, ~ hot * trial)
emm_df2 <- as.data.frame(emm2)

emm_df2 <- emm_df2 %>%
  mutate(trial = as.numeric(as.factor(trial)))

# --- Compute shared y-axis limit that includes asterisks ---
asterisk_height <- 705  # maximum asterisk height
y_max <- max(c(emm_df1$upper.CL, emm_df2$upper.CL, asterisk_height)) + 0.05 * asterisk_height
y_min <- min(c(emm_df1$lower.CL, emm_df2$lower.CL))

# --- Plot for Experiment 1 ---
p1 <- ggplot(emm_df1, aes(x = factor(trial), y = emmean, group = hot)) +
  geom_line(aes(color = hot), size = 1.2) +
  geom_point(aes(color = hot), size = 3) +
  geom_errorbar(aes(ymin = lower.CL, ymax = upper.CL, color = hot), width = 0.2) +
  scale_color_manual(values = c("n" = "grey50", "y" = "red")) +
  labs(title = "Dark in Experiment 1", x = "Trial", y = "Estimated Mean", color = "Treatment (hot)") +
  coord_cartesian(ylim = c(y_min, y_max)) +
  theme_minimal()

# --- Plot for Experiment 2 ---
p2 <- ggplot(emm_df2, aes(x = factor(trial), y = emmean, group = hot)) +
  geom_line(aes(color = hot), size = 1.2) +
  geom_point(aes(color = hot), size = 3) +
  geom_errorbar(aes(ymin = lower.CL, ymax = upper.CL, color = hot), width = 0.2) +
  scale_color_manual(values = c("n" = "grey50", "y" = "red")) +
  labs(title = "Dark in Experiment 2", x = "Trial", y = "", color = "Treatment (hot)") +
  coord_cartesian(ylim = c(y_min, y_max)) +
  theme_minimal()

# --- Annotate Experiment 2 with manual asterisks ---
p2 <- p2 +
  annotate("text", x = 1, y = 675, label = "*", size = 6) +  # trial 1
  annotate("text", x = 2, y = 605, label = "*", size = 6)    # trial 2

# --- Combine and Display ---
(p1 + p2) + 
  plot_layout(ncol = 2, guides = "collect") & 
  theme(legend.position = "bottom")

#asterisks show significant differences between treatment groups in trials 1 and 2

#Extras——————————————————————————————

Side effect?

modelside<- lmer(dark~ side + (1|subject), data=data)
summary(modelside)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: dark ~ side + (1 | subject)
##    Data: data
## 
## REML criterion at convergence: 1819.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.5471 -0.4395  0.2173  0.6470  1.7054 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept)  7627     87.33  
##  Residual             30920    175.84  
## Number of obs: 138, groups:  subject, 23
## 
## Fixed effects:
##             Estimate Std. Error      df t value Pr(>|t|)    
## (Intercept)  395.921     32.635  21.001  12.132 5.95e-11 ***
## sider          7.208     47.190  21.001   0.153     0.88    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##       (Intr)
## sider -0.692

#no effect from which side of experimental tank was nearest the window

Time effect

library(hms)
## Warning: package 'hms' was built under R version 4.3.3
library(lubridate)
## Warning: package 'lubridate' was built under R version 4.3.3
## 
## Attaching package: 'lubridate'
## The following object is masked from 'package:hms':
## 
##     hms
## The following objects are masked from 'package:base':
## 
##     date, intersect, setdiff, union
# Step 1: Add ":00" to make it HH:MM:SS
data$time_clean <- paste0(data$time, ":00")

# Step 2: Parse as hms time
data$time_parsed <- hms::as_hms(data$time_clean)

# Step 3: Extract decimal hour
data$hour_decimal <- hour(data$time_parsed) + minute(data$time_parsed)/60
data$hour2 <- data$hour_decimal^2

model_time_quad <- lmer(dark ~ hour_decimal + hour2 + (1 | subject), data = data)
summary(model_time_quad)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: dark ~ hour_decimal + hour2 + (1 | subject)
##    Data: data
## 
## REML criterion at convergence: 1817.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.6292 -0.4295  0.2460  0.6712  1.6494 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept)  6732     82.05  
##  Residual             31098    176.35  
## Number of obs: 138, groups:  subject, 23
## 
## Fixed effects:
##              Estimate Std. Error       df t value Pr(>|t|)
## (Intercept)  -250.559    476.152  134.881  -0.526    0.600
## hour_decimal  101.110     75.156  134.606   1.345    0.181
## hour2          -3.781      2.881  133.932  -1.313    0.192
## 
## Correlation of Fixed Effects:
##             (Intr) hr_dcm
## hour_deciml -0.995       
## hour2        0.982 -0.996

#no linear or quadratic trend associated with time of day in regard to dark